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Abstract 

Background:  The measure of new drug- or vaccine-based approaches for malaria control is based on direct mem‑
brane feeding assays (DMFAs) where gametocyte-infected blood samples are offered to mosquitoes through an 
artificial feeder system. Gametocyte donors are identified by the microscopic detection and quantification of malaria 
blood stages on blood films prepared using either capillary or venous blood. However, parasites are known to seques‑
ter in the microvasculature and this phenomenon may alter accurate detection of parasites in blood films. The blood 
source may then impact the success of mosquito feeding experiments and investigations are needed for the imple‑
mentation of DMFAs under natural conditions.

Methods:  Thick blood smears were prepared from blood obtained from asymptomatic children attending pri‑
mary schools in the vicinity of Mfou (Cameroon) over four transmission seasons. Parasite densities were determined 
microscopically from capillary and venous blood for 137 naturally-infected gametocyte carriers. The effect of the 
blood source on gametocyte and asexual stage densities was then assessed by fitting cumulative link mixed models 
(CLMM). DMFAs were performed to compare the infectiousness of gametocytes from the different blood sources to 
mosquitoes.

Results:  Prevalence of Plasmodium falciparum asexual stages among asymptomatic children aged from 4 to 15 years 
was 51.8% (2116/4087). The overall prevalence of P. falciparum gametocyte carriage was 8.9% and varied from one 
school to another. No difference in the density of gametocyte and asexual stages was found between capillary and 
venous blood. Attempts to perform DMFAs with capillary blood failed.

Conclusions:  Plasmodium falciparum malaria parasite densities do not differ between capillary and venous blood 
in asymptomatic subjects for both gametocyte and trophozoite stages. This finding suggests that the blood source 
should not interfere with transmission efficiency in DMFAs.
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Background
Despite recent progress towards disease control, malaria 
continues to affect 212 million people and kill 429,000 
persons per year [1]. In sub-Saharan Africa, Plasmodium 
falciparum remains the most important threat, account-
ing for most of the malaria mortality [2, 3]. Current 
control strategies aim at reducing malaria transmission 
through vector control interventions and appropriate 
diagnosis and treatment. There is currently no effective 
vaccine for malaria. The most advanced candidate, the 
RTS,S, has shown relative low efficacy and WHO has rec-
ommended pilot implementations before its deployment 
[4–6]. Several other vaccine candidates are under devel-
opment and among them transmission-blocking vaccines 
(TBVs) that target Plasmodium parasites within the mos-
quito, are in pre-clinical trials [7, 8]. The efficacy of TBVs 
at reducing or blocking transmission is measured by the 
reduction of the oocyst intensity and infection preva-
lence in mosquitoes through membrane feeding assays 
(MFAs) [8, 9].

In malaria endemic areas, transmission from human 
to mosquito occurs when a female Anopheles mosquito 
ingests gametocytes, the sexual stages, from peripheral 
blood while feeding. Thus, gametocytes represent a cru-
cial stage for transmission-reducing interventions (TRIs). 
However, transmissibility of gametocytes from naturally 
infected donors is complex and relies on multiple factors 
from the host, the parasite and the mosquito [10–12]. In 
a meta-analysis of previous studies, DMFAs were shown 
suitable for the evaluation of gametocyte infectiousness 
and different aspects that require optimization for larger 
scale screening of TBVs were discussed [11]. Differences 
in the gametocyte concentration or maturity between dif-
ferent blood compartments were pointed out as a puta-
tive source of variation in DMFAs.

In the present study, P. falciparum parasite densities, 
trophozoites (ring stages) and gametocytes, were com-
pared between capillary and venous blood samples from 
naturally-infected gametocyte carriers identified among 
pupils attending primary schools in Cameroon.

Methods
Ethics statement
All procedures involving human subjects used in this 
study were approved by the Cameroonian national eth-
ics committee (statements 2013/02/031/L/CNERSH/SP, 
and 2014/04/440/CE/CNERSH/SP). Participants were 
enrolled upon signature of an informed consent by their 
parent or legal guardian.

Study population
Participants in this study were recruited among asymp-
tomatic children aged from 4–15  years who attended 

primary schools in the area of Mfou (3°72N; 11°64E), a 
small city 30 km apart from Yaoundé, Cameroon. A total 
of seven schools were screened in the area. Parasitologi-
cal surveys were conducted in collaboration with the 
medical team of the local hospital during four consecu-
tive seasons of malaria transmission, short rainy seasons 
(April–May) and long rainy seasons (October–Novem-
ber) in 2013 and 2014.

Sample collection and parasite quantification
A thick blood smear from finger prick was performed 
to each volunteer attending school the day of collection. 
All blood smears were dried, stained with a 10% Giemsa 
solution for 20  min and then examined microscopically 
by qualified, experienced microscopists using a Leica® 
light microscope with a 100× oil-immersion objective. 
Asexual parasite-positive children were treated with an 
artemisinin-based combination therapy (ACT) according 
to national guidelines the day following the parasitologi-
cal survey. Blood collections for accurate quantification 
of parasites were performed to those identified as game-
tocyte carriers. Blood collections from mixed-infections 
were excluded from the study.

For each gametocyte carrier, thick blood smears were 
prepared simultaneously in triplicate using a standard-
ized blood volume of 5 µl. Capillary blood (CB) samples 
were collected by pipetting drops of blood from finger 
prick dispensed on a clean glass slide. Venous blood 
(VB), ~200 µl, was drawn from the antecubital vein into 
a dried Vacutainer® tube pre-warmed in an incubator at 
37  °C and 5  µl volumes were pipetted directly from the 
tube for the microscopy.

Blood smears were treated as described above and 
slides were blinded prior to microscopic examination, 
to avoid reading bias due to participant code or blood 
source. Parasite densities were determined by counting 
gametocytes against 1000 white blood cells (WBS) and 
asexual blood stages (ABS) against 500 WBS, assuming a 
standard number of 8000 WBS/µl of blood.

Data analysis
The datasets used for statistical analyses are included in 
Additional files 1 and 2.

Univariate analysis was realized by Chi square and 
Kruskal–Wallis tests. All 95% confidence intervals for 
mean were estimated by a bias-corrected and accelerated 
(BCa) bootstrap procedure (“boot” package). The rela-
tionship between sexual and asexual parasite counts was 
assessed using Spearman’s correlation.

An outcome variable (parasitaemia) was created by 
averaging individual triplicate measures to smooth a pos-
sible within-host variability. Parasite counts were highly 
skewed and discontinuous, so data were transformed into 
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an ordinal variable (none, low, high). Agreement among 
paired samples was tested using the Krippendorff’s alpha 
coefficient [13]. As proposed by Agresti [14], an ordinal 
response variable is usually analysed by cumulative link 
models, also known as ordinal regression models. To take 
into account the pairwise aspect of the data and a possi-
ble correlation effect on the dependent variable (parasite 
density), a cumulative link mixed models (CLMM) was 
used. Because the study was conducted in seven different 
sites requiring taking into account local malaria ende-
micity levels and a possible group effect, the village of 
inclusion was set as random intercept in each model. To 
compare the parasitaemia in capillary and venous blood, 
blood origin measures were adjusted on age and sex. The 
CLMM was fitted using the Laplace approximation and a 
probit link function. All analysis was performed in R 3.3.0 
[15] with the R package ‘ordinal’ (function ‘clmm’) [16]. 
To assess whether blood origin had an influence on the 
response variable, models were compared using Akaike 
Information Criterion (AIC), the difference in AIC from 
the top-ranked model (∆AIC) and the blood origin was 
considered as a significant predictor if P < 0.05.

Results
Malaria prevalence in the studied area
The parasitological surveys were conducted over 4 trans-
mission seasons from April 2013 to November 2014. 
Participants were pupils from 7 primary schools, aged 
between 4 and 15 years. A total of 4087 individuals were 

screened for parasite carriage by microscopic examina-
tion of thick blood smears from finger pricks. Results 
from the blood examinations provided data on the 
extent of the P. falciparum asymptomatic reservoir in 
this high malaria transmission setting. Microscopical 
readings identified 8.9% (364/4087) gametocyte carri-
ers and their distribution per season, age and school is 
given in Table 1. The proportion of gametocyte carriers 
was similar from one season to another (P = 0.116) but 
varied across schools (P =  0.05; Table  1). Plasmodium 
falciparum asexual parasites were detected in 51.8% 
(2116/4087) of thick blood smears. Mixed infections 
were identified for 2.8% (115/4087) of the blood smears. 
Infections with P. falciparum and Plasmodium malariae 
represented 94,8% (109/115) of the mixed infections, P. 
falciparum and Plasmodium ovale 4,3% (5 samples) and 
one blood smear contained the three species. The preva-
lence of P. falciparum gametocytes was not different in 
mixed species infections and in P. falciparum mono-
infections (P = 0.84). Presence of P. falciparum gameto-
cytes was recorded in 37.1% (135/364) of blood samples 
that had no P. falciparum asexual stages, which gives an 
overall P. falciparum prevalence of 55.1% (2251/4078).

Comparison of parasite carriage in capillary and venous 
blood
A total of 137 sets of samples, comprising each 6 blood 
smears, 3 from capillary blood and 3 from venous blood, 
were included for the analysis. Coefficient of variation for 

Table 1  Malaria prevalence data from the school screenings of asymptomatic individuals (N = 4087)

N, number of individuals screened; Pf, P. falciparum; Pm, P. malariae; Po, P. ovale; mixed, mixed species infections

N Gametocyte positive Asexual parasite positive (%)

Pf (%) Pf Pm Po Mixed

Transmission season

 Short rainy, 2013 766 10.6 54.3 2.1 0.1 1.7

 Long rainy, 2013 1086 8.2 51.3 4.7 0.3 3.5

 Short rainy, 2014 1008 9.7 49.4 2.6 0.1 1.9

 Long rainy, 2014 1227 7.8 52.6 4.5 0.5 3.7

Age

 04–05 980 10.5 55.6 4.4 0.4 3.6

 06–10 2129 9.6 53.3 3.9 0.2 2.8

 11–15 978 5.8 44.6 2.2 0.2 2.0

Village

 Ekali 1052 7.9 52.8 2.6 0.4 2.3

 Ekoko 209 6.2 53.1 6.2 0 4.3

 Essazok 259 7.3 49.4 1.9 0.8 1.5

 Koumou 419 12.2 47.7 2.6 0 2.1

 Metet 213 7.5 51.2 1.9 0 1.9

 Nkilzok 742 8.4 52.8 4.2 0.1 3.1

 Nkolnda 1193 10.1 57.2 5.3 0.4 3.9
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the three smears was 13.1 for CB and 13.0 for VB within 
the trophozoite series, and 34.5 for CB and 27.4 for VB 
within the gametocyte set of data. Participants were 
pupils from 7 different primary schools, aged between 
4 and 15  years. The median age of the participants was 
8 years (IQR [6–10]) and 21% were >10 years old. Among 
the 137 individuals, 71 were males and 66 females (sex-
ratio 0.92). The means of parasite densities in capillary 
and venous blood among asymptomatic infections are 
presented in Table 2.

The Krippendorff’s alpha coefficient was 0.741, indicat-
ing good reliability among paired samples. Then further 
analysis does not distinguish the source of the blood, 
data from VB and CB were pooled (n = 274). Means of 
parasite densities varied from 38 to 112 for sexual stage 
and from 285 to 14,699 for asexual stages. The analysis 
revealed a positive correlation between the estimated 
densities of asexual and sexual parasites (Spearman’s rank 
correlation =  0.162, P =  0.007; Figs.  1 and 2); the den-
sity of gametocytes increased as the density of asexual 
parasites does. Also, the mean parasite densities differed 
according to the village for both sexual and asexual stages 
(Fig. 1; Table 2).

Baseline characteristics used in the multivariate ordi-
nal mixed model are presented in Additional file  3 for 
gametocyte and asexual stage data. Parasite densities were 
grouped in 3 different classes. For gametocyte data, class 
0 corresponds to no gametocyte detected by microscopy. 
Indeed, at the day of blood collections, 4 (3%) volunteers 
had no more gametocytes neither in VB nor in CB, 3 (2%) 

had gametocytes only in one of the VB slides and 4 (3%) 
only in one CB slide. Results from the CLMM model are 
summarized in Table 3. There was no effect of blood ori-
gin on parasite counts when age, sex and village were con-
sidered in the model, not only for gametocytes (P = 0.98) 
but also for trophozoites (P = 0.47) (Table 3). The “tropho-
zoites” multivariate analysis showed a decrease of parasite 
densities with increasing age class: asexual densities were 
halved for the 6-10  years old (P =  0.18) and divided by 
3.45 for the 11-15 years old (P = 0.02). A model including 
“village” as a fixed effect better explained the variation in 
the parasite densities than a null model without random 
effect. The significance of the random intercept “village” 
(P = 0.002) in the trophozoite model (Table 3) indicates 
different asexual densities between the villages.

Gametocyte infectiousness for mosquitoes
Despite repeated efforts, DMFAs with capillary blood 
were not successful. Membrane feedings were performed 
using 150 µl of capillary blood for 11 gametocyte donors. 
The too small amount of blood (400 µl would be required 
to fill glass feeders) and the technical constraints to col-
lect capillary blood (that coagulates rapidly) did not allow 
to obtain good results: only 3 assays produced oocysts, 
but in a small number of mosquitoes: 1 infected mos-
quito with 1 oocyst out of 25 dissected, 1 mosquito with 3 
oocysts/32 dissected and 2 mosquitoes with 1 oocyst/18 
dissected.

Prevalence of infection in the 11 experiments was >40% 
when using venous blood and DMFAs were stopped.

Table 2  Mean of parasite densities in capillary and venous blood among asymptomatic infections harbouring gameto-
cytes at enrollment (N = 137)

Capillary blood Venous blood

Gametocyte mean [CI 95%] Trophozoite mean [CI 95%] Gametocyte mean [CI 95%] Trophozoite mean [CI 95%]

Sex

 F 102 [65–236] 5023 [2982–8505] 86 [59–163] 5499 [3277–9194]

 M 89 [66–129] 3429 [1817–6 993] 92 [68–139] 3626 [2099–7124]

Age

 04–05 58 [24–118] 10,590 [2061–27,549] 44 [22–85] 7839 [2338–18,672]

 06–10 106 [76–190] 4392 [2814–7035] 97 [71–150] 5150 [3 359–8 196]

 11–15 72 [50–106] 905 [467–2283] 82 [57–118] 1098 [565–2572]

Village

 Ekali 166 [98–401] 3478 [1678–8854] 141 [90–275] 4050 [2099–9951]

 Ekoko 29 [11–57] 574 [101–1379] 30 [11–51] 972 [55–2236]

 Essazok 65 [29–112] 653 [142–1954] 61 [28–123] 706 [155–1948]

 Koumou 63 [43–94] 3449 [1743–6913] 62 [43–94] 4330 [2065–9074]

 Metet 52 [31–78] 8089 [2678–18,980] 58 [35–94] 8626 [3110–20,302]

 Nkilzok 75 [42–146] 961 [580–1436] 75 [42–130] 1184 [717–1774]

 Nkolnda 110 [56–257] 9179 [3673–20,398] 113 [55–288] 8113 [3203–17,557]
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Discussion
This study aimed to compare densities of gametocyte and 
asexual stages between capillary and venous blood, and 
to measure the infectiousness of gametocytes from the 
different blood sources for mosquitoes.

Unfortunately, it has not been possible to assess 
whether the source of infectious blood matters for the 
infectiousness to mosquitoes in DMFAs. Indeed, blood 
taken from finger pricks was coagulating during collec-
tion and the amount required for DMFAs (400  µl) was 
too large. When using DMFAs to test transmission-
blocking vaccine candidates or for the evaluation of 
transmission-blocking interventions, large numbers of 
mosquitoes, over 30 mosquitoes per batch, are required 
to measure the efficacy of different drugs or vaccines, 
most often at different concentrations, and it will not be 
possible to obtain the necessary blood amounts (>3 ml) 
per assay from finger pricks. The major advantage of 
using capillary blood over venous blood was to avoid 
venipuncture and any discomfort at the site of puncture. 
The question about gametocyte infectiousness remains 
open and further molecular analysis at transcriptomic 

and proteomic levels may help deciphering whether bio-
logical differences exist between gametocytes accord-
ing to the blood source. The DFMA using venous blood 
from naturally infected parasite donors and the SMFA 
that allows mosquito feedings with cultured gametocytes 
then remains the reference methods to assess the impact 
of novel transmission-blocking candidates on gameto-
cyte infectivity.

In the present study, malaria parasite densities do not 
differ between capillary and venous blood in asymp-
tomatic subjects for both gametocyte and trophozo-
ite stages. Previous studies reported that blood films 
from capillary blood were more sensitive for the detec-
tion of asexual stages than that from venous blood [17, 
18]. However, Njunda et al. [17] found that parasitaemia 
among symptomatic patients were not different between 
the two blood sources. Ouédraogo et al. [18] performed 
thin blood smears among asymptomatic subjects and 
found that parasite densities expressed as the number of 
parasitized red blood cells were higher in capillary blood. 
But the small sample size and the absence of blood smear 
replicates in their study suggest a low statistical power. In 

Fig. 1  Comparison of P. falciparum parasite densities in capillary (CB) and venous blood (VB). a Trophozoite densities; b gametocyte densities. Data 
from N = 137 asymptomatic children carrying gametocytes at the time of inclusion and attending seven different schools. Parasite densities are 
shown on a logarithmic scale to take into account the skewed distribution of parasite counts
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the present study, blood smears were performed in trip-
licates and the CLMM model controls the “village” vari-
ability, which provides a greater power to confirm there 
is no difference in parasite densities between the blood 
sources.

Interestingly, in this study, gametocyte densities were 
significantly associated with asexual stage parasitaemia. 
Previous studies reported contrasting results and the 
relationship between sexual and asexual parasite densi-
ties is heterogeneous, depending on the epidemiological 
setting, age, haematocrit and malaria status (sympto-
matic versus asymptomatic) [19–22]. Here, asexual 
parasite densities decreased with age, within the 4–15 
age group, but no correlation was observed for age and 
gametocyte loads, which is in agreement with previous 
studies conducted in the vicinity of our studied area [23, 
24]. Densities of P. falciparum asexual stage parasites 
varied between the screened schools, which is also sug-
gested by significativity (P = 0.002) of the random effect 
(village) in the trophozoite model (Table  3), and this 
result may reflect biting heterogeneity, even at small geo-
graphical scales. Variation in malaria exposure between 
villages exists, due to the proximity to larval breeding 

sites, human behaviour or genetic factors, and it has led 
to the definition of hotspots of transmission [25–28].

Differences in gametocyte prevalence between the 
screened schools were observed, but not in the preva-
lence of P. falciparum asexual stages. This could result 
from a different malaria exposure in the different villages. 
Indeed, it has been previously reported that gametocyte 
carriage is higher in people exposed to lower mosquito 
infectious bites [29, 30]. Also, previous studies in symp-
tomatic subjects reported higher gametocyte carriage in 
mixed-infections [31]. In this study, prevalence of game-
tocytes was not different in mixed-infections and in P. 
falciparum mono-infections and this can reflect either a 
different epidemiological setting or a different relation-
ship in asymptomatic carriers.

Malaria parasite carriage was assessed among pupils 
from primary schools, one of the most vulnerable popula-
tions. A total of 55.1% of participants were infected by P. 
falciparum, a proportion similar to a previous study per-
formed in 2005–2006 in the same area [32]. This result 
highlights the importance of the asymptomatic reservoir 
in this studied area and poses challenges to future disease 
control strategies. Malarial infections were detected by 

Fig. 2  Relationship between gametocyte and trophozoite densities. The line indicates the best linear model and the shaded area the 95% confi‑
dence interval
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microscopic reading of thick blood smears. This method 
has theoretical detection limits of 4–10 parasites/µl and 
it obviously underestimates the real infection prevalence. 
Indeed, highly sensitive and specific PCR-based methods 
now permits a detection limit much lower than that of 
well-trained microscopists [33, 34]. However, molecu-
lar screening for parasites is particularly useful to detect 
submicroscopic infections in areas of low endemicity [22, 
35]. In a setting of high malaria transmission intensity 
such as in our studied area, submicroscopic infections 
contribute less to mosquito transmission [36]. Nonethe-
less the development of reliable molecular methods for 
the specific detection of mature gametocytes would be 
helpful to the implementation of DMFAs at a larger scale 
in laboratories from malaria endemic areas.

Conclusion
This study was conducted to better understand the 
variability observed in DMFAs and investigated differ-
ences in the gametocyte concentration between micro-
vasculature and vein. No significant differences in the 
gametocyte densities between capillary and venous 
blood was detected and this result suggests that the 
blood source, capillary or venous, should not interfere 

with transmission efficiency in membrane feeding 
experiments.
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