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Abstract 

Background:  When discussing the relationship between meteorological factors and malaria, previous studies 
mainly focus on the interaction between different climatic factors, while the possible interaction within one particu-
lar climatic predictor at different lag periods has been largely neglected. In this study, this issue was investigated by 
exploring the interaction of lagged rainfalls and its impact on malaria epidemics, which is a typical example of those 
meteorological variables.

Methods:  The weekly data of malaria cases and three climatic variables of 30 counties in southwest China from 2004 
to 2009 were analysed with the varying coefficient-distributed lag non-linear model. The correlation patterns of the 
6th, 9th and 12th week lags would vary over different rainfall levels at the 4th-week lag.

Results:  The non-linear patterns for rainfall at different rainfall levels are distinct from each other. In the low rainfall 
level at the 4th week lag, the increasing rainfall may promote the transmission of malaria. However, for the high rain-
fall level at the 4th week lag, evidence shows that the excessive rainfall decreases the risk of malaria.

Conclusion:  This study reports for the first time that the interaction effect between lagged rainfalls on malaria exists, 
and highlights the importance of integrating the interaction between lagged predictors in relevant studies, which 
could help to better understand and predict malaria transmission.

Keywords:  Malaria, Rainfall, Lag, Nonlinear, Interaction

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Malaria is one of the most severe mosquito-borne infec-
tious diseases that threaten human health around the 
globe [1]. Since the primary vector for malaria is Anoph-
eles, the dynamics and distribution of malaria are closely 
correlated with meteorological conditions [2]. From 
a biological perspective, climatic factors have a pro-
found effect on malaria incidence as they affect both 
the development of mosquitoes and malaria parasites 
within mosquitoes [3, 4]. For instance, plentiful rainfall 
and increased humidity offer mosquitoes suitable sites 
to breed, resulting in increasing number of mosquitoes. 
Moreover, appropriate temperatures promote malaria 

prevalence by enhancing the mosquito’s growth and bit-
ing rate, as well as increasing the viability and develop-
ment rate of parasites within vectors [5].

When exploring the meteorological effect on malaria 
incidence, special attention should be paid to two par-
ticular issues, which are the lag and non-linear patterns 
[6, 7]. In some previous studies, lag time was assumed 
to be single fixed [8–11]. This is unreasonable, espe-
cially when describing the relationship between climatic 
variables and malaria risk at the large population level. 
Biologically speaking, there are at least two stages that 
should be considered for the lag effect, such as the devel-
opment of mosquitoes and the incubation of parasites 
within the mosquito. The lag time of each stage may vary 
indefinitely based on climatic conditions, thus generat-
ing a smoothly varied lag distribution at population level. 
The non-linear correlation between rainfall and malaria 
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incidence has been acknowledged and validated both 
experimentally and epidemiologically in a series of exist-
ing studies [12, 13]. It is proposed that similar non-linear 
effect may also exist for temperature [14–16]. Therefore, 
both lag and non-linear patterns should be considered 
in the model. For this purpose, the distributed lag non-
linear model proves a valuable and effective method [17].

When discussing the relationship between meteoro-
logical factors and malaria incidence, however, in most 
previous epidemiological studies, the effect of between-
lag interaction has long been overlooked. Unlike the 
interaction between different exposure variables where 
the various climatic factors are of the same time-
period and simultaneously affect malaria incidence, the 
between-lag interaction is defined as the interaction 
between one covariate at different lag time, such as the 
interaction effect of the rainfalls four and five weeks pre-
viously on malaria risk for the current week. The concept 
of lagged interaction was first developed by Heaton in 
2014, as he reported the corresponding statistical meth-
ods to examine the relationship between heat exposure 
and mortality [18]. When considering the between-lag 
interaction, the total effect of the climatic variables is 
not simply an accumulation of lagged effects, as is con-
ventionally supposed. This is explained by the fact that 
the number of mosquitoes at week t are substantially 
dependent on the rainfall at week t −  1. More  specifi-
cally, adequate  rainfall at week t −  1 provides mosqui-
toes with abundant breeding sites and promotes their 
development, which leads to an increased number of 
mosquitoes at week t, and consequently a greater risk of 
malaria transmission.

This study aims to investigate the interaction effect 
between climatic factors at different lag periods on 
malaria risk, exemplified by rainfall. So far, it has not 
been directly reported in previous studies. Specifically, 
with weekly data during the period of 2004–2009 among 
30 counties in southwest China, a varying coefficient 
distributed lag non-linear model was applied to investi-
gate the association between rainfall and malaria cases. 
The correlation pattern between rainfall and malaria 
incidence was set to change depending on the three lev-
els of rainfall at the fourth week lag. The results can help 
researchers to better understand the complex relation-
ship between climatic factors and malaria transmission, 
and develop potential better prediction models.

Methods
Study sites
The southwestern region of China has been severely 
threatened by malaria in the last century [19]. After dec-
ades of continuous effort, malaria in these provinces has 

been brought under control. However, due to the effect 
of global warming, as well as the complex meteorologi-
cal condition in this region (most counties are of sub-
tropical climate; a few southern counties in the tropical 
region) [20], malaria poses a potential threat to the health 
of its populace.

The southwest region of China encompasses a large 
area from 21°14′N to 34°31′N and 97°35′E to 110°19′E. It 
covers primarily four provinces of Sichuan, Chongqing, 
Yunnan, and Guizhou with 483 counties in total (county-
level cities and districts). This region has a population 
of 189,977,077 (results from the sixth national census in 
2010) and occupies an area of 1,137,570 sq km. Malaria 
data covered 483 counties, while only 131 counties had 
daily meteorological records. Chosen from those coun-
ties where malaria and climatic data were available, 30 
counties with the highest average annual incidence were 
chosen for this study. The relevant principles of sample 
selection have been described in a previous study [21]. 
Additional file 1 shows the 483 counties and the selected 
30 counties in southwest China.

Data description
The weekly meteorological data from July 2003 to 
December 2009 was collected from the Chinese Mete-
orological Data Sharing Service System [22], in which 
the mean temperature (°C), rainfall (mm) and relative 
humidity (%) had been recorded. There are 131 meteoro-
logical monitoring stations among the 483 counties in the 
southwest region, and those that are relevant to the coun-
ties with high malaria incidence were used.

As daily malaria records would bring many zero counts 
and jeopardize the stability of the parameter estimation, 
weekly case reports were used in this study and collected 
through the Chinese Information System for Infectious 
Diseases Control and Prevention (CISIDCP) from 2004 
to 2009 among the 30 counties in southwest China [23]. 
Although both malaria sub-types (Plasmodium vivax and 
Plasmodium falciparum) could be the potential cause 
of the cases reported, most records did not include the 
type of parasites. The population data associated with 
the selected counties were obtained from the National 
Bureau of Statistics of China, from 2004 to 2009.

Basic distributed lag non‑linear model (DLNM)
The methodology of distributed lag non-linear model 
(DLNM) is used to describe the dependencies that are 
both non-linear and delayed [17]. Because malaria cases 
are ordinary count data, the association between the 
expected number of malaria cases E(Yit) at week t in 
county i and climatic variables in the previous weeks was 
modelled by the Poisson regression,
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where dit denotes the population in county i at week t; 
βi0 denotes the intercept effect for county i. xit,r, xit,h and 
xit,Tm are the weekly meteorological variables for county i 
at week t, representing the rainfall, relative humidity and 
mean temperature, respectively.

The lag ranges for meteorological factors were deter-
mined based on relevant biological knowledge. Consid-
ering the lag effect, it would be logical to assume that 
cases in a specific week will be affected by climatic fac-
tors several weeks before. Consequently, Model (1) could 
be used to estimate the cumulative contributions across 
the entire lag range, rather than on a single fixed lag time. 
The lag ranges were determined by referring to those bio-
logical factors and empirical results from previous stud-
ies [24]. The period from the fourth to the 15th week was 
used as the lag range for weekly rainfall and mean relative 
humidity, while for weekly mean temperature it was from 
the third to the tenth week [24, 25].

There are two basis functions included in Model (1) to 
represent the non-linear and lag effects. Taking rainfall 
as an example, the first is f(xi(t − l),r, βrl), which describes 
the non-linear effect of rainfall that happened l  weeks 
before. It could be interpreted by many functional forms, 
for instance, the polynomial function. As for the other 
function, its purpose is to constrain the parameter βrl, 
thus to refrain from the high collinearity caused by the 
significant correlation between rainfall on consecutive 
weeks. With the introduction of the constraining func-
tion, a reduction of the noise in the unconstrained dis-
tributed lag model could be achieved with less bias [7]. 
Subsequently, the second-order natural cubic spline was 
applied for the investigation of both basis functions in 
Model (1) due to the fact that the meteorological vari-
ables are unimodal [26], as well as the requirement for 
parsimony.

Correlations between climatic factors and malaria inci-
dences are not equal from place to place, and that the 
correlation in one county would be comparatively larger 
than that within two counties, in most circumstances. 
The inequality was caused by some unmeasured (or even 
unmeasurable) county-specific variables. To deal with 
the potential confounding, βi0 is modelled as a multilevel 

(1)

log(E(Yit)) = log(dit)+ βi0

+

15∑

l=4

f (xi(t−l),r ,βrl)

+

15∑

l=4

f (xi(t−l),h,βhl)

+

10∑

l=3

f (xi(t−l),Tm
,βTml),

random intercept, obeying a normal distribution that βi0 
∼ N(β0,  δ0

2). β0 is the average intercept of all counties, 
while δ0

2 represents the variation of county-specific inter-
cepts around β0.

Varying coefficient distributed lag non‑linear model
The lagged interaction was excluded in Model (1) due 
to the hypothesis that the rainfall at week t has the same 
effect at different levels of rainfall at week t −  k. How-
ever, the effect of rainfall at week t may also depend on 
the level of rainfall at week t − k. In this regard, a varying 
coefficient model [27] was used to examine the depend-
encies of the rainfall effect at week t on the rainfall level at 
week t − k and to investigate the between-lag interaction.

The rainfall at the fourth week lag was set as the strati-
fication variable in this study, mainly considering the lag 
range. As xi(t − 4),r denotes the rainfall at the fourth week 
lag, xi(t-4),r should, in a certain degree, influence the lag 
non-linear pattern of rainfall at other lag weeks, pro-
viding the hypothesis is correct that the lagged interac-
tion exists and the effect of rainfall at other lag weeks is 
indeed dependent on the rainfall level at the fourth week 
lag.

To investigate the possible influence of the lagged 
interaction, all xi(t −  4),r were divided into three quantile 
groups (33.3 and 66.6% percentiles). The three groups 
were denoted as Ri(t − 4),r0, Ri(t − 4),r1 and Ri(t − 4),r2, which 
represents the xi(t − 4),r at the low, medium and high level 
of rainfall at the fourth week lag, respectively. Model (1) 
is then adjusted to embody these changes, and the modi-
fications are shown below:

Compared to Model (1), Model (2) is different in 
two major aspects. The first is that βrl has now become 
βrl(Ri(t  −  4),rg), reflecting the fact that the coefficient βrl 
is now varying over Ri(t-4),rg. Consequently, the effect of 
rainfall at other lag weeks is now dependent on the rel-
evant rainfall level at the fourth week lag. Besides the 
lag non-linear pattern, the modified model can also be 
used to interrogate the lagged interaction that the rainfall 
effect of other lag weeks changes over different levels of 

(2)

log(E(Yit)) = log(dit)+ βi0 +

2∑

g=1

αg × Ri(t−4),rg

+

15∑

l=4

f (xi(t−l),r ,βrl(Ri(t−4),rg ))

+

15∑

l=4

f (xi(t−l),h,βhl)

+

10∑

l=3

f (xi(t−l),Tm
,βTml),
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rainfall at the fourth week lag. If the lagged interaction 
indeed exists, the lag non-linear patterns for rainfall at 
the three levels should differ from each other.

The second difference is that the coefficient Ri(t −  4),rg 
is now included in the intercept. Like the ordinary cat-
egorical predictor, Ri(t − 4),r0 at the lowest level was used 
as the reference group, and α1 and α2 represent the differ-
ential effects for Ri(t − 4),r1 and Ri(t − 4),r2, respectively. An 
assumption was made in Model (2) that the mean tem-
perature and relative humidity do not interact with the 
rainfall. The reference values of all climatic factors are all 
set at zero.

The analysis may be sensitive to the choice of lag 
ranges, and therefore the situation where the fourth to 
14th weeks were selected as lag range for rainfall instead 
of the fourth to 15th weeks was also investigated, and the 
results were robust and showed no significant change. All 
the analysis was performed with R, which is an open sta-
tistical software [28]. Specifically, the package lme4 [29] 
was loaded to estimate the parameters. The data above 
have been used in previous studies by the same research 
group to explore other relationships between meteoro-
logical factors and malaria incidences [21, 30].

Results
Descriptive analysis
Among the selected 30 counties in southwest China, 
21,944 malaria cases were reported in total over the 
6 years from 2004 to 2009, and the descriptive analysis of 
the collected data could be found in Additional file 2.

The three rainfall ranges at the fourth week lag are (0.0, 
1.6 mm), (1.6, 20.0 mm), (20.0, 310.9 mm), and their sam-
ple sizes are 3155, 3106 and 3129, respectively. The slight 
difference between the sample sizes is ascribed to the fact 
that most weekly rainfall values are concentrated at the 
33.3 and 66.6 percentile cut-points. Nonetheless, these 
values are eventually grouped into the corresponsive lev-
els and cause the inequality of sample numbers. In Fig. 1, 
the meteorological variables between different rain-
fall levels have been compared, and pronounced trends 
were found: the mean temperature, rainfall and relative 
humidity were all positively correlated with the rainfall 
levels at the fourth week lag. Conclusively, the annualized 
average incidences are 9.73, 14.18 and 13.36 per 100,000 
for low, medium and high rainfall levels, respectively.

Varying coefficient distributed lag non‑linear model
Figure  2 demonstrates the estimated lagged non-linear 
relationships between rainfall and malaria incidence in 
the exposure dimension. The results are presented with 
nine representative panels, as there are three lag condi-
tions and each condition was analysed under three levels 
of rainfall at the fourth week lag. The Y-axis represents 

the logarithm value of the relative risk ratio in compari-
son with the reference value at rainfall 0 mm. In general, 
the rainfall levels at the fourth week lag affect the non-
linear patterns between rainfall and malaria incidence 
under each lag time. In the low rainfall level at the fourth 
week lag, rainfall promotes malaria incidence. On the 
contrary, in the high rainfall level at the fourth week lag, 
the risk of malaria incidence would decrease as the rain-
fall increases.

For each lag time, the non-linear patterns between 
rainfall and malaria incidence are distinctively different 
across the three rainfall levels. In the high rainfall level 
at the fourth week lag, the magnitude and direction of 
the association would change according to the rainfall 
values. More specifically, in the high level, the logarith-
mic value of relative risk (logRR) increases slightly at first 
and reaches the maximum at approximate 75  mm, but 
then it starts to decline sharply. In the range 0–150 mm, 
rainfall is positively associated with malaria incidence. 
Afterwards, the correlation between rainfall and malaria 
risk becomes negative. The same trend is observed for 
the 12th week lag in the medium level (panel h of Fig. 2). 
Secondly, in the medium rainfall level at the fourth week 
lag (except panel h), the curve shows a slowly downward 
trend. However, this correlation is not statistically signifi-
cant, as the value of 0 is included in the 95% confidence 
interval of logRR.

In the low rainfall level at the fourth week lag, rainfall 
is positively associated with malaria incidence, and the 
logRR would increase sharply when the rainfall increases. 
The ninth week lag has the greatest impact on malaria 
risk at the low and high rainfall levels. The effect of the 
sixth week lag ranks second, which is greater than that of 
the 12th week lag.

Figure  3 shows the estimated lagged non-linear rela-
tionships between rainfall and malaria incidence in the 
lag dimension. The results are presented with three rain-
fall values at the 25, 50 and 75% percentiles of weekly 
rainfall from 2004 to 2009, which are 0.2, 15.5 and 
30.8  mm, respectively. As the three representative rain-
fall values were within the three rainfall level ranges (0.0, 
1.6  mm), (1.6, 20.0  mm) and (20.0, 310.9  mm), respec-
tively, Fig.  3 also demonstrates the overall relationship 
between rainfall and malaria incidence for each rainfall 
level at the fourth week lag. Specifically, Fig. 3a shows the 
correlation at the low rainfall level, Fig.  3b the medium 
rainfall level and Fig. 3c the high rainfall level. Y-axis rep-
resents the logarithm value of the relative risk ratio in 
comparison with the reference value at rainfall 0 mm. The 
three panels present distinct non-linear patterns between 
rainfall and malaria incidence at different rainfall values. 
When the rainfall is at 30.8 mm, the corresponding dis-
tributed lag curve shows an apparent inversed U-shape, 
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which goes up first until peaking at the ninth week, then 
starts going downwards and ends up with non-significant 
correlation from the 13th  week. When the rainfall is at 
15.5 and 0.2  mm, both curves show similar trends: the 

correlations are non-significant at first and then start to 
increase substantially during the 11–15th weeks. Finally, 
by comparing the three panels, it is observed that the 
logRR increases along with the rainfall values, and the 
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increasing rate is much larger at the lower rainfall. Specif-
ically, the increasing rate at 15.5 mm is nearly 100 times 
of that at 0.2 mm, while the difference becomes minimal 
when comparing that under 15.5 and 30.8 mm.

Discussion
The interaction between meteorological factors is 
important in malaria transmission, as they are closely 
associated with vector abundance and survival as well 
as parasite maturation [24]. Exploring the interaction 
between climatic variables on malaria incidence can 
help to better understand the relationship between 
meteorological factors and malaria incidence [31]. The 
interaction between exposure predictors is common 
in existing studies, but so far there is no report dedi-
cated to the lagged interaction between climatic fac-
tors in the process of malaria transmission, which may 
also play a crucial role in malaria epidemics. Particu-
larly, the lagged interaction effect on malaria incidence 
examined in this study was the interaction between 
rainfall at the 4th week lag and that at the 6th, 9th and 
12th week lags.

The results indicate that the rainfall at the 4th week lag 
affects the correlation between malaria incidence and 
rainfall at the other lag weeks, implying the interaction 
effect between lagged rainfalls on malaria. When in the 

low rainfall level at the fourth week lag, the malaria risk 
increases along with the increase of rainfall, suggesting 
that the increasing rainfall promotes malaria transmis-
sion when rainfall is low at the 4th week lag. In contrast, 
excessive rainfall decreases the risk of malaria when rain-
fall is high at the 4th week lag, which can be observed in 
panel c, f, i of Fig.  2. These results can be explained by 
malaria dynamics [19]: rainfall elevates the environmen-
tal humidity and brings about many temporary pud-
dles, simultaneously increasing the number of mosquito 
breeding sites and enhancing mosquito survival. How-
ever, excessive rainfall and accumulation of surface water 
in complicated terrain would potentially destroy mos-
quito-breeding sites, thus reducing the mosquito density. 
Abundant rainfall may also prevent people from working 
outdoors, resulting in lower chances of people being bit-
ten by mosquitoes and consequently, decreasing malaria 
incidence. Specifically, when the rainfall level at the 4th 
week lag is low, the greater rainfall at week t would relieve 
the effect of insufficient rainfall so that rainfall offers 
more breeding habitats to mosquitoes and increases their 
number, resulting in the increased risk of malaria inci-
dence. In contrast, when the rainfall level at the fourth 
week lag is high, abundant rainfall at week t would exac-
erbate the effect of excessive rainfall, resulting in mos-
quito breeding sites being destroyed and people reducing 
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Fig. 3  The estimation of non-linear patterns between rainfall and malaria incidence in the lag dimension. The Y-axis represents the logarithm value 
of the relative risk ratio compared to the reference rainfall 0.0 mm. The solid line is the estimated non-linear curve, with dashed lines indicating its 
95% confidence interval. The three panels of a–c show the scenarios for the rainfall at 0.2, 15.5, 30.8 mm, respectively

(See figure on previous page.) 
Fig. 2  The estimation of non-linear patterns between rainfall and malaria incidences in the exposure dimension. The Y-axis represents the loga-
rithm value of the relative risk ratio compared to the reference rainfall 0.0 mm. The solid line is the estimated non-linear curve, with dashed lines 
indicating its 95% confidence interval. On the one hand, the solid lines in the top 3 rows shows the scenarios for the 6th week lag (red line, a–c), the 
9th week lag (blue line, d–f) and the 12th week lag (green line, g–i), while the fourth row shows the difference among the results at the 6th, 9th and 
12th week lags (j–l). The first three panels in each column represent the specific rainfall level at the fourth week lag. Specifically, the columns of (a, d, 
g, j), (b, e, h, k) and (c, f, i, l) are for the low, medium and the high rainfall levels at the fourth week lag, respectively. The range of X-axis depends on 
the corresponding observed range of rainfall
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their outdoor activities. The effect of high rainfall at week 
t would be attenuated or even become negative.

It is also observed that the lagged effect of rainfall on 
malaria incidence was greatest at the ninth lag week, 
compared to the 6th and 12th weeks. This is biologically 
acceptable as the effect of rainfall occurring in the current 
week or too long before is negligible on malaria incidence.

Greater rainfall brings a higher relative risk but a 
shorter lag for malaria cases, which can be observed 
from  Fig.  3. Specifically, in the low and medium lev-
els of rainfall at the 4th week lag, rainfall starts to be 
significantly associated with malaria incidence at the 
11th week. In high rainfall level at the fourth week lag, 
the distributed lag curve shows a significant correlation 
from the 4th to 13th week. Compared with the high level 
of rainfall at the fourth week lag, rainfall in low levels 
is associated with delayed malaria risk. The results are 
consistent with a previous study [32]. These may be a 
result from the previously mentioned malaria dynamics 
that rainfall could provide fitted habitats for mosquitoes 
to breed, thus shortening their life cycles and accelerat-
ing the spreading of malaria [33]. Despite the fact that 
the relative risk for malaria cases is positively correlated 
with rainfall, the increase in the relative risk is more dras-
tic when rainfall is low, while it becomes minimal when 
rainfall is high. This phenomenon may be explained by 
the saturation effect, where the contribution of increas-
ing rainfall to the development of mosquito and parasite 
becomes negligible or even counterproductive.

Rainfall is selected as an example to reveal the lagged 
interaction on malaria incidence mainly for biological 
and epidemiological considerations. From an entomo-
logical perspective, rainfall affects most of the stages of 
the mosquito’s life cycle. For example, plentiful rainfall 
provides mosquitoes with aquatic breeding sites for their 
growth and reproduction [34]. While from an epidemio-
logical view, the reported relationship between rainfall 
and malaria vary in the literature [24]. This is especially 
true in China, as several studies showed that rainfall was 
closely correlated with malaria incidence [16, 35, 36], 
while other studies denied the existence of such correla-
tions [37]. Understanding the interaction effect between 
rainfall at different lag time on malaria incidence may 
help to better explore the relationship between rainfall 
and malaria incidence.

α1 and α2 are introduced to describe the main effects of 
the rainfall levels at the fourth week lag. As demonstrated 
in Fig.  1, the three groups of different rainfall levels at 
the fourth week lag do not have identical baseline distri-
bution of climatic factors. Even under the same rainfall 
condition at the fourth week lag, the average effect of 
rainfall among the three groups should be distinctively 
different; α1 and α2 are consequently added as the average 

deviation, ensuring that the logRR values of all groups 
would be zero at the reference rainfall, and allowing the 
comparison of variations for rainfall.

The county-specific random intercept model allows 
fitting a regression model to meteorological factors 
with the systematic unexplained variation among the 
30 counties. As with other epidemiological litera-
ture on the relationship between meteorological vari-
ables and malaria incidence, the final results would be 
potentially interfered by some confounding factors. For 
instance, there may be different preventive measures 
with different enforcement strength that are deployed 
by an individual county to fight malaria, as well as some 
behavioural patterns, such as the utilization of nets of 
different types. The variance δ0

2 of the county-specific 
random intercept βi0 represents the variation between 
counties that are not caused by the climatic predictor. 
The random intercept model has proven efficient in 
handling the potential bias [38].

There are a few limitations that should be acknowledged. 
First, the data quality may change over the 6 years. This pri-
marily varied with time, and the best data quality was found 
in 2009. Second, only 30 counties with malaria prevalence 
were used in this study. However, this should not introduce 
significant inherent bias into this study. The range of malaria 
incidence varied from low to high values. Specifically, the 
annualized average incidence ranged from 348.2/100,000 to 
1.1/100,000. In particular, it is evident (see Additional file 2) 
that the 30 counties included many low-incidence counties, 
such as Eshan with just 11 malaria cases in 6 years. There-
fore, the selection method in this study should not under-
mine the credibility of this study. Third, like several existing 
studies [39, 40], the characteristics of P. vivax and P. falci-
parum were not analysed separately due to the lack of asso-
ciated information in this study. As a result, vivax relapses 
may be mistaken as new infections caused by meteorologi-
cal factors. The lag non-linear patterns of the two malaria 
sub-types may be slightly different from each other. By 
investigating the potential bias, future studies might provide 
more details to elucidate the association between climatic 
factors and malaria incidence in southwest China.

Conclusions
Using weekly data of malaria cases and climatic variables 
during the period of 2004–2009 among 30 counties in 
southwest China, the interaction effect between rainfall 
at different lag time on malaria incidence was examined. 
As previous studies rarely accounted for the interaction 
between lagged climatic factors, this work highlights the 
importance of including the lagged interaction effect in 
the investigation of malaria incidence, which can pro-
vide supplementary evidence to understand and predict 
malaria transmission.
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