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Bites before and after bedtime can carry 
a high risk of human malaria infection
Masabho P. Milali1,2, Maggy T. Sikulu‑Lord1,3 and Nicodem J. Govella1*

Abstract 

Background:  Understanding biting distribution of potentially infectious (parous) mosquitoes at various hours of the 
night would be useful in establishing the likely impact of bed nets on malaria transmission. Bed nets are highly effec‑
tive at preventing biting by older malaria vectors, which occurs when most people are in bed. However, this behav‑
iour is likely to vary across ecological settings and among mosquito populations.

Methods:  Field experiments were conducted in Minepa village within Kilombero Valley. Two outdoor catching sta‑
tions located approximately 50 m from each other were established for mosquito collection. On each experimental 
night, mosquitoes were collected using human landing catch (HLC) by a single adult male at each station from 18:00 
to 07:00 h. To compare the distribution of mosquito biting and the composition of their age structure, mosquitoes 
were sorted and recorded according to the hour they were collected. A sub-sample of Anopheles arabiensis was dis‑
sected to determine their parity status. Insectary-reared An. arabiensis within the semi-field system (SFS) with known 
age were also released in the SFS (10 m × 20 m) and recaptured hourly using HLC to determine the effect of parity on 
biting distribution.

Results:  Overall, there was no statistical association between the parity status and the biting time of An. arabiensis 
either in the field or in the SFS (P ≥ 0.05). The wild and insectary-reared An. arabiensis were observed to exhibit differ‑
ent hourly biting patterns.

Conclusion:  The study has shown that mosquito biting time phenotype is not influenced by their parity status. 
These findings imply that the risk of human exposure to potentially infectious bites is equally distributed throughout 
the night, thus supplementary measures to protect people against bites in evening and morning are desirable.
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Background
Historically, human malaria infections in sub-Saharan 
Africa occur mainly during late hours of the night. This 
period coincides with the peak biting behaviour of the 
primary malaria vectors: Anopheles gambiae sensu lato 
and Anopheles funestus [1, 2]. The risk of human infec-
tion depends mainly on two main factors: the human 
biting rate (the frequency at which a human is exposed 
to mosquito bites) and the proportion of the biting 
mosquitoes that are infectious [3, 4]. Only anopheline 

mosquitoes that are at least 10 days old can be infectious 
[5] because of the lengthy period required by the para-
site to develop inside the mosquito, which is described as 
the extrinsic incubation period. While young nulliparous 
Anopheles never become infectious, the parous female 
may do so. Consequently, the proportion of mosqui-
toes that are infectious is proportional to the age of that 
mosquito populations [6, 7]. Therefore, the risk of infec-
tion at any given time of the night is influenced by the 
biting behaviour of the parous female mosquitoes [6, 7]: 
those that have previously had a blood meal and laid eggs 
[8–11].

Previous studies on An. gambiae in Sierra Leone, Anoph-
eles punctulatus in Papua New Guinea [12] and Anopheles 
darlingi in Brazil [9] have provided evidence to indicate 
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that parous Anopheles prefer to feed later in the night than 
the nulliparous population. The proportion of An. gambiae 
population that were parous in Tanzania was also slightly 
higher during late night hours (22:00–02:00) than earlier in 
the night (18:00–22:00) [13]. This overlap between the peak 
biting time of parous mosquitoes and the sleeping pat-
tern of humans could explain why insecticidal-treated nets 
(ITNs) have been effective in interrupting human malaria 
infection across sub-Saharan Africa [14–19].

More recently, it has been reported that a substantial 
change in species composition of malaria vectors [20, 21] 
and a shift in biting time [21–27] is associated with the 
widespread use of ITNs across Africa. For instance, in 
Kilombero Valley in Tanzania, An. gambiae sensu stricto, 
which historically has been the dominant malaria-
transmitting species, has been virtually eliminated [21, 
28]. It has also been reported that the biting behaviour 
of mosquitoes is increasingly occurring before bedtime 
and outdoors [21, 29]. If the shift to bite before bedtime 
coincides with the increase in the proportion of parous 
mosquitoes, then the risk of malaria infection will be pre-
dictably relatively higher in this specific time window of 
the night compared to other time points.

Despite high coverage with ITNs, the villages around 
the Kilombero River still experience high malaria trans-
mission rates [28, 30]. However, the influence of age of 
the main malaria vector species on their biting behaviour 
among these villages remains unknown. It is evaluated 
here for the first time.

Methods
Study site: Minepa village in southeastern Tanzania
The field study was conducted in Minepa village (S 
08°16.4974′; E 036°40.7640′) within the Kilombero River 
valley in the Ulanga district of southeastern Tanzania [31] 
where malaria transmission remains high despite high cov-
erage with ITNs. Most people in this village are subsistence 
farmers. The annual rainfall is between 1200 and 1800 mm, 
and the daily temperature is between 20 and 33  °C [32]. 
Members of the An. gambiae s.l. (An. gambiae s.s., An. ara-
biensis) and An. funestus are the primary malaria mosqui-
toes. However, An. arabiensis and An. funestus are currently 
the dominant species [21, 28] because long and widespread 
use of ITNs [33, 34] has virtually crashed the population of 
An. gambiae s.s. [21, 28]. Recent observations indicates that 
both An. arabiensis and An. funestus in this valley present 
active biting behaviour even before bedtime (18:00–22:00) 
[21], particularly when most locals are still outdoors [29].

Experimental design
Field sampling and processing
This experiment was conducted for two rounds each com-
prising a total of ten sampling nights. The first round was 

conducted towards the end of the rainy season between 
21 and 30 April, 2016, while the second round was dur-
ing the dry season 23 August to 1 September, 2016. Two 
outdoor catching stations, each approximately 5 m outside 
houses within the sampling area, were randomly chosen 
and established for mosquito collection. Standard rand-
omization techniques were used: from the centre of the 
village two directions to work through the village were 
chosen by spinning a pen on a flat surface and the tenth 
house from each direction was chosen. Two volunteers 
out of four were randomly chosen and each randomly 
assigned to each catching station. Once assigned to a par-
ticular station, a volunteer was allowed to choose a coun-
terpart to form a pair so that they can make a night shift 
with one start collection of mosquitoes from the first half 
of the night (18:00–24:00) and another finishing the sec-
ond half of the night (24:00–07:00). Each pair remained at 
a particular station for a period of ten consecutive nights 
of sampling while alternating in night shift after each 
experimental night. In the second round, the two pairs 
exchanged houses and sampling continued for another ten 
consecutive nights in similar fashion as above. Mosquito 
collection was done by human landing catch (HLC), where 
a single male adult volunteer collected mosquitoes that 
landed on his exposed legs with a mouth aspirator as pre-
viously described [35, 36]. Mosquito collection was con-
ducted for 45 min per hour, from 18:00 to 07:00, allowing a 
15-min break for rest and refreshment. To compare distri-
bution of mosquito biting behaviour and age composition 
per time point, hourly collections were placed in separate 
labelled paper cups corresponding to capturing time.

Each morning, with the aid of a stereo-microscope, all 
catches were sorted and morphologically identified in the 
field. Only mosquitoes identified as An. gambiae com-
plex or An. funestus [1, 37] were considered for follow up. 
All other mosquito species were identified, recorded and 
then discarded. Individual mosquitoes were dissected 
and identified as either pre-gravid, nulliparous or parous, 
as previously demonstrated [38]. These mosquitoes were 
then individually preserved in 1.5  ml Eppendorf tubes 
containing desiccated silica gel for subsequent testing 
using polymerase chain reaction (PCR) assay [39] which 
determines sibling species identity. The enzyme linked 
immunosorbent assay (ELISA) was applied to test for the 
presence of a circumsporozoite protein in heads and tho-
races of these mosquitoes [40, 41]. The heads and thora-
ces were heated in ELISA lysate at 100 °C for 10 min to 
gate away from false positive ELISA [42].

Mark release recapture experiments in the semi‑ field 
system
Insectary-reared female An. arabiensis collected from 
wild larvae in Lupiro village within the Kilombero Valley 
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were used. Mosquitoes were reared in an insectary built 
within the Ifakara Health Institute’s large semi-field 
system (SFS), measuring 21  ×  9.1  ×  7.1  m located at 
Kining’ina village (8.11417 S, 36.67484 E). Details of the 
design of the SFS can be seen elsewhere [43, 44]. The 
larvae from the field were transferred to a basin con-
taining clean tap water using micropipette to discrimi-
nate predators. The basins were 12-l volume each with 
300 ml of water. The basins containing larvae were cov-
ered with netting material and placed in racks established 
in the insectary within the SFS. The larvae were fed on 
Tetramin fish food (Tetra, Melle, Germany); temperature 
and humidity were not controlled during larvae rearing 
to mimic field conditions. Pupae were aspirated from the 
basins using micropipette and placed into small bowls 
(10 cm diameter) containing water and then transferred 
inside cages measuring 36 × 39 cm, allowing adult mos-
quitoes to emerge. The newly emerged wild adult female 
An. gambiae s.l. were maintained on 10% glucose solution 
until they were 3–5  days old when they were blood fed 
using arm feeding. Standard operating procedure (SOP) 
of arm feeding was followed, where well-trained techni-
cians fed mosquitoes inside cages for 15  min. Prior to 
feeding, technicians were screened for malaria by rapid 
diagnostic test (mRDT) (MAL-Pf®, ICT Diagnostics, 
Cape Town, South Africa, which detects histidine-rich 
protein II) available in the laboratory. Only malaria free-
technicians were allowed to enter and feed mosquitoes in 
the insectary. Before feeding, technicians put on gloves 
to avoid mosquito bites around the fingers. This proce-
dure received ethical approval following the fact that 
An. arabiensis strain in this setting had repeatedly failed 
to adapt to feeding upon animals, or membrane feeding 
from previous trials. It was approved based on the fact 
that mosquitoes which are reared in the insectary within 
the screened enclosures (SFS) are pathogen-free so that 
technicians and/or volunteers are not exposed to the risk 
of contracting diseases.

The fully fed female An. gambiae s.l. were individu-
ally placed into a correspondingly separate, labelled 
small cage (15  ×  17  cm) with unique mosquito iden-
tification code (ID). Inside each small cage, a petri dish 
containing wet cotton lined on top with filter paper was 
provided, allowing mosquitoes to oviposit eggs. After 
oviposition, each individual was killed and stored in a 
correspondingly labelled 1.5-ml Eppendorf tube with 
desiccated silica gel and taken to central laboratory of 
the Ifakara Health Institute for confirmation of sibling 
species identification by PCR [39]. The newly emerged 
adult female F1 generation confirmed to be An. arabien-
sis only were placed into two separate cages each meas-
uring 36 ×  39  cm. In one cage, the young nulliparous 
group was maintained on 10% glucose solution alone, 

while in the second cage young mosquitoes were blood 
fed and allowed to lay eggs three times. Three to five days 
old nulliparous females and parous mosquitoes that had 
undergone three feeding cycles (at least 10 days old) were 
used. To discriminate parous from the nulliparous age 
group, one night prior to the release-recapture experi-
ment, 200 nulliparous and 200 parous mosquitoes were 
placed in two different cages and were maintained on a 
mixture of 10% glucose with 2 g/l of either rhodamine B 
or synthetic blue food colour. The rhodamine B or blue 
food colour was assigned to either nulliparous or parous 
in randomized fashion using the lottery method. This 
randomization of markers between the two age groups 
was done after each experimental night. Although rho-
damine B is a common biomarker for insects and was 
recently tested against sand flies [45], the use of synthetic 
food colour for marking mosquitoes is relatively rarely 
applied [46] compared to fluorescent dust dye [47, 48]. 
Nevertheless, this marking technique proved successful 
in this study (Fig. 1). The use of sugar-feeding dyes was 
preferred over fluorescent dust dye [47, 48] so that the 

Fig. 1  Images of an insectary-reared female Anopheles arabiensis in 
the semi-field. Fed on glucose solution containing 2 g/l synthetic blue 
food colour (a) or rhodamine B (b). Blue food colour was only visible 
in the abdomen (a), but rhodamine B was visible throughout in the 
thorax and abdomen
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two age groups could be distinguished from each other. 
Unlike sugar-feeding markers, fluorescent dust dye may 
contaminate the aspirator during recapturing and make 
it difficult to discriminate between the two groups. Even 
more importantly, these sugar-feed markers, particularly 
the rhodamine B, have been demonstrated not to affect 
longevity of the insects [45]. Mosquitoes were starved 
for at least 20 min before they were released. Mosquitoes 
were transferred and released in a separate chamber of 
the SFS containing natural vegetation, planted food crops 
and a small, thatched, mud-walled house designed to 
mimic the natural habitat of these mosquito species [44]. 
Mosquitoes were released from the centre of a chamber 
measuring 9.6 ×  9.6  m at 17:00 by pulling strings held 
to mosquito netting cage. Both parous and nulliparous 
mosquitoes were released at the same time. A single adult 
staff was introduced into the chamber at 18:00 to perform 
HLCs from 18:00 to 07:00. Mosquitoes were recaptured 
at intervals of 1 h and placed in paper cups with a label 
corresponding to the time they were recaptured. Simi-
lar to field trials, recapturing was conducted for 45 min 
per hour with a 15-min break. This experiment was con-
ducted for ten consecutive nights. HLCs were performed 
by two research staff alternating after each experimental 
night. Because disease-free, insectary-reared mosqui-
toes were used, no prophylaxis was given to the mos-
quito catchers [49]. Not all mosquitoes that were released 
per experimental night were successfully recaptured by 
HLCs. After each experimental night, in the morning two 
technicians carried out a thorough search for 30 min in 
the vegetation, hut, walls, and roof within the SFS and all 
mosquitoes that were found resting were collected, killed 
and discarded. Otherwise this would have affected the 
results, especially for the next experimental nights.

Data analysis
Descriptive summary, tables and graphical analysis were 
used to examine the biting distribution across different 
times of the night for both wild An. arabiensis and An. 
funestus collected and insectary-reared An. arabiensis. 
Generalized linear mixed models (GLMM), using the R 
open source statistical software (version Rx 64 2.15.2) 
augmented with the lme4 package, was applied to assess 
whether biting time phenotype was influenced or not by 
the parity status of mosquitoes and whether the propor-
tion of parous varied between nights of sampling. The 
analysis of whether the proportion of parous recaptured 
varied between nights of sampling was only conducted 
with the SFS experiment. Very few pre-gravid mosquitoes 
were caught, and therefore they were combined with the 
nulliparous population and analysed as one group (nullip-
arous). Thus, the results of dissections were expressed as 
either nulliparous or parous. To test for the effect of parity 

on biting distribution across various times of the night for 
the field data, proportion of parous biting was treated as 
response variable with hour of the night first fit as a con-
tinuous variable and sampling night, rounds of collection 
and volunteers nested within station of collection treated 
as random effects. This allowed detection of whether there 
was any significant difference. This was followed by slight 
modification of the model where hour of the night at this 
stage was fit as fixed effect with random effects remain-
ing the same as above, and model was run without an 
intercept. This was done so that absolute proportional of 
parous biting could be compared between each hour and 
also allow for plotting of graph fitted with 95% confidence 
interval. For the An. arabiensis reared in the SFS, testing 
the effect of time on parous biting distribution, the night 
of sampling and volunteer were treated as random effects 
with hour of the night as fixed effect and proportion of 
parous biting as response. Testing whether the propor-
tion of parous biting varies over nights of experiment in 
the SFS, sampling nights were treated as fixed effect with 
volunteers as random effect and proportion of parous as 
response variable. It has been reported that differential 
attractiveness by mosquitoes to people does occur [50–
52]. This could result in sampling variations over a certain 
time of the night or between sampling night, especially 
when mosquito capturing is performed by more than one 
person. It was also hypothesized that differential attrac-
tiveness by parous and nulliparous mosquitoes to people 
may exist, so volunteers were controlled in the model by 
treating them as random effects. Binomial distribution was 
used and the model fit were then separately plotted into 
graphical presentation. Very few An. funestus was caught 
and when tested with GLMM, spurious model fit was pro-
duced. Therefore, their number was considered too low to 
justify any robust statistical test, and the results associated 
with An. funestus were only reported descriptively.

Results
A total of 5836 mosquitoes were caught over 20 nights 
of field collections. The catch included: 1710 (29.3%) An. 
gambiae s.l.; 211 (3.6%) An. funestus; 172 (2.9%) Anoph-
eles coustani; 11 (0.2%) Anopheles ziemanni; 122 (2.1%) 
Anopheles pharoensis; 3610 (62%) Culex spp. (Table 1). A 
total of 1461 An. gambiae s.l. were successfully dissected. 
Of these, 63.2% (n = 924) were parous, 30.8% (n = 450) 
nulliparous and 6.0% (n = 87) pre-gravid. In the case of 
An. funestus, 200 specimens were successfully dissected. 
Of these, 66% (n  =  132) were parous, 32.5% (n  =  65) 
were nulliparous and 1.5% (n =  3) pre-gravid (Table  1). 
Overall, there were relatively more parous than nullipa-
rous mosquitoes, a probable indicator of fewer mosqui-
toes emerging towards the end of the rainy season and 
during the dry season.
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Of the 4000 insectary-reared An. arabiensis within the 
SFS and released in the SFS, 1945 were recaptured. Of 
these, 69.4% (n = 1349) were parous and 30.6% (n = 596) 
were nulliparous. Of 1152 An. gambiae s.l. analysed by 
PCR, 96% (n = 1106) specimens were successfully ampli-
fied and all were identified as An. arabiensis. All identi-
fied An. arabiensis tested sporozoite negative. Contrary 
to that, two individuals (An. funestus s.s.) out of 181 from 
An. funestus s.l. were found sporozoite positive, with one 
biting between 21:00 and 22:00 and the other between 
01:00 and 02:00. This implies that An. funestus s.s. might 
be more susceptible to infection than An. arabiensis. The 
An. funestus group was composed of An. funestus s.s 86% 
(n = 129), Anopheles leesoni 7% (n = 11), Anopheles rivu-
lorum 4% (n = 6), and Anopheles parensis 3% (n = 4) of 
150 successfully amplified specimens. Therefore, the field 
results presented here with respect to An. gambiae s.l. 
and An. funestus s.l. effectively reflect An. arabiensis and 
An. funestus s.s.

The two primary malaria vectors in the area, An. arabi-
ensis and An. funestus, were observed to exhibit different 
biting activity over the course of the night. While the peak 
biting activity of An. arabiensis appeared to have started 
as early as between 20:00 and 21:00 and thereafter gradu-
ally decreased; An. funestus exhibited nocturnal biting 
behaviour with additional pronounced peak biting behav-
iour observed in the early morning (Fig. 2). Interestingly, 
the wild and the insectary-reared An. arabiensis within 
the SFS were also observed to exhibit different biting ten-
dencies. Over 75% of all bites by the SFS-reared An. ara-
biensis occurred during the first 2 h of the early evening 
but drastically dropped for the rest of the night (Fig. 3).

Table  2 summarizes hour by hour numbers of wild 
female Anopheles arabiensis and An. funestus caught and 
numbers of parous, nulliparous and pre-gravid. Gener-
ally, the numbers of parous biting mosquitoes appeared 
to be consistently higher relative to nulliparous (nul-
liparous and pre-gravid combined) across different times 
of the night, with the exception of the first  hour of the 
evening (18:00–19:00), which was dominated by nul-
liparous mosquitoes for An. arabiensis. This observation 
is supported by the statistical test, which shows the lack 

Table 1  Mosquito species, numbers collected and  parity dissections of  Anopheles gambiae sensu lato and  Anopheles 
funestus from two rounds (21–30 April and 23 August-1 September, 2016) of data collection in Minepa Village, Kilombero 
Valley

Collection rounds Total catch Mean catch per night Total dissected Parous Nulliparous Pregravid Parous (%)

Round 1

 Anopheles gambiae s.l. 724 72.4 631 371 187 73 58.8

 Anopheles funestus s.l. 56 5.6 51 32 17 2 62.7

 Anopheles coustani 13 1.3 N/A N/A N/A N/A N/A

 Anopheles ziemanni 5 0.5 N/A N/A N/A N/A N/A

 Anopheles pharoensis 9 0.9 N/A N/A N/A N/A N/A

 Culex spp. 2301 230.1 N/A N/A N/A N/A N/A

Round 2

 Anopheles gambiae s.l. 986 98.6 830 553 263 14 66.6

 Anopheles funestus s.l. 155 15.5 149 100 48 1 67.1

 Anopheles coustani 159 15.9 N/A N/A N/A N/A N/A

 Anopheles ziemanni 6 0.6 N/A N/A N/A N/A N/A

 Anopheles pharoensis 113 11.3 N/A N/A N/A N/A N/A

 Culex spp. 1309 130.9 N/A N/A N/A N/A N/A
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Fig. 2  Distribution of biting times for wild Anopheles arabiensis and 
Anopheles funestus in Kilombero Valley, Tanzania. The dashed line 
represents Anopheles arabiensis and the continuous line represents 
Anopheles funestus
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of detectably statistical association between the parity 
status and the biting time of wild An. arabiensis from 
19:00 throughout the night. The only statistical differ-
ence was detected when the catches between 18:00 and 
19:00 were included in the model, where the proportion 
of parous catch was significantly less (z = 2.0, P = 0.045) 
(Fig. 4a). Although the numbers of An. funestus that were 
collected and dissected were too low to allow statistical 
test, proportion of parous biting from 20:00 appeared 

to be consistently ≥50% throughout the night (Table  2; 
Fig. 5). Similar to wild An. arabiensis, no apparent asso-
ciation was observed between biting time preference 
and parity status over the course of the night among the 
insectary-reared, released and recaptured An. arabiensis 
in the SFS. Only the biting activity between 04:00 and 
05:00 appeared to be dominated by the nulliparous group 
(Fig. 4b).

As shown in Fig. 6, the parous rate of insectary-reared, 
released and recaptured An. arabiensis within the SFS 
was consistently  ≥50% throughout the ten sampling 
nights, with some fluctuation between nights. Statistical 
analysis indicated no evidence of significant variation in 
parity rates between all ten nights (Fig. 6).

Discussion
A thorough understanding the biting behaviour of 
malaria vectors plays a crucial role in their control. Both 
An. funestus and An. arabiensis were collected, but the 
numbers of An. funestus were too sparse to be able to 
detect the existence of any statistical difference in their 
age structure distribution. This discussion will there-
fore focus mainly on An. arabiensis, the major vector of 
malaria in the Kilombero Valley, Tanzania, [21, 28, 29] 
and in other locations in sub-Saharan Africa [20, 24, 26, 
27, 53]. The main objective was to assess whether there 
was an association between parity status of mosquitoes 
and their biting time in an area with widespread use of 
ITNs. Overall, the results indicate that parity status did 
not influence the biting time behaviour of An. arabi-
ensis either under a full-field or a semi-field setting. A 
relatively higher proportion of parous wild An. arabien-
sis were observed to bite during the early hours of the 
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Fig. 3  Biting activity of wild Anopheles arabiensis in the field com‑
pared with insectary-reared Anopheles arabiensis in the semi-field 
system. The dashed line represents the proportion of An. arabiensis 
that were captured biting at each hour of the night in the field and 
continuous line represents An. arabiensis that were recaptured biting 
at each hour of the night in the semi-field system

Table 2  Hour-by-hour numbers of wild female parous and nulliparous (nulliparous and pre-gravid combined) of Anoph-
eles arabiensis and Anopheles funestus

Hour Anopheles arabiensis Anopheles funestus

Parous Nulliparous Parous (%) Parous Nulliparous Parous (%)

18:00–19:00 21 51 29.2 0 2 0

19:00–20:00 87 74 54.0 1 2 33.3

20:0–21:00 129 57 69.4 10 4 71.4

21:0–22:00 97 42 69.8 12 4 75

22:0–23:00 105 42 71.4 5 5 50

23:0–24:00 85 38 69.1 12 6 66.7

24:0–01:00 66 52 55.9 15 9 62.5

01:0–02:00 67 29 69.8 13 8 61.9

02:0–03:00 57 28 67.1 12 5 70.6

03:0–04:00 72 42 63.2 12 3 80

04:0–05:00 56 25 69.1 11 4 73.3

05:0–06:00 57 36 61.3 17 11 65.4

06:0–07:00 25 19 56.8 12 5 70.6
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evening but this proportion was not significantly differ-
ent from other time periods of the night. These findings 
differ from previous reports on An. gambiae in Sierra 
Leone, An. punctulatus in Papua New Guinea and An. 
darling in Brazil, where the biting activity of the parous 
population predominantly peaked during bedtime, while 
the nulliparous population preferred to bite prior to or 
after bedtime [9, 12]. While local population variations 
in biting time behaviour with respect to mosquito age 
could possibly describe this difference, variation in the 
analytical approach may also matter. In previous studies, 
the proportion of parous was obtained through aggre-
gating their numbers captured in ordered time inter-
vals (e.g., 18:00–22:00) [12]. This may mask the effect 
occurring at each time-period falling within such time 
window. The findings from this study are however con-
sistent with reports on An. gambiae and An. funestus 

in Burkina Faso [54] and An. funestus in Tanzania [11]. 
These findings also support the conclusive statement by 
Gillies that opposed the idea that age of An. gambiae was 
an important characteristic in determining biting time. 
Although in his study he found on average more young 
mosquitoes biting in the early part of the night than in 
the middle hours (22:00–02:00), these observations were 
found to vary as a function of weeks. For instance, the 
proportion of young mosquito biting was highest in the 
middle hours of the night in 4  weeks out of an 8-week 
study [13]. The absence of clustering of parous mosqui-
toes at specific time periods of the night may imply that 
the risk of human exposure to potentially infectious bites 
[6] is equally distributed throughout the biting window 
of these vectors. This also implies that protection against 
bites from these mosquitoes at all times is key to prevent-
ing malaria transmission. These suggestions may be sup-
ported by a recent epidemiological study in urban Dar es 
Salaam, Tanzania, which demonstrated that people who 
sleep inside houses with complete window screening and 
under a bed net enjoyed a reduction in infection risk only 
if their evenings and mornings were also spent indoors 
[55]. Time spent outdoors in the evenings and time of 
leaving the house in the mornings rather than living in a 
quality house alone [56], appeared to matter significantly 
in determining human infection risk [55].

Host-seeking An. arabiensis and An. funestus were 
observed actively feeding at times when most local peo-
ple are usually outdoors engaged in different activities. 
Most outdoor activities in Valley of Kilombero occur on 
average before 22.00 and after 05.00 [29]. This overlap in 
time and space between mosquito and human activities 
increases the risk of human exposure to mosquito bites 
outdoors and consequently infection transmission [55]. 
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Fig. 4  The proportion of parous Anopheles arabiensis that were 
sampled biting across different hours of the night. a Represents 
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were released and recaptured in the semi-field system. Data points 
represent absolute proportion of parous biting at each hour and Bars 
represent the 95% confidence interval. X axis represents hour of the 
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This early evening biting peak of An. arabiensis is consist-
ent with a previous report from the same valley [29]. It is 
also consistent with results from other parts of Tanzania 
[57] and beyond [22]. The early morning peak biting by 
An. funestus may be reported for the first time in this set-
ting, however, similar observations have been reported 
elsewhere, including recent reports from West Africa 
[25, 58]. Early evening and morning outdoor exposure 
of humans to mosquito bites has epidemiological impor-
tance in terms of controlling transmission in this set-
ting, and possibly across sub-Saharan Africa and beyond 
[24, 59, 60] where ITNs and/or indoor residual spraying 
(IRS) remain the only interventions. New interventions 
should focus on disrupting malaria transmission beyond 
bedtime hours, specifically before and immediately after 
bedtime. Interventions such as insecticide-treated cloth-
ing, topical and spatial repellents [61–63], and the appli-
cation of ivermectin [64] should be trialled.

In the SFS, more parous were recaptured compared to 
nulliparous. Whether this implies parous mosquitoes to 
be more active and aggressive in feeding than nulliparous 
counterpart remains unclear. The few existing studies, 
for instance on Aedes albopitus, although demonstrat-
ing variations in feeding responsiveness between parous 
and nulliparous females, such responsiveness was found 
to vary with time, and so was time dependent [65]. There 
could be many factors that affect this. It may also be true 
that parity effect of feeding propensity is species-specific; 
more work is needed to confirm this. It is also not clear 

whether the sugar-feed colour marking approach affected 
the propensity of these mosquitoes to feed; the low 
recapture rate of 49% is unsurprising in the SFS which 
contains vegetation (Lwetoijera et al. unpublished).

The biting time phenotype outcome observed with 
wild population of An. arabiensis in the field and in semi-
field-reared An. arabiensis in the SFS was assessed to see 
if it compared well and thus genotype. The two mosquito 
populations, although of the same taxon and originated 
from the same valley and subject to variable environments, 
exhibited different biting tendencies. An. arabiensis in the 
SFS was observed to respond to and started biting heav-
ily immediately upon introduction of a human host in the 
semi-field in the evening and dropped to zero as the night 
progressed. To the contrary, the biting pattern of wild An. 
arabiensis in the full field was fairly distributed through-
out the night (Fig. 3). This difference could clearly be due 
to the differences in environmental conditions they were 
exposed to. Although a search for a blood meal is mainly 
triggered by a physiological process in the mosquito, to 
locate, respond and successfully attack a host can be influ-
enced by a number of environmental factors. These fac-
tors may include the distance between the host and the 
breeding site and the availability and accessibility of the 
host. Response to and successfully finding and attacking 
a host are the factors that are being measured in the field 
when characterizing behavioural phenotype outcomes of 
mosquito biting patterns [24, 25, 59, 66]. Therefore, the 
observed increasing early and outdoor biting behaviour 
by malaria vectors across sub-Saharan Africa and beyond 
[24, 25, 59, 66] may be described as driven mainly by phe-
notypic plasticity in response to variable environments, 
rather than to genetic change [67, 68].

This experimental design for addressing whether bit-
ing activity patterns observed in the field are influenced 
by genetic change or simply phenotypic plasticity of pre-
existing behaviour had some limitations. Both field and 
SFS trials were supposed to be conducted in parallel on 
the same night and ideally with the SFS build at the vicin-
ity of field collection so that the environmental variables 
between nights, such as temperature, humidity winds, 
moon light and cloud cover could also be controlled [69, 
70]. Despite these limitations, this variation in behav-
ioural outcomes observed between field and the SFS 
gives some insight into the role of availability and acces-
sibility of host in determining biting time phenotypes but 
does not fully explain the observed field biting activity.

Conclusion
The study has shown that mosquito biting time pheno-
type is not influenced by parity status. These findings 
imply that the risk of human exposure to potentially 
infectious bites is equally distributed throughout the 

Fig. 6  Distribution of the proportion of parous Anopheles arabiensis 
that were recaptured biting at each night of the study in the semi-
field system. Data points represent absolute proportion of parous bit‑
ing at each night of the study and Bars represent the 95% confidence 
interval. X axis represents night of the study
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night. The peak biting activity by An. arabiensis and An. 
funestus which is outside normal hours when people 
could access and use bed nets, calls for optimization of 
vector control approaches.
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