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Abstract 

Background:  In Comoros, the widespread of chloroquine (CQ)-resistant Plasmodium falciparum populations was 
a major obstacle to malaria control, which led to the official withdrawal of CQ in 2004. Continuous monitoring of 
CQ-resistant markers of the P. falciparum CQ resistant transporter (pfcrt) and the P. falciparum multiple drug resistance 1 
(pfmdr-1) is necessary inder to obtain first-hand information on CQ susceptibility of parasite populations in the field. 
The objective of this study is to assess the prevalence and evolution of CQ-resistance in the P. falciparum populations 
on the Comoros’ Grande Comore island after withdrawal of CQ.

Methods:  A total of 207 P. falciparum clinical isolates were collected from the island, including 118 samples from 
2006 to 2007 and 89 samples from 2013 to 2014. Nucleotide substitutions in the pfcrt and pfmdr-1 genes linked to CQ 
response in parasite isolates were assessed using nested PCR and DNA sequencing.

Results:  From the pfcrt gene segment sequenced, we detected C72S, M74I, N75E, and K76T substitutions in the para‑
site isolates collected from both 2006–2007 to 2013–2014 periods. Significant decline of pfcrt resistant alleles at C72S 
(42.6 to 6.9 %), M74I (39.1 to 14.9 %), N75E (63.5 to 18.3 %), and K76T (72.2 to 19.5 %) from 2006–2007 to 2013–2014 
were observed, and the frequency of pfcrt wild type allele was significantly increased from 19.1 % in 2006–2007 to 
75.8 % in 2013–2014. Sequence analysis of pfmdr-1 also detected point mutations at codons N86Y, Y184F, and D1246Y, 
but not S1034C and N1042D, in the isolates collected from both examined periods. An increasing trend in the preva‑
lence of the pfmdr-1 wild type allele (NYD, 4.3 % in 2006–2007; and 28.7 % in 2013–2014), and a decreasing trend for 
pfmdr-1 N86Y mutation (87.0 % in 2006–2007; and 40.2 % in 2013–2014) were observed in our samples.

Conclusions:  The present data indicate that the prevalence and patterns of mutant pfcrt and pfmdr-1 dramatically 
decreased in the Grande Comore isolates from 2006 to 2014, suggesting that the CQ-sensitive P. falciparum strains 
have returned after the withdrawal of CQ. The data also suggests that the parasites with wild type pfcrt/pfdmr-1 genes 
may have growth and/or transmission advantages over the mutant parasites. The information obtained from this 
study will be useful for developing and updating anti-malarial treatment policy in Grande Comore island.
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Background
Despite being a readily preventable and treatable disease, 
malaria still infects more than 210 million people and kills 
approximately 438,000 individuals annually [1]. In the 
Union of Comoros (including Moheli, Anjouan Island, 
and Grande Comore islands), Plasmodium falciparum 
infection was one of the most serious public health prob-
lems until 2013, and malaria made up 15–30 % of the hos-
pitalization cases and contributed 15–20 % of registered 
deaths in the pediatric services [2]. One of the main fac-
tors contributing to the disease burden is the emergence 
and spread of parasites resistant to anti-malarial drugs 
in malaria-endemic areas of the world [3]. Chloroquine 
(CQ) has been the first-line treatment of acute uncom-
plicated falciparum malaria in this island nation since 
the 1950s. Unfortunately, the first case of CQ-resistance 
(CQR) P. falciparum malaria was reported in Comoros in 
1980 [4]. Since the first report, various studies have sub-
sequently confirmed that the emergence and spread of 
CQR parasite strains [5–7], leading to the replacement 
of CQ with artemisinin-based combined therapy (ACT), 
including artemether-lumefantrine (AL), as the first-
line therapy for uncomplicated P. falciparum malaria in 
2004. However, it should be noted that there was period 
(between 2004 and 2007) with overlapping CQ and AL 
treatments due to the unavailability of AL treatment in 
some health facilities in Comoros. Additionally, mas-
sive application of long-lasting insecticide-treated nets 
and indoor residual sprayings had been implemented in 
Comoros since 2007. Furthermore, mass drug adminis-
tration (MDA) with a therapeutic dose of artemisinin-
piperaquine (AP) plus a low-dose of primaquine (APP, 
Artepharm Co. Ltd, PR China) was launched in 2007, 
2012, and 2013 on Moheli, Anjouan, and Grande Comore 
islands, respectively. According to a report from the Min-
istry of Health, the numbers of annual malaria cases have 
been dramatically reduced after MDA, from 108,260 in 
2006–2154 in 2014 in Union of Comoros (a 97.7 % reduc-
tion) and from 92,480 in 2006–2142 in 2014 in Grande 
Comore (a 98.0 % reduction). The dramatic reduction in 
annual malaria cases in Grande Comore could be mainly 
attributed to ACT-based MDA regimens in synergy 
with other malaria control measures. Currently, delayed 
parasite clearance (DPC) after ACT treatment has been 
reported in countries of Southeast Asia, including Cam-
bodia, Thailand, Myanmar, Vietnam, and Laos [8–10]. 
The increased K13-propeller gene mutations previously 
associated with DPC among P. falciparum populations 
from 2013 to 2014 in Grande Comore (a  ~20  % incre-
ment) may present new challenges in the ACT efficacy in 
the future [11, 12]. To achieve the ambitious goal to com-
pletely eliminate malaria by 2020 in Comoros, as well as 
to preserve the high efficacy of ACT, there is an urgent 

need to develop and update anti-malarial guidance in 
Comoros.

Resistance to CQ in P. falciparum parasites is mainly 
linked to mutations in the P. falciparum CQR trans-
porter gene (pfcrt), which encodes a protein localized 
at the membrane of parasite digestive vacuole (DV). A 
second gene called P. falciparum multidrug resistance 
gene 1 (pfmdr-1) that encodes a P-glycoprotein homo-
logue and is also located at the membrane of the para-
site DV may modulate the level of resistance. Specific 
mutations in pfcrt (K76T) and pfmdr-1 (N86Y) have 
been used as molecular markers for monitoring CQR in 
the field parasite populations [13, 14]. The continuous 
monitoring of molecular markers is a very useful tool 
for malaria control in endemic areas, since it may detect 
changes in parasite susceptibility to anti-malarial drugs 
and provide guidance to therapeutic policies. Several 
studies have assessed allele frequencies in different time 
periods in various malaria-endemic areas. For example, 
in Malawi over 8 years [15], in Papua New Guinea over 
12 years [16], in Gabon over 14 and 25 years [17, 18], and 
in Eastern Kenya over 14  years [19]. In Malawi [15, 20, 
21], Gambia [18], Kenya [19], Ethiopia [22], and Tanzania 
[23], the withdrawal of CQ chemotherapy led to a decline 
in the frequency of mutant pfcrt and pfmdr-1 alleles and 
the return of CQ sensitive (CQS) malaria. In the con-
trary, high frequencies of CQR strains were still detected 
in some endemic regions despite the withdrawal of CQ 
from national treatment guidelines [17, 24, 25].

Before the change of the drug policy in Comoros, clini-
cal failure rates of CQ therapy ranged between 31 and 
90  % [7, 26, 27]. Subsequent genotyping showed that 
the prevalence of the pfcrt K76T and the pfmdr-1 N86Y 
mutations ranged from 62 to 98 %, and from 90 to 100 %, 
respectively [7, 26, 28]. After the change in the drug 
policy, the frequency of the 76T and 86Y mutant alleles 
were 43–80 and 97–99 %, respectively, in 2006 [29–31]. 
Currently, the status of P. falciparum susceptibility to CQ 
in Comoros is unknown. Monitoring the parasite’s CQ 
susceptibility is crucial for considering the possibility of 
reintroducing this safe and affordable drug in Comoros. 
Thus, the aim of this study is to assess the prevalence and 
evolution of CQR by investigating the temporal varia-
tions of pfcrt and pfmdr-1 gene polymorphisms in P. fal-
ciparum isolates collected from Grande Comore during 
the periods of 2006–2007 and 2013–2014.

Methods
Study sites
This study was conducted in three malaria endemic sites 
of the Grande Comore Island (Mitsoudje Centre Hos-
pital, National Malaria Centre, and Mitsamiouli Cen-
tre Hospital), Union of Comoros (Fig.  1). The island is 
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located in the Indian Ocean between Madagascar and 
the eastern coast of Africa, with 11°00′–12°00′S latitude 
and 43°10′–43°35′E longitude. The population of this 
island was estimated to be 420,000 in 2012. The island 
has a tropical climate with temperature ranging from 11 
to 35  °C and rainfall of 1000–3000  mm per year (rainy 
season between November and April and dry season 
between May and October). Malaria is transmitted prin-
cipally by Anopheles gambiae s.l. and Anopheles funes-
tus [2]. Malaria transmission is year-round with a peak 
of transmission during the rainy season. P. falciparum 
and Plasmodium malariae malaria are present on the 
island, with P. falciparum being the predominant species 
(>95.5 %).

Study samples
Ethical approval for this study was obtained from the 
Ethics Committees of Comoros Ministry of Health (No. 
07-123/VP-MSSPG/DNS) and Guangzhou University of 
Chinese Medicine (No. 2012L0816). Blood samples were 
collected in two different periods (March 2006–October 
2007, and March 2013–December 2014) from patients 
with symptomatic malaria admitted to Mitsoudje 
Center Hospital, National Malaria Center, and Mitsami-
ouli Center Hospital for anti-malarial drug treatment. 

Written informed consent from all adults or legal guard-
ians of children was also obtained. Inclusion criteria were 
patients infected with P. falciparum, but not other human 
malaria species, as confirmed by peripheral thick and 
thin blood smear examination after Giemsa staining. A 
1.0 ml of whole blood was collected from P. falciparum 
patients in an EDTA tube and stored at −20 °C. A total of 
207 P. falciparum clinical blood samples were collected, 
including 118 samples from March 2006 to October 2007 
and 89 from March 2013 to December 2014.

PCR amplification and sequence analysis of P. falciparum 
crt and mdr‑1 genes
Parasite DNA was isolated from 100  μl of blood sam-
ple using Takara DNA Blood Mini Kit following the 
manufacturer’s instructions (Takara, Kyoto, Japan). The 
extracted DNA was dissolved in TE buffer (10 mM Tris–
HCl, 0.1  M EDTA, pH 8.0) and stored at −20  °C until 
use. Segments of the pfcrt and pfmdr-1 genes spanning 
codons 72–76 (pfcrt) and codons 86, 184, 1034, 1042, 
and 1246 (pfmdr-1) were amplified as described proto-
col previously [22]. For pfcrt and pfmdr-1 both the pri-
mary and nested amplifications were carried out in 25 μl 
of final volume with 10.0 μl of dH2O, 12.5 μl of Taq PCR 
Mast Mix (2.5 U), and 0.4  µM of forward and reverse 

Fig. 1  Map of Grande Comore island, Union of Comoros showing the locations of Mitsoudje Center Hospital (open triangle), National Malaria Center 
(open square), and Mitsamiouli Center Hospital (open circle) where P. falciparum isolates were collected
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primers, following the manufacturer’s instructions (San-
gon Bio Inc., Shanghai, China) on a S1000 Thermal cycler 
(Bio-Rad, Hercules, USA). Primary amplification reac-
tions were initiated with the addition of 2.0  μl of tem-
plate genomic DNA prepared from the blood samples. 
For the nested PCR, 0.5 μl of primary PCR productions 
was used as a template. The amplified PCR products were 
separated on a 2.0 % agarose gel run with a 100 bp DNA 
ladder (Sangon Bio Inc., Shanghai, China). The nested 
PCR products were directly sequenced in both directions 
using an ABI PRISM3730 DNA sequencer (Sangon Bio 
Inc., Shanghai, China). The nucleotide and amino acid 
sequences of the pfcrt and pfmdr-1 genes were compared 
with those of wild-type sequences of pfcrt (GenBank 
accession number KM288867) and pfmdr-1 (GenBank 
accession number XM_001351751) using Clustal W of 
the BioEdit 7.0 and MEGA 4.0 programs.

Statistical analysis
Statistical significance was determined using SPSS soft-
ware (version 13.0). Mann–Whitney U test was used to 
compare in the frequencies of the mutations and alleles 
of the pfcrt and pfmdr-1 in isolates collected between 
2006–2007 and 2013–2014. P < 0.05 was considered sta-
tistically significant.

Results
Prevalence and patterns of mutant pfcrt gene in P. 
falciparum isolates
All blood samples (n = 207) were identified as P. falcipa-
rum mono-species infections after the thin blood smear 
examination. Because of low parasitaemia and/or poor 
DNA quality, some samples were not successfully ampli-
fied the pfcrt gene. Only 98  % of the P. falciparum iso-
lates from Grande Comore Island (n  =  202) could be 
amplified, including samples collected during 2006–2007 
(n = 115) and 2013–2014 (n = 87). Mutations at codons 
C72S, M74I, N75E, and K76T of the pfcrt gene were 
detected in isolated from both 2006–2007 and 2013–
2014 groups (Table 1). Mutant codon K76T was the most 
prevalent in both 2006–2007 and 2013–2014 groups, 
accounting for 72.3 and 19.5 % of the isolates examined, 
respectively. Over the course of 8  years (2006–2014), 
the number of non-synonymous mutations significantly 
decreased from 42.6 to 6.7 % at codon C72S (P < 0.01), 
from 39.1 to 14.9 % at codon M74I (P < 0.01), from 63.5 
to 18.3  % at codon N75E (P  <  0.01), and from 72.2 to 
19.5 % at codon K76T (P < 0.01).

Haplotype analysis of the pfcrt gene revealed that nine 
and six distinct allelic forms were detected in isolates 
from the 2006–2007 to 2013–2014 groups, respectively 
(Table 2). Of the nine allelic variants, the most prevalent 
were the quadruple-mutant allele (72S/74I/75E/76T) 

(26.1  %, 30/115) among 2006–2007 group isolates, fol-
lowed by the WT allele (19.1  %, 22/115), triple mutant 
allele (74I/75E/76T) (13.0 %, 15/115), single mutant allele 
76T (11.3  %, 13/115), and another triple mutant allele 
(72S/75E/76T) (10.4  %, 12/115), and a double mutant 
allele (75E/76T) (8.7  %, 10/115). The remaining three 
allelic variants were only detected in 13 (11.3  %) of P. 
falciparum isolates in the 2006–2007 group. Among the 
six allelic variants in the 2013–2014 group, WT allele 
was the most prevalent, accounting for 75.9  % (66/87). 
Except for the triple mutant allele (74I/75E/76T) with the 
frequency of 12.6  %, the remaining allelic variants were 
evenly distributed at low frequency (2.2 to 4.5 %) among 
isolates in the 2013–2014 group. Compared with the 
2006–2007 group, the frequency of WT allele was sig-
nificantly (P < 0.05) increased in those from 2013 to 2014 
group, whereas the frequencies of single mutant allele 
75E (P  <  0.05) and 76T (P  <  0.01), triple mutant allele 
72S/75E/76T (P  <  0.01), and quadruple-mutant allele 
72S/74I/75E/76T (P < 0.01) were significantly decreased.

Prevalence and patterns of mutant pfmdr‑1 gene in P. 
falciparum isolates
The pfmdr-1 segment was successfully amplified from 
115 of 118 (97 %) and 87 of 89 (98 %) of the P. falcipa-
rum isolates collected from 2006–2007 to 2013–2014, 
respectively. Sequence analysis revealed point mutations 
at codons N86Y, Y184F, and D1246Y of the pfmdr-1 gene 
in isolates collected in both 2006–2007 and 2013–2014 
groups (Table  1). None of the investigated P. falcipa-
rum clinical isolates carried S1034C or N1042D  substi-
tution. Among the above three mutants, codon N86Y 
was the most prevalent, accounting for 87.0 %, followed 
by codons Y184F and D1246Y with frequency of 52.2 
and 26.1 % in isolates from 2006 to 2007 group, respec-
tively. Similarly, the N86Y was the most prevalent in the 
2013–2014 group, accounting for 40.2  %, followed by 
codons Y184F and D1246Y with frequency of 29.8 and 
13.8  %, respectively. The frequencies of mutations at 
codons N86Y (P < 0.01), Y184F (P < 0.01), and D1246Y 
(P < 0.05) were significantly decreased in the 2013–2014 
group compared with those in the 2006–2007 group, 
respectively.

Haplotype analysis of pfmdr-1 gene of the samples 
revealed eight distinct allelic forms (Table  2), includ-
ing the wild type allele, three single-mutant alleles (86Y, 
184F, and 1246Y), three double-mutant alleles (86Y/184F, 
86Y/1246Y, and 184F/1246Y), and one triple mutant 
allele (86Y/1246Y/1246Y). Of the eight allelic variants, 
the most prevalent allelic variant was single-mutant allele 
86Y in isolates from both 2006–2007 (34.8  %, 40/115) 
and 2013–2014 (33.3  %, 29/87) groups, followed by 
double-mutant allele 86Y/184F in isolates from 2006 to 
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2007 (30.4 %, 35/115) and wild type allele in isolates from 
2013 to 2014 group (28.7 %, 25/115). Compared with the 
2006–2007 group, the frequency of WT allele (changed 
from 4.3 to 28.7 %) was significantly (P < 0.01) increased 
in those from 2013 to 2014 group, whereas the frequency 
of double-mutant allele (86Y/184F) was significantly 
decreased (from 30.4 to 14.9 %; P < 0.01).

Discussion
In Comoros, with the official ban of CQ in 2004, CQ has 
now been out of use for almost 12  years although self-
medication might have continued for a few years after 
the ban. The dramatic reduction of annual malaria cases 
in Grande Comore may be mainly due to ACT-based 

MDA regimens and other malaria control interventions. 
However, the emergence and spread of artemisinin-
resistant P. falciparum parasites in Southeast Asia [8–10] 
and the increased K13-propeller gene diversity among 
P. falciparum populations from 2006 to 2014 in Grande 
Comore (a  ~20  % increment) [11, 12] may open up a 
new challenge in the ACT efficacy in the future and 
call for monitoring the changes in parasite susceptibil-
ity to CQ and other anti-malarial drugs. The issue as to 
whether or not CQ-susceptible strains may be returned 
in malaria-endemic regions after the withdrawal of CQ 
selective pressure is of great interest for malaria control. 
This study assessed the evolution of CQR by investigat-
ing the temporal variations of pfcrt and pfmdr-1 gene 

Table 1  Prevalence of  crt and  mdr-1 mutations in  P. falciparum isolates from  2006–2007 to  2013–2014 along  Grande 
Comore island

a  The mutated amino acids and nucleotides are indicated in bold type
b  Statistically significant differences for comparison with isolates circulating in 2006–2007 from Grande Comore island (* P < 0.05; ** P < 0.01) using Mann–Whitney U 
test

Areas Genes Amino acid and  
genetic changesa

Number of isolates (%b)

2006–2007 (n = 115) 2013–2014 (n = 87)

Mitsoudje center hospital pfcrt C72S (TGT → AGT) 27 (23.5) 3 (3.4)**

M74I (ATG → AAT) 23 (20.0) 5 (5.7)**

N75E (AAT → GAA) 38 (33.0) 6 (6.9)**

K76T (AAA → ACA) 41 (35.7) 5 (5.7)**

pfmdr-1 N86Y (TGA → TGT) 45 (39.1) 25 (28.7)

Y184F (ATA → ATA) 25 (21.7) 8 (9.2)**

D1246Y (GAG → GAT) 12 (10.4) 6 (6.9)

National Malaria Center pfcrt C72S (TGT → AGT) 15 (13.0) 2 (2.3)**

M74I (ATG → AAT) 13 (11.3) 4 (4.6)

N75E (AAT → GAA) 19 (16.5) 6 (6.9)*

K76T (AAA → ACA) 27 (23.5) 8 (9.2)**

pfmdr-1 N86Y (TGA → TGT) 28 (24.3) 20 (23.0)

Y184F (ATA → ATA) 21 (18.3) 12 (13.8)

D1246Y (GAG → GAT) 10 (8.7) 2 (2.3)

Mitsamiouli Center Hospital pfcrt C72S (TGT → AGT) 7 (6.1) 1 (1.1)

M74I (ATG → AAT) 9 (7.8) 4 (4.6)

N75E (AAT → GAA) 16 (13.9) 4 (4.6)*

K76T (AAA → ACA) 15 (13.0) 4 (4.6)*

pfmdr-1 N86Y (TGA → TGT) 27 (23.5) 8 (9.2)**

Y184F (ATA → ATA) 14 (12.2) 6 (6.9)

D1246Y (GAG → GAT) 8 (6.8) 4 (4.6)

All the examined sites pfcrt C72S (TGT → AGT) 49 (42.6) 6 (6.9)**

M74I (ATG → AAT) 45 (39.1) 13 (14.9)**

N75E (AAT → GAA) 73 (63.5) 16 (18.3)**

K76T (AAA → ACA) 83 (72.2) 17 (19.5)**

pfmdr-1 N86Y (TGA → TGT) 100 (87.0) 35 (40.2)**

Y184F (ATA → ATA) 60 (52.2) 26 (29.9)**

D1246Y (GAG → GAT) 30 (26.1) 12 (13.8)*
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polymorphisms in P. falciparum isolates collected from 
Grande Comore for two different periods (2006–2007 
and 2013–2014). Due to the dramatic reduction of 
annual malaria cases in Grande Comore since 2013, the 
number of P. falciparum isolates collected from 2013 
to 2014 (n =  89) was smaller than those from 2006 to 
2007 (n = 118). Our data showed that the frequencies of 
mutant alleles pfcrt and pfmdr-1 significantly decreased 
in isolates from 2013 to 2014 when compared with those 
from 2006 to 2007, suggesting that CQS P. falciparum 
populations have returned to Grande Comore after the 
withdrawal of CQ.

The long history of CQ use has exposed P. falciparum 
to the drug pressure continually in Comoros. Clini-
cal failure after standard CQ treatment was initially 
reported in a case of P. falciparum malaria in Comoros 
in 1980 [4]. A trend of gradual increment of CQ clinical 
failure rates (from 31 to 90 %) had been documented in 
this malaria-endemic area between 1990 and 2004 sub-
sequently [7, 26, 27]. Sets of SNPs in the pfcrt codons 72, 
74, 75, and 76 were associated with CQR in P. falcipa-
rum from Southeast Asia, Africa and South America [14, 
32]. The pfcrt K76T mutation has been considered as the 
most reliable molecular marker of CQR among the vari-
ous mutations identified [14, 32]. In the present study, 

the high frequency (72.2 %) of pfcrt K76T was observed 
in P. falciparum isolates from 2006 to 2007. Our data are 
consistent with those in other reports, where 45–80 % of 
Comoros P. falciparum isolates collected in 2006–2007 
had the pfcrt K76T mutation [29–31]. We observed an 
increasing trend in the prevalence of the pfcrt K76 wild 
type allele (19.1  % in 2006–2007; and 75.9  % in 2013–
2014) and a decreasing trend for pfcrt K76T mutation 
(72.2  % in 2006–2007; and 19.5  % in 2013–2014). The 
decreasing trend for pfcrt K76T mutation in our study 
is consistent with several previous reports from other 
malaria endemic regions. In Ghana, a decrease in fre-
quency of the pfcrt K76T mutation (from 88 to 56  % 
for 2005–2010) was observed [33]. In Malawi [15] and 
Kenya [19], decreases from 85 to 13 % between the years 
of 1993 and 2000 and from 95 to 60  % between 1993 
and 2006 were reported, respectively. Similar decreases 
in mutant pfcrt were reported in many other regions, 
including Senegal [34], Mozambique [35], Tanzania [23], 
and Madagascar [36, 37]. In another in vivo study, P. fal-
ciparum parasites carrying the CQS pfcrt K76 allele was 
selected after treatment with AL [38]. The observation 
of increased CQS pfcrt K76 allele after AL use is con-
sistent with our results; discontinue of CQ use (or CQ 
related drugs such as amodiaquine) allows the return of 

Table 2  Prevalence of  single nucleotide polymorphisms and  multi-mutated haplotypes in  crt and  mdr-1 genes 
among Grande Comore P. falciparum isolates from different years

a  The mutated amino acids are indicated by bold type
b  Statistically significant differences for comparison with isolates circulating in 2006–2007 from Grande Comore island (* P < 0.05; ** P < 0.01) using Mann–Whitney U 
test

Genotypesa Number of isolates (%)b

2006–2007 (n = 115) 2013–2014 (n = 87) Total (n = 202)

pfcrt Wild-type haplotype C72V73M74N75K76 22 (19.1) 66 (75.9)** 88 (43.6)

Single-mutant haplotype S72V73M74N75K76 4 (3.4) 4 (4.5) 8 (4.0)

Single-mutant haplotype C72V73M74E75K76 6 (5.2) 0 (0)* 6 (3.0)

Single-mutant haplotype C72V73M74N75T76 13 (11.3) 2 (2.2)** 15 (7.4)

Double-mutant haplotype S72V73M74N75T76 3 (2.6) 0 (0) 3 (1.5)

Double-mutant haplotype C72V73M74E75T76 10 (8.7) 2 (2.2) 12 (5.9)

Triple- mutant haplotype S72V73M74E75T76 12 (10.4) 0 (0)** 12 (5.9)

Triple-mutant haplotype C72V73I74E75T76 15 (13.0) 11 (12.6) 26 (12.9)

Quadruple-mutant haplotype S72V73I74E75T76 30 (26.1) 2 (2.2)** 32 (15.9)

pfmdr-1 Wild-type haplotype N86Y184D1246 5 (4.3) 25 (28.7)** 30 (14.9)

Single-mutant haplotype Y86Y184D1246 40 (34.8) 29 (33.3) 69 (34.2)

Single-mutant haplotype N86F184D1246 5 (4.3) 4 (4.6) 9 (4.5)

Single-mutant haplotype N86Y184Y1246 2 (1.7) 2 (2.3) 4 (2.0)

Double-mutant haplotype Y86F184D1246 35 (30.4) 13 (14.9)** 48 (23.8)

Double-mutant haplotype Y86Y184Y1246 8 (7.0) 5 (5.7) 13 (6.4)

Double-mutant haplotype N86F184Y1246 3 (2.6) 3 (3.4) 6 (3.0)

Triple-mutant haplotype Y86F184Y1246 17 (14.8) 6 (6.9) 23 (11.3)
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parasites with wild type pfcrt allele. Thus, the decreas-
ing trend for pfcrt K76T mutation observed in our study 
may highlight a benefit of using AP or AL in an area with 
a high prevalence of CQ-resistant P. falciparum malaria 
such as Grande Comoros, but not artemether-lumefan-
trine-amodiaquine (AQ) because AQ (with amodiaquine) 
was shown to select for pfcrt 76T allele and pfmdr1 YYY 
haplotype [39]. In contrast, high frequencies of the pfcrt 
K76T mutant were detected in some countries despite 
the withdrawal of CQ for many years, including Gabon 
[17] and Benin [24]. The decreases in mutant pfcrt alleles 
after withdraw of CQ use is likely due to fitness cost of 
the pfcrt mutations, and the persistence of high frequen-
cies of the mutant alleles in some parasite populations is 
because of compensatory changes in the parasite genome 
that allow the parasite to overcome the negative effects of 
drug resistant mutations. For example, in a study of gene 
expression in pfcrt mutants, CQ treated pfcrt mutants 
were found to have significant enrichment in glycerol 
and polyol metabolic processes and iron/cation trans-
port activities [40]. Compensatory mutations have been 
widely reported in other microorganisms [41].

The mutant pfcrt SVMNT haplotype, which is mostly 
associated with amodiaquine resistance and lower level 
of CQR compared to CVIET [42], had been reported 
mostly in Southeast Asia (India and Laos) [43–45] and 
South America [46, 47], but is still very rare in Africa 
[48]. In the present study, the mutant pfcrt SVMNT 
(2.6  %, 3/195) observed in the P. falciparum isolates 
examined was identical to that of CQR isolates identi-
fied in Ethiopia [22] and Tanzania [48]. Therefore, results 
from the current study suggest that P. falciparum popu-
lations with the mutant pfcrt SVMNT allele may have a 
global distribution now.

Although pfmdr-1 haplotype alone does not deter-
mine the level of CQ resistance, the mutations at 
codons N86Y, S1034C, N1042D, and D1246Y in pfmdr-
1 gene are related to reduced sensitivity to CQ [49]. It 
was reported that CQR P. falciparum populations were 
introduced into Madagascar from Comoros islands [29], 
and in  vivo resistance to CQ in Madagascar that was 
not associated with the pfcrt 76T mutation, but with 
the mutation pfmdr-1 86Y and perhaps with other yet 
unknown mechanisms [49, 50]. In the present study, 
none of the P. falciparum clinical isolates collected in 
2006–2007 and 2013–2014 carried S1034C and N1042D 
substitutions, which was similar to those reported from 
Madagascar [30]. In the present study, three mutations 
at codons N86Y (87.0  %), Y184F (52.2  %), and D1246Y 
(26.1 %) were detected in the 2006–2007 group isolates. 
The results from this study are similar to other previ-
ous reports in Grande Comore, where 97.4 and 77.5  % 

of parasite isolates collected in 2006 had mutations at 
codons N86Y and D1246Y, respectively, followed by 
only 1.8  % of isolates with pfmdr-1 wild type gene [29, 
30]. In the present study, over the course of 8  years 
(2006–2014), the frequencies of mutations in pfmdr-
1 gene dramatically changed from 87.0 to 40.2  % (at 
codon N86Y, P < 0.01) and from 26.1 to 13.8 % (at codon 
D1246Y, P < 0.05). Our data are in line with those of a 
report describing the change in frequency of pfmdr-1 
gene mutations in Madagascar isolates [30, 37], in which 
the pfmdr-1mutation N86Y was reduced from 50 to 11 % 
6  years after the withdrawal of CQ. Similarly, with the 
prevalence of pfmdr-1  N86Y reaching a peak in 2000 
(78  %), there was a highly significant decline in preva-
lence of the pfmdr-1 N86Y allele in 2008 in Gambia [18]. 
Therefore, the observations from this study suggested 
that an increasing trend in P. falciparum susceptibility 
to CQ may exist in Grande Comore currently. However, 
this observation showed that over the course of 8 years 
(2006–2014), the frequencies of mutations in pfmdr-1 
gene at codon Y184F dramatically changed from 52.2 
to 30.0  % (P  <  0.01) in the present study. The observa-
tion was in contrast to other reports from Kenya [39], 
Uganda [51], and Sudan [52] where the pfmdr-1 184F 
allele has been previously associated with in vivo selec-
tion by AQ or AL.

In the present study, the decline in prevalence of 
pfmdr-1 gene mutations (~24 %) was lower than those in 
pfcrt gene mutations (~67 %) among Grande Comore iso-
lates over the course of 8 years (2006–2014). The obser-
vation is line with other reports describing mdr-1 and crt 
polymorphisms in P. falciparum isolates collected from 
Malawi, in which  ~30 or  ~70  % decline was observed 
in the change of prevalence of mutant pfmdr-1 or pfcrt 
among P. falciparum isolates collected from 1992 to 2000, 
respectively [15]. These observations suggest that pfmdr-
1 mutations may be less deleterious to parasite fitness 
than the pfcrt mutations [13, 14], even though pfmdr-1 
mutations can modulate the level of CQ resistance.

In the present study, the rapid shift in P. falciparum 
from CQR to CQS suggests that the replacement of CQ 
with ACT for the treatment of P. falciparum may eventu-
ally result in the significant decline of pfcrt and pfmdr-
1 mutations or CQ-resistant strains in Grande Comore 
isolates. It was reported that the return of CQS was the 
result of re-expansion of the susceptible parasites, but not 
back mutations in a formerly resistant parasite or a new 
selective sweep in Africa [20] where the malaria trans-
mission rates are higher and naturally immune individu-
als are more common compared with those in Southeast 
Asia. Whether or not the CQS resurgence is due to the 
expansion of surviving CQS reservoir populations or 
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back-mutations in the CQR allele in Grande Comore can 
not be inferred from our results.

Conclusions
Results from the current study showed that the prevalence 
and patterns of mutant pfcrt and pfmdr-1 dramatically 
decreased in Grande Comore isolates over the course 
of 8 years (2006–2014). Although the data related to the 
in vivo or in vitro efficacy of CQ of the parasites was not 
collected in this study, the present data suggest that the 
CQS P. falciparum parasites have returned in Grande 
Comore to some extent after the official withdrawal of 
CQ. The data presented here will be useful for developing 
and updating anti-malarial policies in Grande Comore.
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