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Circulating microRNAs in malaria 
infection: bench to bedside
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Abstract 

Severe malaria has a poor prognosis with a morbidity rate of 80% in tropical areas. The early parasite detection is one 
of the effective means to prevent severe malaria of which specific treatment strategies are limited. Many clinical char-
acteristics and laboratory testings have been used for the early diagnosis and prediction of severe disease. However, 
a few of these factors could be applied to clinical practice. MicroRNAs (miRNAs) were demonstrated as useful bio-
markers in many diseases such as malignant diseases and cardiovascular diseases. Recently it was found that plasma 
miR-451 and miR-16 were downregulated in malaria infection at parasitic stages or with multi-organ failure involve-
ment. MiR-125b, -27a, -23a, -150, 17–92 and -24 are deregulated in malaria patients with multiple organ failures. Here, 
the current findings of miRNAs were reviewed in relation to clinical severity of malaria infection and emphasized that 
miRNAs are potential biomarkers for severe malaria infection.
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Background
Malaria is a life-threatening arthropod-borne disease 
with high fatality rate in tropical countries. Almost 
one million patients with severe malaria are dying 
a year in the world [1]. The disease is caused by five 
distinct species of protozoa, namely Plasmodium fal-
ciparum, Plasmodium malariae, Plasmodium ovale, 
Plasmodium vivax or Plasmodium knowlesi. A major-
ity of malaria infections are caused by P. falciparum 
(over 90%), followed by others species [2–5]. The 
2000 World Health Organization (WHO) malaria case 
classification categorized the severity of malaria into 
severe (P. falciparum) and uncomplicated malaria [6, 
7]. Diagnosis of severe malaria is evaluated if the con-
dition is caused by P. falciparum infection with one 
or more of the followings: coma (cerebral malaria), 
metabolic acidosis, organ failure, and severe anaemia 
[8, 9]. High-risk factors for severe malaria are non-
immune patients, immune-compromised patients, and 
those with a high burden of malaria parasites. A rapid 

increase of parasites in blood is the associated finding 
with severe malaria [10]. Thus, early parasite detection 
and the immediate start of treatment are key events 
to reduce severe form in malaria patients [11]. Micro-
scopic examination of blood films, antigen detection, 
and molecular testing has been standard methods to 
detect malaria infection [7, 12]. Nowadays, microar-
ray analysis and miRNA approach have helped many 
researchers to understand the relationship between 
dysregulation of miRNA and many infectious diseases 
[13–20].

MicroRNA assay need only a small amount of blood 
with less invasive sampling [21]. Furthermore, miRNAs 
have high sensitivity and specificity for the diagnosis of 
various disorders. Circulating miRNA carry the poten-
tial to predict the severe outcome and to improve patient 
care in malaria patients. This review describes circulat-
ing miRNAs as potential biomarkers for severe malaria 
infection.

Type of miRNAs and limitations
The miRNAs testing started as the analysis of miR-
NAs obtained from cells or tissues. Recent studies have 
shown that many human body fluids contained miRNAs. 
Thus, body fluids are analysed as possible biomarkers to 
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demonstrate the relationship between miRNAs and dis-
ease severity. There are still controversies about suitable 
sources to augment the usefulness of miRNAs as bio-
markers [22, 23].

Cellular miRNAs
MiRNA was firstly extracted from Caenorhabditis 
elegans tissues [24]. It is short nucleotides with 18–25 
single-stranded RNA [25, 26]. The miRNA genes are 
located mainly in the non-coding region of the genome 
and are firstly transcribed to primary microRNAs (pri-
miRNAs) [27, 28]. The miRNA was a synthesis in the 
nucleolus/cytoplasm and some released from apoptotic 
cells (Fig.  1) [25, 29, 30]. The early studies on miRNAs 
were done using organ or biopsy tissue. The limitation of 
testing may relate to tissue type, volume and extraction 
method. The discovery of miRNAs as promising disease 
biomarkers either in the blood or plasma was a break-
through [31].

Circulating miRNAs
Circulating miRNAs were studied in both plasma and 
serum. Mitchell et  al. [32] found that good stability of 
miRNAs as the useful biomarker in both sample types. 
More recent studies have investigated their relationship 
between the pathophysiology of disease, in particular in 
malignancy or cardiovascular diseases [22, 33]. Mitch-
ell et  al. [32] also demonstrated that plasma contained 
miRNAs, and had functions to control gene expression. 
The correlation between circulating miRNAs and tissue 
miRNAs was found in this study. They also noted that the 
levels of circulating miRNAs were high enough to analyse 
using patient plasma.

Plasma miRNAs are circulating in four different molec-
ular forms [34]. The first is microparticle (MP) miRNAs. 
Microparticles are vesicles with sizes of 100–1000  nm, 
produced from the cell surface by budding of the outer 
cell membrane. Both miRNAs and MP might act together 
to regulate immune status [35]. The second form is 

Fig. 1  Biogenesis and apoptotic bodies of miRNAs. a The miRNA genes are located mainly in the non-coding region of the genome and are firstly 
transcribed to primary microRNAs (pri-miRNAs). b Drosha enzyme cut pri-miRNAs to precursor microRNAs (pre-miRNAs) (45–140 nt) [25]. c Pre-
miRNAs are transferred out of the nucleus with Exportin 5 and are digested at the hair pin loop part of pre-miRNA with Dicer. d The miRNA–miRNA* 
duplexes are split into two asymmetric strands. Mature single strand miRNAs are finally bound to miRNA-induced silencing complex (miRISC) [29]. e 
MiRNAs suppress the expression of the target genes via mRNA cleavage or translation repression. The functions of miRNAs are involved in develop-
ment, differentiation, and apoptosis of the cells [30]
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exosome miRNAs. Exosomes are released from multi-
vesicular bodies and contain DNA, mRNA, proteins as 
well as miRNAs [34]. The size of exosome is 50–100 nm. 
The third form is miRNAs in apoptotic bodies of 1–5 μm 
produced in the apoptotic process of various cells. The 
fourth form is a protein or lipid-bound form including 
argonaute2 (Ago2) and high-density lipoprotein (HDL). 
All forms of miRNAs are stable in circulation, especially 
MP or exosome-included miRNAs [34, 36]. The levels 
of miRNAs in serum, saliva, and urine are lower than in 
plasma [37]. Therefore, saliva and urine sources of miR-
NAs need to use a large volume of sample to extracted 
miRNAs [36].

Kirschner et  al. [38] described haemolysis of cells 
related to increasing of miRNAs level, which led to false 
negative findings to evaluate the levels of red blood cell-
derived miRNAs. These effects were detectable in blood 
samples drawn from healthy individuals or in samples 
with delayed blood separation. Another factor to modify 
miRNA levels in plasma was co-extraction of cellular 
miRNAs from blood cells or cell debris. Membrane filters 
with low protein binding affinity were recommended, 
although the timing of filtration was still debated. In 
the case of unavailable tissue samples, it is a useful solu-
tion to detect miRNAs in blood or plasma samples. The 
analysis of circulating miRNAs is less invasive than tis-
sue biopsy. Thus, these new molecules have been used in 
many diseases as the new biomarkers such as malignant 
diseases and cardiovascular diseases [39–41]. However, 
the knowledge about the usefulness of miRNA in infec-
tious diseases is still not enough.

MicroRNAs in infectious diseases
The evidence for interaction between host and pathogens 
via the miRNA pathway was documented in mammal 
infectious diseases [13]. Nukui et al. reported that miR-
NAs encoded by human herpesvirus 6A (HHV-6A) mod-
ulated the function of mammal cells. They demonstrated 
candidate miRNAs (miR-U86) regulating lytic replication 
of HHV-6A gene U86 [42]. Umbach et  al. showed the 
latency associated transcript (LAT) was primary miRNA 
precursor to control four distinct miRNAs in herpes 
simplex virus. They reported miR-H2-3p related to viral 
HSV-1 replication by controlling viral gene expression at 
the latent period of infection [43]. Hook et al. found miR-
UL112-1 related to viral target factors (UL114), which 
regulated cytomegalovirus to attach hematopoietic stem 
cells in bone marrow for reactivation and replication. 
Cytomegalovirus used miR-UL148D-1 and miR-UL112-1 
to the target gene with the function of immune evasion. 
This action used RANTES, a chemokine to augment 
immune cells to infection site and prevented the attack 
from NK cells to infected cells [44].

For an infection that can lead to cancer, there were two 
studies identified the relationship between viral infection 
and malignancy. Motawi et al. and Bandiera et al. showed 
a similar result that hepatitis C virus (HCV) had miR-34 
and miR-122 related with a chronic condition and more 
tendency to turn to hepatocellular carcinoma [14, 45]. 
Two candidate miRNAs can stimulate hepatocytic differ-
entiation and cholesterol/fatty acid synthesis. Liver finally 
developed into fibrosis stage and malignancy at the high 
prevalence rate. The human miRNA profile is a useful 
tool for the diagnosis of organ dysfunction or infection, 
as well as malignancy. However, all studies were investi-
gated for virus group in both pathophysiology and prog-
nosis of diseases [13, 14, 42–45]. There were only limited 
studies on other infectious diseases, especially tropical 
diseases.

Tropical diseases and miRNAs
The majority of miRNAs studies on tropical diseases 
were done in schistosomiasis, leishmaniasis, crypto-
sporidium, and toxoplasma infection. Firstly, He et  al. 
and Zhu et al. identified miR-223 and miR-454 as impor-
tant molecules, respectively, for pathogenesis in schisto-
somes infection [16, 46, 47]. The miR-223 had a function 
as the transcription regulator, transcription factor activ-
ity, DNA binding, and a role of miR-454 in progression 
via the TGF-β/Smad4 pathway in this parasite [16, 47]. 
In Leishmania infection, Geraci et al. demonstrated that 
the dysregulation of miR-21 and miR-146b-5p that were 
associated with L. donovani-infected monocyte-derived 
dendritic cells. Two miRNAs act via the tumor growth 
factor-beta (TGF-β) signaling pathway [18]. For proto-
zoa infection, they found that decreased miR-221 levels 
were indicative of Cryptosporidium parvum infected 
epithelial cells with luciferase activity assay [19]. Saçar 
et al. [20] also reported that miR-328 levels relate to toxo-
plasmosis infection in human. The discovery of many 
parasite-specific miRNAs profiles can be used to apply in 
clinical practice. Cryptosporidium spp. and Toxoplasma 
spp. are Apicomplexa parasites, related to Plasmodium 
[48]. However, there has been a little body of knowledge 
of clinical applications of miRNAs in malaria infection.

Malaria and miRNAs
Identification of potential miRNAs and malaria infection
Malaria-infected RBCs can develop in malaria parasites 
compose with two asexual stages in human (blood steam 
and liver) and sexual stage in the mosquito. In human, 
these parasites invade into human red blood cells (RBCs) 
until the mature parasite sequestration using cytoad-
herence ligand of P. falciparum Erythrocyte Membrane 
Protein-1 (PfEMP-1) [49, 50]. Splenic macrophages are 
the main of clearance of malaria from blood circulation. 
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The miRNA possibly helps malaria to invade and grow 
in RBCs via escape from immune responses and defect 
of opsonization by circulating macrophage [49, 51–53]. 
Analysis of plasmodium genome demonstrated more 
than 500 genes [54]. Two groups reported that P. falcipa-
rum did not have miRNA-sequences in parasite genome 
[50, 55]. They made a clone of all RNAs from a mixed 
stage of malaria-infected RBCs and then tested with bio-
informatics method. It showed no matching between 
those cloned sequences and miRNA structures. There 
has been no study showing the presence of RNAi-family 
[siRNA, miRNAs, repeat-associated small interfering 
RNAs (rasiRNAs), and PIWI-interacting RNAs (piR-
NAs)] according to the stage of the parasite. In some 
infectious diseases, interactions between host miRNA 
and pathogen gene, or vice versa, were reported. For 
examples, human miRNAs including miR-223 suppress 
human immunodeficiency virus-1 (HIV-1) mRNA [56], 
Epstein-Bar virus miRNA: miR-BHRF1-3 targets human 
interferon (IFN)-inducible T cell-attracting chemokine 
(CXCL11) gene expression [57], and human miR-122 
targets to hepatitis C virus (HCV) RNA [58]. However, 
it is still not known whether human miRNA interacts 
with malaria mRNAs. Further examination may bring the 
miRNA-based diagnosis or therapeutic approaches. The 
posttranscriptional gene silencing in Plasmodium para-
sites changes alternative pathways other than miRNAs. 

The possibility is that Plasmodium is utilizing host miR-
NAs to regulate their gene expression [49, 59, 60].

The correlation between reported miRNAs was 
reviewed according to malaria parasite species (Table 1). 
For P. falciparum malaria, Rathjen et  al. found that the 
block of miR-451 synthesis pathway by knocking out 
Ago2 which produces mature miR-451 resulted in the 
development of severe anaemia in mice [55]. Similar to 
the previous study that miR-451 is an essential molecule 
for erythroid cells since miR-451 was up-regulated during 
human erythroid differentiation [61]. Xue et al. [50] also 
showed that 36 clones of miRNA were found in infected 
erythroid cells, not in malaria parasite and the majority 
of genome composes with 80–90% of A-T rich sequence 
in P. falciparum parasites. Both studies did not found any 
Plasmodium specific miRNAs; those might be an effect 
from cells culture method. In erythroid cells, LaMonte 
et al. and Chapman et al. found that the levels of miR-233 
and miR-451 were high in these parasite-infected cells 
when compared with normal [49, 62]. They suggested 
that impaired growth of parasites might be resulted 
from a block of mRNA translation by miR-451 and miR-
223 in human red blood cells. Thus, Rathjen et  al. and 
Xue et  al. demonstrated that parasite could diminish 
miR-451 level in serum, but be accumulated in Plasmo-
dium-infected RBCs. Similar to Chamnanchanunt et  al. 
observed the lower levels of miR-451 and -16 in serums 

Table 1  Summary of discovery miRNAs among patients and animal experimental studies

Author/(reference) Year Study population Down regulation Up regulation

Human specimen

 Rathjen et al. [55] 2006 P.f. parasite in cell culture miR-451: significantly accumulated in infected RBCs

 Xue et al. [50] 2008 P.f. infected in human erythroid cells miR-451, let-7b, miR-16, miR-91, miR-142, miR-144, let-7a, let-7f, miR-92, 
miR106: identified form infected RBCs

 LaMonte et al. [49] 2012 HbAS and HbCC RBCs with p. f. – miR-451 and miR-223

 Chamnanchanunt et al. [63] 2015 Patients with p.f. and p.v. infection miR-451 and miR-16 (plasma of p.v. 
patients than p.f. patients)

–

 Chamnanchanunt et al. [64] 2015 Patients with malaria infection miR-451 and miR-16 (RBCs of p.v. 
patients)

–

Animal specimen

 Delic et al. [68] 2011 P. chabaudi infected in mice model miR-10b, let-7a, let-7 g, miR-
193a-3p, miR-192, miR-14205p, 
miR-465d, miR-677, miR-98, miR-
694, miR-142-5p, miR-465d, miR-
677, miR-98, miR-694, miR-374, 
miR-450b-5p, miR-464, miR-377, 
miR-20a, miR-466d-3p: (in liver)

miR-26b, miR-M23-1-5p, miR-1274a: 
(in liver organ)

 El-Assaad et al. [69] 2011 P. berghei infected in mice model – let-7i, miR-27a, miR-150 (in brain 
organ)

 Al-Quraishy et al. [67] 2012 P. chabaudi infected in mice model miR-194, miR-192, miR-193A-3P, 
miR-145, miR-16, miR-99A, miR-
99B, miR-15A, miR-152, let-7G, 
let-7B, miR-455-3P: (in spleen and 
liver)

–
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from 22 P. vivax patients than non-infected subjects [63]. 
This group also found downregulation of miR-451 and 
-16 in red blood cells of P. vivax patients [64]. Reducing 
miR-451 relates to Ago2 in extracellular vesicles (EVs) to 
stimulate oxidative damage in infected-RBCs [65]. Inter-
estingly, Baro et al. [66] demonstrated that miR-221/222, 
-24 and -191 were decreased in bone marrow in P. vivax 
malaria patients. The numbers of P. falciparum patients 
need to more large scale study.

For an animal model of demonstration parasite induces 
organ failure, mice infected with P. chabaudi malaria 
showed that 12 common miRNAs were downregulated in 
spleen and liver tissues [67]. A study by Delic et al. found 
three miRNA species upregulated and 16 miRNA species 
downregulated [68]. These findings suggested that miR-
NAs might be reprogrammed to minimize disease sever-
ity after infection. Knowledge of the interaction between 
falciparum parasite and the human genome could be 
valuable in malaria control. Furthermore, a study by El-
Assaad et  al. found that mouse with cerebral malaria 
had overexpression of miR-27a, miR-150, and let7i lev-
els in brain tissue compared to a mouse with no cerebral 
malaria [69]. Thus, miRNAs would have significant roles 
as biomarkers to predict early host responses and prog-
nosis of malaria infection.

The knowledge of miRNAs as possible disease biomark-
ers in blood is a promising breakthrough especially the 
patients with malaria infection. For practical use, the dis-
ease criteria for severe falciparum malaria were applied 

to identify severe falciparum malaria patients from non-
severe form [70] (Table 2). The relationship between can-
didate miRNAs and severe falciparum malaria is not yet 
clearly understood, and this might help to predict early 
critical patients.

Candidate miRNAs in severe malaria 
with multi‑organ failure
Acidosis severe malaria
Patients with severe malaria infection develop acidosis 
as a serious complication [71]. It comprised with vari-
ous mechanisms directly target the redox status and tis-
sue hypoxia. Grosso et  al. and Ivan et  al. showed that 
miR-210 led to augmented hypoxia-inducible factor 
(HIF)-dependent transcriptional regulation and hypoxic 
condition [72, 73]. Further study needs to underline the 
mechanism of miR-210 in the area of malaria infection.

Pulmonary complications
Acute respiratory distress syndrome (ARDS) is the major 
complication of severe malaria [6, 74]. ARDS is the defect 
of gas exchange on the lung and pulmonary/alveolar cap-
illary permeability [6, 75]. Sun et al. found that low lev-
els of miR-181b in patients with ARDS, which regulates 
NF-kB, mediated vascular inflammation of the lung [76]. 
Guo et  al. observed that miR-125b was downregulated 
in ARDS patients. MiR-125b was reported to be related 
LPS-induced lung injury [77].

Table 2  Criteria for severe or complicated falciparum malaria infection [4–7] and candidate miRNAs

ARDS Acute respiratory distress syndrome, DIC Disseminated intravascular coagulopathy, G6PD glucose-6-phosphate deficiency, n.a. not available data, HIF hypoxia-
inducible factor, LPS lipopolysaccharide, EFNA3 epihrin-A3, NP1 neuronal pentraxin

Categories Clinical or laboratory to diagnosis condition Postulated miRNAs Mechanism

Acidosis/acidemia Artrial pH <7.3 or presence of acidosis miR-210 HIF-dependent trasncriptional regulation

ARDS or pulmonary edema The acute lung injury from noncardiogenic causes miR-181b NF-kB mediated vascular inflammation

miR-125b LPS-induced lung injury

Cerebral malaria Imparied consciousness or seizures miR-210 Regulation of the revascularization

miR-27a, miR-23a Brain activation by EFNA3, NP1

miR-150 Stimulate angiogenic factors

Renal failure Urine output <0.4 ml/kg/hour or serum creatinine 
>3.0 mg/dl

miR 17–92 Renal progenitors and renaly dysfuntion

miR-24 Apoptosis regulation

Ongoing investigation

 Anemia Haemoglobin ≤8 g/dl n.a. –

 Shock Blood pressure <90/60 mmHg with the sign of cold, 
clammy extremities

n.a. –

 DIC The presence of DIC phenomenon or spontaneous 
mucosal bleeding

n.a. –

 Hyperparasitemia Presence of parasitized erythrocytes >10% n.a. –

 Hypoglycemia Presence of blood sugar <40 mg/dl n.a. –

 Macroscopic hemoglobi-
nuria

The presence of hemolysis in the patients without 
G6PD deficiency

n.a. –
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Neurological complications
Cerebral malaria is the condition of alternation of con-
sciousness due to parasite sequestration and brain 
hypoxia [78]. The hypoxic condition occurs as the results 
from apoptosis, microvascular occlusion, cytoadhe-
sion from parasitized RBCs aggregates in brain ves-
sels, and then lead to high lactate levels in cerebrospinal 
fluid, hypoperfusion or constriction of small vessels [69]. 
Lou et  al. reported the upregulated levels of miR-210 
(involved in the regulation of the revascularization) in 
hypoxic condition. Sabirzhanov et al. showed downregu-
lated miR-23a and miR-27a that injured cortex after trau-
matic brain injury [79, 80]. He et  al. [17] demonstrated 
that high levels of miR-150 in the brain during cerebral 
ischaemia that could directly regulate the angiogenic 
factors. Moreover, a hypoxic condition induced upregu-
lation of miR-210 in the patients with malignancy and 
cerebrovascular diseases [81]. The explanation of miR-
210 in hypoxia-induced acidosis related to the action of 
Ephrin-A3 (EFNA3), and neuronal pentraxin 1 (NP1) 
in the brain. Another study by Krupinski found that 
miR-120 levels have a positive correlation between an 
encephalopathy with lactic acidosis patients [82]. These 
reports showed that miRNAs are relevant biomarkers for 
brain damage. There are no observations yet on miRNAs 
involved in brain malaria patients.

Renal complications
Kidney failure is a common complication in severe 
malaria patients [6]. The mechanism to develop renal 
damages composes with multiple factors (cytoadherence 
from infected RBCs leads to obstruction, hypovolaemia 
from body fluid loss and host immune responsiveness) 
[83]. Marrone et al. found that down-regulation of miR-
17–92 related to renal progenitors and renal dysfunc-
tion in adult mice with acute nephropathy [84]. Lorenzne 
et al. [85] demonstrated that high levels of miR-24 in the 
ischemic kidney mice. The effect on apoptosis regula-
tion is an explanation for this miRNAs action. However, 
the significant miRNAs relate to renal dysfunction after 
malaria infection is not defined.

Summary and perspectives
The optical microscopic examination is still the gold 
standard to detect malaria parasites. This method is 
straightforward and cheap. There are no currently avail-
able diagnostic techniques to predict the malaria sever-
ity that is very important for saving patient’s life. The new 
technology has more potential to help the physicians to 
manage severe malaria is recommended. New investigate 
applied into tropical diseases such as malaria infection. 
In  vivo study of malaria infection was turn into clinical 
application. In addition, as a biomarker, it would have 

prognostic value, especially in early host responses. The 
objective of this review literature is to systematically 
review the available data on the relevance of candidate 
miRNAs among both in vitro and in vivo malaria study.

A useful biomarker has to be an investigation, with 
high sensitivity, non-invasive and applicable to clinical 
management. There are more studies about miRNAs as 
a biomarker in many diseases, most of them related to 
malignant and cardiovascular diseases. For tropical infec-
tious diseases, the knowledge of miRNAs raises to fill to 
explain the pathophysiology of diseases. The knowledge 
of miRNAs in malaria infection is still not enough if 
compared with antimalaria drug trial. The more studies 
were required to answer, (1) biomarker to predict malaria 
severity and further predictor, (2) development of the 
new treatment directed to malaria life cycle. Further 
studies will perform to fill the gap between bench and 
bed by accumulating knowledge in serious complications 
among malaria patients.
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