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Abstract 

Background:  Recently published data suggest that artemisinin derivatives and synthetic peroxides, such as the 
ozonides OZ277 and OZ439, have a similar mode of action. Here the cross-resistance of OZ277 and OZ439 and four 
additional next-generation ozonides was probed against the artemisinin-resistant clinical isolate Plasmodium falcipa-
rum Cam3.I, which carries the K13-propeller mutation R539T (Cam3.IR539T).

Methods:  The previously described in vitro ring-stage survival assay (RSA0–3h) was employed and a simplified varia-
tion of the original protocol was developed.

Results:  At the pharmacologically relevant concentration of 700 nM, all six ozonides were highly effective against 
the dihydroartemisinin-resistant P. falciparum Cam3.IR539T parasites, showing a per cent survival ranging from <0.01 to 
1.83%. A simplified version of the original RSA0–3h method was developed and gave similar results, thus providing a 
practical drug discovery tool for further optimization of next-generation anti-malarial peroxides.

Conclusion:  The absence of in vitro cross-resistance against the artemisinin-resistant clinical isolate Cam3.IR539T sug-
gests that ozonides could be effective against artemisinin-resistant P. falciparum. How this will translate to the human 
situation in clinical settings remains to be investigated.
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Background
Malaria is one of the most important tropical diseases 
resulting in 214 million new cases and an estimated 
438,000 malaria deaths worldwide in 2015 [1]. The dis-
covery of artemisinin in the 1970s was an important step 
forward in anti-malarial drug therapy and was recognized 
with the Nobel Prize in Physiology or Medicine in 2015 
[2, 3]. Artemisinin and its semi-synthetic derivatives, 
such as dihydroartemisinin (DHA) (Fig.  1), artesunate 
and artemether, contain a unique sesquiterpene lactone 
peroxide (1,2,4-trioxane) structure and artemisinin-
based combination therapy (ACT) represents the current 
first-line treatment of uncomplicated Plasmodium fal-
ciparum malaria [4–6]. Since the starting material arte-
misinin is a natural product, its production is limited to 

the availability of the plant [4, 7], although several total 
syntheses of artemisinin have been described [8]. In 2004, 
Vennerstrom et al. reported the discovery of a completely 
synthetic peroxide anti-malarial containing a 1,2,4-tri-
oxolane (ozonide) pharmacophore named OZ277 (arter-
olane) (Fig.  1) with anti-malarial activity comparable to 
the artemisinin derivatives [9, 10]. In combination with 
piperaquine, arterolane was registered for anti-malarial 
combination therapy in India in 2011 [11–14]. The next-
generation ozonide, OZ439 (artefenomel) (Fig. 1), exhib-
its an increased pharmacokinetic half-life and good safety 
profile and is now being tested in phase IIb clinical trials 
[12, 14–17].

The iron-dependent alkylation hypothesis is one of the 
proposed modes of action of artemisinin and synthetic 
peroxides [18–21] where the peroxide is thought to be acti-
vated by the reductive cleavage in the presence of ferrous 
haem (or free Fe(II) derived from haem) released as a by-
product of haemoglobin digestion in the food vacuole [20, 
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22–27]. Thereby carbon-centred radicals are generated, 
which then alkylate haem and parasite proteins [28–33]. 
The interaction of the artemisinin derivatives or ozonides 
with parasite targets is irreversible [31, 34]. Although the 
semi-synthetic artemisinins are highly effective, prolonged 
parasite clearance times were first reported along the 
Thai–Cambodian border in 2006, suggesting an emerging 
artemisinin resistance phenotype [35]. Today, delayed par-
asite clearance following treatment with artemisinin deriv-
atives has been observed across Southeast Asia [36–41]. It 
was found that mutations in the Kelch 13 propeller domain 
are associated with ring-stage parasites entering a quies-
cent state with delayed parasite clearance after exposure 
to artemisinins [41–45]. When 50% inhibitory concentra-
tions (IC50) were measured using conventional methods 
such as the [3H] hypoxanthine incorporation assay [46], no 
difference was observed between artemisinin-resistant and 
-susceptible strains after treatment with artemisinin or its 
derivatives [47–50]. In an effort to correlate the delayed 
parasite clearance observed in  vivo with in  vitro parasite 
survival, Witkowski et  al. [48, 49] developed a ring-stage 
survival assay (RSA0–3h) that exploited the differences 
in susceptibility observed between wild-type and K13 
mutants at the early ring stage of the asexual blood cycle 
following a short pulse of artemisinin treatment. In the 
RSA0–3h, synchronized young ring stage parasites (0–3  h 
old) are exposed to drugs for 6  h, and then cultured in 
drug free culture medium for 66 h before relative growth 
is determined by microscopic analysis [48, 49]. Since the 
structural analogies between artemisinins and ozonides 
(Fig.  1) suggest that they share similar modes of action, 
and thus some level of cross resistance [9, 10, 51, 52], the 
per cent survival of an artemisinin-resistant clinical iso-
late (Cam3.IR539T) treated with DHA, OZ277, OZ439, and 
four additional next-generation ozonides (Fig.  1) using 
the RSA0–3h as described by Witkowski et al. [48, 49] was 

evaluated. Additionally, a sub-set of these compounds was 
tested in the RSA0–3h described by Xie et al. [53] that also 
uses tightly synchronized ring-stage cultures, but allows 
the assay to be performed routinely within a convenient 
time-frame.

Methods
Parasite cultivation
The artemisinin-resistant P. falciparum isolate Cam3.
IR539T from Battambang, Cambodia was obtained from 
BEI Resources [54] with the accession number MRA-
1240. The drug-sensitive P. falciparum strain NF54 (air-
port strain from The Netherlands) was provided by F. 
Hoffmann-La Roche Ltd. Parasites were cultivated in 
standard cultivation medium, consisting of hypoxanthine 
(50  mg/l), RPMI (10.44  g/l) supplemented with HEPES 
(5.94  g/l), albumax (5  g/l), sodium bicarbonate (2.1  g/l) 
and neomycin (100 mg/l) [55].

Ring‑stage survival assays (RSA0–3h)
Ring-stage survival assays (RSA0–3h) were carried out 
essentially as previously described by Witkowski et  al. 
[48], but with a few modifications in the drug-washing 
procedure to ensure that no residual peroxide was pre-
sent during the 66-h post-treatment period [56]. Briefly, 
zero to 3 h post-invasion ring stages were adjusted to 1% 
parasitaemia and 2.5% haematocrit by adding uninfected 
erythrocytes, transferred in a total volume of 1  ml into 
48-well plates and exposed for 6 h to a range of concen-
trations (700, 350, 175, 88, and 49 nM) of DHA or one of 
the six ozonides tested in this study. The synthesis of the 
four next-generation ozonides, OZ493, OZ609, OZ655 
and OZ657, will be reported in due course by the labora-
tory of Prof. Jonathan Vennerstrom (pers. comm.). After 
6  h, cultures were transferred to 15  ml conical tubes, 
centrifuged at 1400  rpm (400g) for 2  min and carefully 

Fig. 1  Chemical structures of dihydroartemisinin (DHA) and the six ozonides investigated
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washed two times with 12  ml of culture medium. The 
complete removal of compound after washing was veri-
fied by incubating the supernatant recovered after the 
last washing step with fresh cultures of NF54 parasites, 
ensuring that no growth inhibition was detected. After 
washing, blood pellets were resuspended in complete 
drug-free culture medium, transferred into new wells and 
cultured for 66 h under standard conditions.

Thin blood smears were prepared, methanol-fixed and 
stained with 10% Giemsa. Per cent survival was assessed 

using light microscopy, counting the number of para-
sitized cells in ≥10,000 red blood cells (RBCs) and com-
paring survival to that of the drug-free dimethylsulfoxide 
incubation. Microscopy analysis was performed inde-
pendently by two microscopists, one having more than 
15 years of work experience.

Alternative parasite synchronization method
Parasites were synchronized according to Xie et  al. [53] 
with 5% D-sorbitol. After 30 and 43  h, parasites were 

49 nM 88 nM 175 nM 350 nM 700 nM

DHA 73.50 60.03 47.94 37.68 33.02

OZ277 53.80 16.87 4.65 2.20 1.83

OZ439 13.70 0.93 0.73 0.73 0.73

OZ493 3.19 0.00 0.53 0.00 0.00

OZ609 1.29 0.17 0.12 0.00 0.00

OZ655 0.76 0.00 0.00 0.00 0.00

OZ657 59.10 22.93 2.33 0.00 0.00
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Fig. 2  Mean per cent survival ± standard error (SE) of Plasmodium falciparum isolate Cam3.IR539T parasites after a 6-h exposure to a range of con-
centrations of dihydroartemisinin (DHA) or six different ozonides. Three biological replicates were performed per compound
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synchronized a second and third time, respectively, 
resulting in zero to 1-h old ring-stage parasites. The 
RSA0–3h was initiated 2 h later.

Standard [3H] hypoxanthine incorporation assay
The in vitro anti-malarial activity was measured using the 
[3H]-hypoxanthine incorporation assay [55]. Results were 
expressed as the concentration resulting in 50% inhibi-
tion (IC50).

Results
The per cent survival of parasites exposed to a concen-
tration range of DHA and six different ozonides (Fig. 1) 
was determined using the artemisinin-resistant P. fal-
ciparum Cambodian isolate Cam3.IR539T. As expected, 
DHA exposure gave a high survival rate ranging from 
74 to 33% at concentrations of 49 and 700 nM, respec-
tively (Fig.  2), which is comparable to the observed 
survival value of 40% at 700  nM published previously 
[44]. In contrast, when tested at 700 nM, the two ozon-
ides OZ277 and OZ439 showed an approximate 18- 
to 45-fold increase in potency compared with DHA 
(Fig.  2). Full and equal potency was observed when 
DHA, OZ277 and OZ439 were tested in parallel in the 
RSA0–3h using the artemisinin-sensitive strain NF54 
(Additional file 1: Table S1). At the lowest concentration 
(49  nM), OZ277 had poor activity, showing a similar 
per cent survival to that of DHA, whereas OZ439 was 
still about fivefold more potent. A possible explana-
tion for OZ439 being more potent than OZ277 could be 
related to its improved stability in blood as previously 
described [15]. In those studies, OZ277 or OZ439 were 
incubated at 37  °C in P. falciparum-infected human 
blood. After 2 h more than 90% of OZ277 was degraded, 
whereas OZ439 was found to be about 10–20×  more 
stable. A similar and more recent study found similar 
differences in stability for OZ277 and OZ439 [56]. The 
same compounds were also tested in a more conveni-
ent variation of the standard RSA0–3h that uses synchro-
nized ring-stage cultures that can be easily produced 
during normal working hours [53]. As shown in Table 1, 
this alternative synchronization method gave results 
that were comparable to those obtained using the stand-
ard RSA0–3h.

To investigate further the level of cross-resistance 
between DHA and the ozonides, four additional next-
generation ozonides (OZ493, OZ609, OZ655, OZ657) 
(Fig.  1) were tested against the Cam3.IR539T parasites. 
While all six ozonides had a similar IC50 value using 
a conventional 72-h [3H] hypoxanthine incorporation 
assay (Additional file  1: Table S2), the RSA0–3h showed 
that OZ493, OZ609 and OZ655 were highly potent and 

completely inhibited the growth of the artemisinin-
resistant isolate at the two highest concentrations tested 
(Fig. 2). At the lowest concentration, potency was com-
parable to that for OZ439. The overall potency of OZ657 
was comparable to that of OZ277.

The RSA0–3h was recently developed to provide an 
in  vitro correlate of the longer in  vivo parasite clear-
ance times observed after artemisinin treatment in 
Southeast Asia, which is widely interpreted as a sign 
of potential artemisinin resistance [57, 58]. Provided 
that the RSA0–3h does indeed predict the potency of 
compounds against artemisinin-resistant parasites in 
malaria patients, the here described data suggest that 
all of the tested ozonides are highly potent against iso-
lates such as P. falciparum Cam3.IR539T. These data 
are in line with the recent clinical observation that 
the parasite clearance rate following OZ439 treatment 
is not significantly affected by resistance-associated 
mutations in the Kelch 13 propeller region [17] and the 
recent data published by Siriwardana et al. [59], which 
showed no reduced susceptibility of OZ439 in a dif-
ferent delayed clearance phenotype parasite (Cam3.II) 
in vitro.

Conclusion
In the traditional RSA0–3h, as well as a more convenient 
variation of the original method, all of the tested ozon-
ides, were highly potent against the artemisinin-resistant 
isolate P. falciparum Cam3.IR539T in contrast to results for 
DHA. These data indicate that artemisinin-resistant P. 
falciparum infections could be successfully treated with 
ozonide anti-malarial drugs.

Additional files

Additional file 1: Table S1. Mean per cent survival (individual values in 
brackets) of NF54 after 6 h exposure to 500 nM of DHA, OZ439 or OZ277 
using the synchronization protocol from Straimer et al. [44]. Table S2. 
Mean in vitro IC50 values (single values in brackets) for Plasmodium falci-
parum isolate Cam3.IR539T and NF54 in the 72-h [3H] hypoxanthine assay.

Table 1  Mean per cent survival (individual values in brack-
ets) of  Cam3.IR539T isolate after  6  h exposure to  a range 
of concentrations of DHA, OZ439 or OZ277 using the syn-
chronization protocol from Xie et al. [53]

Two biological replicates were performed per compound

Compounds RSA values (% survival) at different concentrations

175 nM 350 nM 700 nM

DHA 46 (49, 43) 42 (45, 39) 37 (39, 35)

OZ277 4.0 (4.4, 3.6) 2.3 (1.9, 2.7) 1.4 (1.7, 1.1)

OZ439 <0.01 
(<0.01, <0.01)

<0.01 
(<0.01, <0.01)

<0.01 
(<0.01, <0.01)

http://dx.doi.org/10.1186/s12936-017-1696-0
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