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Abstract 

Background:  Declining anti-malarial efficacy of artemisinin-based combination therapy, and reduced Plasmodium 
falciparum susceptibility to individual anti-malarials are being documented across an expanding area of Southeast 
Asia (SEA). Genotypic markers complement phenotypic studies in assessing the efficacy of individual anti-malarials.

Methods:  The markers pfmdr1 and pfcrt were genotyped in parasite samples obtained in 2011–2014 at 14 TRAC 
(Tracking Resistance to Artemisinin Collaboration) sites in mainland Southeast Asia using a combination of PCR and 
next-generation sequencing methods.

Results:  Pfmdr1 amplification, a marker of mefloquine and lumefantrine resistance, was highly prevalent at Mae 
Sot on the Thailand–Myanmar border (59.8% of isolates) and common (more than 10%) at sites in central Myanmar, 
eastern Thailand and western Cambodia; however, its prevalence was lower than previously documented in Pailin, 
western Cambodia. The pfmdr1 Y184F mutation was common, particularly in and around Cambodia, and the F1226Y 
mutation was found in about half of samples in Mae Sot. The functional significance of these two mutations remains 
unclear. Other previously documented pfmdr1 mutations were absent or very rare in the region. The pfcrt mutation 
K76T associated with chloroquine resistance was found in 98.2% of isolates. The CVIET haplotype made up 95% or 
more of isolates in western SEA while the CVIDT haplotype was common (30–40% of isolates) in north and northeast-
ern Cambodia, southern Laos, and southern Vietnam.

Conclusions:  These findings generate cause for concern regarding the mid-term efficacy of artemether–lumefan-
trine in Myanmar, while the absence of resistance-conferring pfmdr1 mutations and SVMNT pfcrt haplotypes suggests 
that amodiaquine could be an efficacious component of anti-malarial regimens in SEA.
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Background
Anti-malarial resistance in Plasmodium falciparum has 
originated and spread from Southeast Asia (SEA) on 
multiple occasions, and the high global prevalence of 

chloroquine and antifolate resistance has made these 
drugs ineffective in the vast majority of malaria-endemic 
areas. In SEA, artemisinin-based combination thera-
pies (ACTs) that combine mefloquine, lumefantrine, 
or piperaquine with an artemisinin derivative are cur-
rently used as front-line treatments. However, emerging 
resistance to artemisinins [1–5] and their partner drugs 
is causing ACT cure rates to fall below acceptable levels 
at an increasing number of sites in SEA [6–10]. When 
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choosing the ideal ACT for a given location, validated 
molecular resistance markers can provide useful data 
that complement the results of clinical trials and in vitro 
studies, and potentially identify resistance trends at a rel-
atively early stage [11].

The global spread of chloroquine resistance was pri-
marily caused by mutant haplotypes in pfcrt, often 
accompanied by additional mutations in pfmdr1 (cor-
responding to codons 86, 184, 1034, 1042, and 1246). 
Paradoxically, some of these pfmdr1 mutations are asso-
ciated with hypersensitivity to mefloquine and lumefan-
trine [12, 13]; accordingly, switching to a drug regimen 
containing these latter drugs first leads to reselection of 
pfmdr1 wild-type alleles [14]. True resistance to meflo-
quine and lumefantrine then arises through amplification 
of pfmdr1 [15, 16], and is associated with clinical fail-
ure of the ACT artesunate–mefloquine [15, 17, 18] and 
artemether–lumefantrine [14].

The prevalence of different molecular markers of resist-
ance has been described in certain parts of SEA, but not in 
many other areas, notably Myanmar, the country with the 
highest malaria caseload. Here, relevant mutations in pfcrt 
and pfmdr1 were examined in samples from the Tracking 
Resistance to Artemisinin Collaboration (TRAC) study 
[5], covering 14 sites in six countries (Fig. 1).

Methods
Sample collection
Samples were collected as part of the TRAC study, a clin-
ical trial focused on artemisinin resistance, between May 
2011 and April 2013 [5]. Samples from three additional 
(TRAC Continuation) sites in Myanmar were collected in 
2013–2014 (Fig. 1; Table 1).

Samples were analysed by PCR in the Molecular 
Malaria Laboratory, Faculty of Tropical Medicine, Bang-
kok, Thailand and by whole-genome sequencing (WGS) 
at the Wellcome Trust Sanger Institute, Hinxton, UK [19]. 
PCR was used to assess pfmdr1 copy number and five 
well-described single-nucleotide polymorphisms (SNPs) 
in pfmdr1 for approximately 30 samples from each site. 
WGS data covering all SNPs in pfmdr1 and the classi-
cal pfcrt haplotypes encoding amino acids 72–76, were 
available for all samples tested. Because of timing and 
logistical issues, samples from the three additional sites 
in Myanmar were only analysed by PCR. Pfmdr1 copy 
number measurements for all 120 samples from each of 
three Cambodian sites (Pursat, Preah Vihear, Ratanakiri) 
have already been reported [20] and were included in the 
overall analysis (Table 1).

DNA processing and whole‑genome sequencing
Admission blood samples were anticoagulated in EDTA, 
washed in PBS, and filtered through a cellulose CF11 

column to deplete host leukocytes [21]. Genomic DNA 
was extracted using QIAamp® DNA Mini Kit (QIAGEN, 
Germany), following the manufacturer’s instructions. 
Eluted genomic DNA samples were quantified by Pico-
Green analysis and quantitative real-time PCR using the 
Applied Biosystems StepOne RT-PCR system and frozen 
at −80 °C.

Samples with more than 50 ng DNA and less than 80% 
human DNA contamination were submitted for WGS 
using the Illumina Genome Analyzer II platform. The 
procedure for sequencing, assembly of sequencing reads, 
variant calling, quality filtering, and genotype calling has 
been fully described elsewhere [19, 22]. Each sample was 
genotyped at each of 926,988 high-quality exonic posi-
tions [19], not all of which were polymorphic within the 
sample set. Naturally this included the pfcrt and pfmdr1 
resistance markers. Genome-wide genotype data were 
used to compute a genetic distance matrix from which 
a neighbour-joining tree was constructed, as previously 
described [19].

Analysis of WGS read depth
In each sample, the coverage depth (ci) at each position 
(i.e., the number of sequencing reads that cover that posi-
tion in the sample alignment) was computed, from which 
the median coverage of the sample (cm) was determined. 
The relative coverage (cr) at each position was then 
obtained by cr =  ci/cm. Since such a large proportion of 
the P. falciparum genome is very unevenly covered [22], 
cr was not directly used to estimate copy number. Rather, 
a number of reference positions were identified that 
exhibited consistent coverage across the complete sam-
ple set and were located in pfmdr1 or genes with similar 
characteristics.

Seven reference positions were identified in two 
regions of pfmdr1 that exhibited even coverage and GC 
content; their spacing (~250 bp) is such that coverage is 
not affected by the same reads, and they have very low 
minor allele frequency (MAF) to minimize the probabil-
ity of mis-mappings. For each sample, the relative cover-
age of pfmdr1 (cmdr1) was estimated as the median of cr at 
the pfmdr1 reference positions.

A further 56 reference positions were identified in 
genes similar to pfmdr1, i.e., with conservation score esti-
mated as previously described [23] in the range 3.2–4.0 
(pfmdr1 conservation score = 3.6), and a single exon of 
size >3  kbp. The positions were chosen within exonic 
regions >300 nucleotides devoid of high-frequency SNPs, 
with similar GC content (~24%) and median coverage 
to pfmdr1. Each reference position was chosen to have 
a limited coverage range variation across all samples in 
the MalariaGEN P. falciparum Community Project [24], 
with inter-quartile range (IQR) boundaries within 15% of 
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cmdr1. The selected reference positions are listed in Addi-
tional file 1. Coverage statistics at these positions can be 
visualized using the P. falciparum Community Project 
web application [24]; see Additional file 2.

For each sample, the reference relative coverage (cref) 
was calculated as the median of cr at the 56 reference 
positions outside pfmdr1. The pfmdr1 copy number was 
thus estimated to be Nest = cmdr1/cref. A plot of the distri-
bution of Nest in the present sample set (Additional file 3) 
shows clear peaks at integer values. Pfmdr1 amplification 
was defined as copy number >1.5.

Pfcrt haplotype determination
Due to the high number of small exons, the low complex-
ity of the introns, and the extreme levels of polymorphism 

around the key drug-resistance variation site, pfcrt is a 
very difficult gene to assemble from Illumina short-read 
sequence data, even in otherwise well-covered samples. 
As a result, the previously used routine genotype call-
ing method [22] is unable to determine pfcrt genotypes 
in many samples. To overcome this problem, a novel 
bespoke procedure was used for genotyping the core pfcrt 
haplotype (defined as amino acid positions 72–76).

Each flank of the core pfcrt haplotype contains a signifi-
cant number of positions which are invariant in all the 
P. falciparum Community Project samples, forming two 
invariant flanking sequences: TATTATTTATTTAAGT-
GTA upstream of the core pfcrt haplotype and ATTTTT-
GCTAAAAGAAC downstream. The application 
samtools V1.2 [25] was used to extract all sequencing 
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reads containing the two flanking sequences (or their 
reverse complement) from each sample’s alignment. The 
reads were then aligned against the V3 3D7 pfcrt refer-
ence sequence (GeneDB PF3D7_0709000), after discard-
ing low-quality reads (i.e., those carrying phred scores 
lower than 20 in the core haplotype codons). The core 
haplotype for each sample was finally read directly from 
the resulting alignment.

PCR methods
Pfmdr1 amplification undertaken in Thailand utilized 
Taqman real-time PCR (Rotor Gene 3000; Corbett 
Research, Australia) following established procedures and 
using published primers [15, 26]. In each set of reactions, 
the 3D7 P. falciparum strain (single copy) was used as a 
calibrator (in triplicate). All reaction sets also included a 
previously derived positive control DNA extract with an 
estimated pfmdr1 copy number of 2.3 [27]; any run in 
which this gave a result of fewer than two or more than 
three copies was re-tested; in 27 separate runs the mean 
copy number was 2.34 (95% CI 2.25–2.43, range 2.06–
2.83). A negative control (reagents only) was also tested 
each time. The threshold cycle (Ct) of samples was calcu-
lated by the ΔΔCt calculation for the relative quantifica-
tion of target: ΔΔCt =  (Ct pfmdr1 − Ct pf β-tubulin) of 
sample − (Ct pfmdr1 − Ct pf β-tubulin) of P. falciparum 
3D7. Copy number was calculated by the formula = 2ΔΔCt. 
A cut-off copy number of 1.5 was used to define pfmdr1 
amplification. Reactions were repeated whenever the 

profile did not conform to exponential kinetics, or ΔΔCt 
spread was >1.5, or the Ct value was >35. To confirm 
amplification and resolve indeterminate results, samples 
passing these criteria but with an estimated copy number 
>1.3 were also re-tested once, the second result counting 
as final. For the three Cambodian sites where data have 
already been published, a conservative copy number cut-
off of 1.7 was used to define amplification [20].

Pfmdr1 polymorphism was examined at codons 86, 
184, 1034, 1042, and 1246 via PCR-restriction fragment 
length polymorphism (PCR–RFLP) using an established 
protocol [28].

Comparison of polymorphism results for samples 
successfully assessed by both PCR and WGS, based on 
whether pfmdr1 was categorized as amplified or not, 
were analysed by the kappa statistic. To calculate the 
overall proportion of samples with amplified pfmdr1 at 
each site, the WGS-derived result was used where avail-
able; otherwise the corresponding PCR result was used 
(191 samples).

Ethics
The samples were tested under existing ethical approvals 
from the TRAC coordinating centre and individual sites 
[5]; additional ethical approval was obtained from the 
Ethics Committee of the Faculty of Tropical Medicine, 
Mahidol University, Bangkok, for laboratory work in 
Thailand. The TRAC study is registered with ClinicalTri-
als.gov (NCT01240603).

Table 1  Summary of Southeast Asian samples studied

a  Previously described [20]

Year Site Province Country Total samples 
available

Samples analysed 
by PCR (Thailand)

Samples analysed 
by Illumina (UK)

Samples analysed 
by PCR (USA)a

TRAC study

 2012 Ramu Cox’s Bazar Bangladesh 51 30 48

 2011–2012 Pailin Pailin Cambodia 90 33 84

 2011–2012 Pursat Pursat Cambodia 120 98 120

 2011–2012 Preah Vihear Preah Vihear Cambodia 120 96 120

 2011–2012 Ratanakiri Ratanakiri Cambodia 120 93 120

 2011–2012 Attapeu Attapeu Laos 86 37 85

 2012 Shwe Kyin Bago Myanmar 64 30 61

 2011–2012 Mae Sot Tak Thailand 107 38 104

 2011–2013 Srisaket Srisaket Thailand 36 33 21

 2011–2012 Kraburi Ranong Thailand 23 23 20

 2011–2012 Bu Gia map Binh Phuoc Vietnam 102 29 97

TRAC continuation study

 2012–2014 Pyin Oo Lwin Mandalay Myanmar 29 29

 2013–2014 Thabeikkyin Mandalay Myanmar 30 30

 2013 Myitkyina Kachin Myanmar 20 20

Total 998 332 807 360
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Results
Pfmdr1 amplification
Overall, 998 samples had pfmdr1 copy number measured 
by PCR, WGS, or both. PCR-based assessment of pfmdr1 
copy number was successful in 332 samples tested in 
Thailand, adding to the 360 published results for three 
Cambodian sites (Table 1; Fig. 2a). Pfmdr1 copy number 
was also assessed in 807 samples for which WGS data 
were available (Fig.  2b). Comparison of results for the 
samples successfully assessed by both PCR and WGS, 
based on whether pfmdr1 was categorized as amplified or 
not, indicated 93.2% (467/501) agreement between meth-
ods (κ  =  0.766, 95% CI 0.691–0.841). To calculate the 

overall proportion of samples with amplified pfmdr1 at 
each site, the WGS-derived result was used where avail-
able; otherwise the corresponding PCR result was used 
(191 samples). The proportions of samples with ampli-
fication according to site are shown graphically in Fig. 3 
and in tabular format in Additional file 4.

Samples with amplified pfmdr1 were found at all three 
sites in Thailand, being more prevalent in Mae Sot near 
the Myanmar border (59.8%) and Srisaket (33.3%) near the 
Cambodia border (Fig. 3). Amplification was also seen at 
lower levels in central Myanmar at Shwe Kyin (12.5%) and 
Pyin Oo Lwin (28.0%). In Cambodia, amplification was 
common in Pursat (40%) but not at three other sites. The 
proportion of isolates with amplification was low or zero 
in Bangladesh, northern Myanmar, Laos, and Vietnam.

To investigate how the geographical distribution of 
pfmdr1 amplification relates to the genetic structure of 
the parasite population, samples with WGS data were 
plotted on a neighbour-joining tree, which groups sam-
ples according to genome-wide genetic similarity as 
previously described [19] (Fig.  4). In the ‘western SEA’ 
compartment [19] (Mae Sot and Ranong at the Thailand–
Myanmar border and Shwe Kyin in central Myanmar), 
pfmdr1 amplification was evenly dispersed, while in the 
more structured populations of western and northern 
Cambodia (Pailin, Pursat, and Preah Vihear) and eastern 
Thailand (Srisaket), pfmdr1 amplification tended to clus-
ter within particular branches.

Pfmdr1 polymorphism
The polymorphic positions N86Y, Y184F, S1034C, 
N1042D, and D1246Y were assessed by both PCR–RFLP 
and Illumina methods. Overall, agreement was 97.4% 
(κ  =  0.825, 95% CI 0.765–0.885), with most disagree-
ments consisting of heterozygous calls by WGS that were 
assigned a homozygous genotype by PCR–RFLP. Samples 
that yielded a heterozygous genotype by either method, 
or for which the two methods produced discordant 
homozygous genotypes (six calls), were considered as 
having mixed alleles at that position, and apportioned 
equally between the two alleles for the purposes of calcu-
lating allele frequency. Summary results for all five posi-
tions are reported in tabular format in Additional file 5.

The N86Y mutation was found in 19% of samples in 
Bangladesh and in fewer than 5% of samples at all other 
sites (Fig.  5a). The N86F mutation [29] was also observed 
in three mixed samples in Bangladesh. The Y184F muta-
tion was found in more than 10% of parasites at most sites, 
being particularly common (85–90% of samples) in western 
Cambodia (Pailin and Pursat) and eastern Thailand (Srisa-
ket) (Fig. 5b). The N1042D mutation was rare (ten samples 
including four mixed alleles), while the S1034C and D1246Y 
mutations were entirely absent from the sample set.
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Fig. 2  Distribution of pfmdr1 copy number across sites measured by 
PCR (a) or Illumina sequencing (b). The numbers of samples assessed 
at each site were not the same for the two methods (see Table 1)
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Other pfmdr1 polymorphisms
Analysis of WGS data also identified 11 additional 
pfmdr1 SNPs distinct from the five SNPs commonly 
assessed (Additional file  6). While these were gener-
ally found at low frequencies, in six cases the derived 
allele had a frequency of more than 10% in at least one 
site (Additional file 7). The F1226Y mutation was found 
in 54% of samples in Mae Sot. The A784L mutation was 
found in >20% of samples in Pailin, Cambodia and Shwe 
Kyin, Myanmar.

Pfcrt polymorphism
The great majority (98.2%) of samples across the study 
contained parasites carrying the key chloroquine resist-
ance mutation K76T; only 14 samples carrying the wild-
type allele were distributed across Bangladesh, Laos, 

northeastern Cambodia, and Vietnam (Fig.  6). At resi-
dues 72–76, the CVIET haplotype was predominant (95% 
or more) in Bangladesh, Myanmar, and Thailand, while 
the CVIDT haplotype was also common in northern and 
northeastern Cambodia, Laos, and Vietnam (33–38%). 
No sample carried the SVMNT haplotype associated 
with high levels of amodiaquine resistance [30].

Discussion
This large survey of the molecular markers pfmdr1 and 
pfcrt offers insights into patterns of anti-malarial partner 
drug susceptibility across mainland SEA, which reflect 
the history of anti-malarial use and may guide future 
therapeutic studies at each location.

Pfmdr1 amplification is associated with reduced effi-
cacy of both artemether–lumefantrine, globally the 
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most widely used ACT [14], and artesunate–mefloquine. 
Pfmdr1 copy number can be assessed by a range of meth-
ods [31]. Most surveys of field isolates have used quan-
titative PCR focused on the individual gene [32], while 
genome-wide studies of specific laboratory isolates have 
used microarray-based or next-generation approaches 
[33–35]. Here, a comparison of PCR-based and next-gen-
eration sequencing data in approximately 500 samples 
showed good agreement between the two approaches.

Artemether–lumefantrine is the currently recom-
mended first-line treatment in Bangladesh, Myanmar, 
and Laos. The presence of substantial numbers of P. fal-
ciparum isolates with pfmdr1 amplification in Shwe Kyin 
(Bago Province) and Pyin Oo Lwin (Mandalay Province), 

combined with results from a smaller number of samples 
obtained from nearby sites [36] indicates that isolates 
with amplified pfmdr1 are common in central Myanmar. 
High levels of pfmdr1 amplification are also present along 
the Thailand–Myanmar border, where they have per-
sisted for over two decades [15, 37], although the efficacy 
of artesunate–mefloquine has dropped to unacceptable 
levels only within the last 5  years, following the emer-
gence of artemisinin resistance [4, 7, 38].

Isolates with amplified pfmdr1 were also seen in 
Ranong (southern Thailand–Myanmar border), consist-
ent with previous data [39–41]. Analysis of genome-
wide genetic similarity shows that parasites from the 
Thailand–Myanmar border and central Myanmar (Shwe 

Fig. 4  Neighbour-joining tree showing population structure across 11 sites studied by Illumina sequencing. Branches with coloured tip symbols 
indicate that the samples have pfmdr1 amplification
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Kyin) are related; it is worth noting that most patients 
enrolled in Mae Sot travelled from Myanmar, with the 
catchment area extending as far as 40 km inside the bor-
der [7]. Samples with amplified pfmdr1 are evenly dis-
tributed within this parasite population compartment, 
rather than associated with any specific sub-population. 
At the two sites in northern Myanmar (Thabeikkyin and 
Myitkyina), pfmdr1 amplification appears to be at low 
prevalence, consistent with previous data from nearby 
border areas [42]. However, there is clearly a need for 
close observation of the efficacy of artemether–lumefan-
trine in Myanmar given that reduced parasite clearance 
rates after ACT have been observed in border areas [43, 
44] and K13-propeller mutations that confer artemisinin 
resistance are widespread [45].

Pfmdr1 amplification was also present at Srisaket in 
eastern Thailand near the Cambodian border, consistent 
with continued mefloquine usage, following its adoption 
as first-line therapy in 2007. Given the widespread nature 
of samples with K13-propeller mutations and slow clear-
ance following artesunate treatment [5], there is concern 
that artesunate–mefloquine efficacy will be compromised 
across a wider area of Thailand in the near future. These 
data match previously published data from a distinct area 
of the Thailand–Cambodia border [39, 46].

Pfmdr1 amplification was found at Pailin and Pur-
sat in western Cambodia, although for Pailin this was 
at lower levels compared to 2004 [17] when artesu-
nate–mefloquine had unacceptably low efficacy [6]. This 

likely reflects the 2008–2010 change of policy, leading to 
the adoption of dihydroartemisinin–piperaquine as the 
frontline ACT across Cambodia. Since the TRAC study, 
there has been further reduction in the prevalence of 
parasites with increased pfmdr1 copy number in west-
ern and northern Cambodian [10, 47, 48]. In Cambodia, 
pfmdr1 amplification tended to be found within specific 
sub-populations in these locations, probably as a result of 
pronounced population structure caused by the expan-
sion of artemisinin-resistant founder populations [49].

Laos has been using artemether–lumefantrine since 
2001, but there was no evidence of pfmdr1 amplification. 
This is likely to reflect the introduction of artemether–
lumefantrine as national policy without a prior period 
of mefloquine monotherapy, with maintained arte-
misinin sensitivity up to the time of this study [5], and 
is consistent with the documented high efficacy of both 
artemether–lumefantrine and artesunate–mefloquine 
[50]. Vietnam has a distinct history of antimalarial 
use, with dihydroartemisinin–piperaquine deployed 
as first-line therapy in 2005 (taking over from artesu-
nate plus mefloquine). Consistent with the longstanding 
absence of mefloquine or lumefantrine from antimalar-
ial therapy, few parasites from Vietnam showed pfmdr1 
amplification.

SNPs in pfmdr1 may provide additional relevant 
information for guiding anti-malarial policy and plan-
ning further studies. The N86Y polymorphism is of rel-
evance to aminoquinoline sensitivity (see below). Y184F 
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polymorphism was most common, especially in western 
Cambodia and eastern Thailand, and WGS data also 
revealed other pfmdr1 mutations (e.g., the F1226Y muta-
tion prevalent in Mae Sot). Both of these mutations have 
been associated with decreased in  vitro susceptibility 
to mefloquine [51, 52], although most studies have not 
found Y184F to be significantly associated with changes 
in drug responses [53, 54]. Further studies are needed to 
determine whether these mutations are being naturally 
selected for drug resistance or other phenotypes.

The pfcrt K76T mutation was at or near fixation in 
all study sites, with the CVIET haplotype dominant 
in western SEA and the CVIDT haplotype found in 
approximately one-third of isolates from northern and 

northeastern Cambodia [55], southern Laos, and south-
ern Vietnam. The SVMNT pfcrt haplotype associated 
with high-grade amodiaquine resistance was not found in 
any location, in contrast to a study in 2003 in northern 
Laos [56] and other areas of SEA [57]. The pfmdr1 N86Y 
mutation, which plays a role in amodiaquine resistance 
[13, 30], has all but disappeared from the region follow-
ing abandonment of chloroquine and the use of meflo-
quine in the period leading up to this study, and in line 
with other observations [58]. For these reasons, amodi-
aquine may show some useful efficacy in SEA. This is also 
consistent with the acceptable clinical efficacy of artesu-
nate–amodiaquine in some [59, 60], but not all [61], parts 
of SEA within the last decade. Furthermore, the inverse 

Thailand

Laos

China

Myanmar

Vietnam

Cambodia

Bangladesh

India

PFCRT genotype
CVMNK
CVIET
CVIDT

Fig. 6  Proportion of isolates with each of three pfcrt haplotypes encoding amino acids 72–76 (11 sites). The pfcrt SVMNT haplotype was not found 
in any sample
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correlation between susceptibility to 4-aminoquinolines 
and mefloquine [62, 63] offers the potential to com-
bine two partners with opposing resistance mechanisms 
within a novel ‘triple’ ACT, artemether–lumefantrine 
plus amodiaquine [64]; this is currently under investiga-
tion in the follow-up study to TRAC (ClinicalTrials.gov 
NCT02453308).

Conclusions
In summary, these data offer new insights into partner 
drug resistance patterns across a large area of SEA. The 
finding that pfmdr1 amplification, associated with meflo-
quine and lumefantrine resistance, extends into central 
Myanmar is concerning and highlights the need for close 
observation of the efficacy of artemether–lumefantrine 
in Myanmar. In contrast, the reduction in pfmdr1 ampli-
fication in western Cambodia and lower areas of the 
Greater Mekong Subregion supports the use (or re-use) 
of artesunate–mefloquine in areas where dihydroarte-
misinin–piperaquine efficacy is unacceptable. Finally, 
SNP patterns in pfmdr1 and pfcrt suggest that amodi-
aquine may improve treatment efficacy if it can be prac-
tically incorporated into anti-malarial regimens.
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