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Modelling the implications 
of stopping vector control for malaria control 
and elimination
Joshua O. Yukich1† and Nakul Chitnis2,3*† 

Background:  Increasing coverage of malaria vector control interventions globally has led to significant reductions in 
disease burden. However due to its high recurrent cost, there is a need to determine if and when vector control can 
be safely scaled back after transmission has been reduced.

Methods and findings:  A mathematical model of Plasmodium falciparum malaria epidemiology was simulated to 
determine the impact of scaling back vector control on transmission and disease. A regression analysis of simulation 
results was conducted to derive predicted probabilities of resurgence, severity of resurgence and time to resurgence 
under various settings. Results indicate that, in the absence of secular changes in transmission, there are few scenarios 
where vector control can be removed without high expectation of resurgence. These, potentially safe, scenarios are 
characterized by low historic entomological inoculation rates, successful vector control programmes that achieve 
elimination or near elimination, and effective surveillance systems with high coverage and effective treatment of 
malaria cases.

Conclusions:  Programmes and funding agencies considering scaling back or withdrawing vector control from previ-
ously malaria endemic areas need to first carefully consider current receptivity and other available interventions in a 
risk assessment. Surveillance for resurgence needs to be continuously conducted over a long period of time in order 
to ensure a rapid response should vector control be withdrawn.
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Background
The World Health Organization (WHO) Global Malaria 
Programme’s policy of universal coverage of long-lasting 
insecticidal nets (LLINs) and/or indoor residual spray-
ing (IRS) of people living in areas of malaria transmis-
sion, has led to large increases in global coverage of 
vector control and consequently to large decreases in 
malaria cases and deaths [1–3]. This increase in cover-
age, however, is expensive and many national malaria 
control programmes rely on international donors to sup-
port the financial costs of vector control implementation. 
With uncertainty over domestic and global financing, 

especially after malaria burden has been substantially 
reduced, control programmes may consider reducing 
funding for vector control. In this context it is critical to 
understand the probability of occurrence and potential 
severity of any resurgence of malaria, after a reduction in 
coverage of vector control interventions.

Few published studies and no randomized control trials 
have specifically investigated vector control withdrawal 
or reduction either before or after local elimination, 
although there is at least one randomized control trial 
currently underway, in South Africa (Pers. com. Immo 
Kleinschmidt). Cohen et  al. conducted a systematic 
review of the published and grey literature to identify 
events of malaria resurgence [4], defining resurgence as 
“an increasing trend in malaria incidence or prevalence 
following suppression achieved through implementation 
of control efforts.” They identified 75 resurgence events in 
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61 countries from the 1930s through the 2000s, of which 
91% involved weakening of the control programme, 
largely consisting of reduction in the level of vector con-
trol effort or outright vector control withdrawal. Reduc-
tions in funding was the most common specifically cited 
reason for the weakening of the control programme in 
question (49%). They state that:

Reasons for funding reductions or cessation were 
not clear for all events, but in several, donors 
appear to have reallocated funding specifically 
because successful reductions in malaria burden 
had occurred. [Emphasis ours]

Other recent studies in Zambia and Benin have also 
shown that withdrawal or relaxation of vector control 
efforts can lead, over short time periods, to resurgences 
in malaria prevalence, clinical incidence and transmis-
sion [5, 6]. The Cohen et al. review makes it clear that 
reductions in funding and weakening of control pro-
grammes, especially the withdrawal of vector control, 
are strongly associated with resurgence. However, it 
only examined events where resurgence did occur, and 
did not include cases where vector control interventions 
were withdrawn with no resurgence. A full picture of 
the risk of reductions in vector control effort or with-
drawal must also consider the potential for resurgence 
not to occur after reductions in or withdrawal of vector 
control.

There is extensive experience with the scale back of 
vector control in near elimination or post local elimina-
tion settings; however only one published controlled 
study was found where withdrawal of vector control 
occurred in a setting in which elimination was not 
achieved and no resurgence was reported [7]. In that 
study, which was conducted in a low transmission area 
with highly zoophilic vectors, IRS with deltamethrin was 
delivered for approximately 3 years at high intensity and 
then withdrawn after the annual parasite index (API) 
fell by nearly 90% to below one per 10,000 per year, with 
follow-up studies conducted over a period of 10 years. 
Although the authors reported no resurgence, API and 
the slide positivity rate returned to levels comparable to 
an un-sprayed control area by the end of the study—but 
only after a period of nearly 10  years. (However, vector 
abundance measures returned to comparable levels to 
the control areas after only approximately 5  years).

In near elimination settings during the Global Malaria 
Eradication Programme (GMEP), transition from the 
“attack” (universal coverage with vector control interven-
tions) to “consolidation” (withdrawal of universal vec-
tor control and reliance on surveillance and focal vector 
control) programme phases was advocated once a pro-
gramme reached an incidence of infection consistent 

with local transmission interruption. Initially, the pro-
gramme had determined a combined set of criteria of a 
local API less than 5 per 10,000 per annum and annual 
blood examination rate (ABER) greater than 10%, levels 
thought to be consistent with interruption of local trans-
mission. These criteria were later revised to advocate for 
transition to the consolidation phase only when API fell 
to less than 1 per 10,000 per annum, because practical 
experience in the field suggested that the higher thresh-
old resulted in substantial occurrences of resurgence, 
possibly due to bias in programme reporting of surveil-
lance coverage [8–10]. These criteria may be appropriate 
in lower endemicity settings but have not been tested in 
higher endemicity African settings where the GMEP was 
largely absent.

A recent review of post malaria elimination transmis-
sion data indicated that in many countries which had 
successfully eliminated malaria, the risk of re-emergence 
of endemic malaria transmission was low and that the 
reproductive number for malaria in these locations had 
generally fallen dramatically post-elimination. This seems 
to have occurred despite the fact that much malaria vec-
tor control had not been indefinitely sustained [11]. 
While postulating that these changes might be caused 
by successful malaria elimination, the review also high-
lighted the fact that countries with successful elimina-
tion were different in many background characteristics 
than those countries which did not eliminate but only 
controlled malaria. Additionally, of the thirty countries 
with enough data to estimate reproductive numbers after 
elimination in this study, none were located in sub-Saha-
ran Africa.

Whether or not vector control can be scaled back or 
withdrawn after local elimination (even sub-national 
elimination) largely depends on assessment of the risk of 
re-establishment of endemic malaria transmission or the 
malariogenic potential of the area [8, 9, 12]. This assess-
ment in turn depends largely on whether significant 
importation risk (vulnerability) and transmission risk 
(receptivity) remain.

Additionally, the decision to safely scale back vector 
control in areas with historical malaria transmission and 
high coverage of vector control interventions requires 
the definition of a set of indicators which can specifically 
identify locations and times in which the scaling back 
of vector control might be safely undertaken. It further 
requires an understanding of the precision and bias asso-
ciated with these measurements on estimates of the risk 
of resurgence following the scale back of vector control.

Although mathematical and simulation models of 
malaria have been used extensively to improve under-
standing of malaria transmission and to compare the 
effectiveness and cost-effectiveness of current and 



Page 3 of 16Yukich and Chitnis ﻿Malar J  (2017) 16:411 

new interventions, they have focused on the impact of 
increasing the coverage of interventions and not on 
decreasing the coverage, as is considered here. This 
manuscript outlines the use of Monte Carlo simulation 
methods and mathematical models of Plasmodium fal-
ciparum malaria transmission (OpenMalaria) to address 
the above questions. Although simulations were only 
run for P. falciparum transmission, the implications for 
Plasmodium vivax transmission are considered in the 
Discussion.

Methods
Outline
OpenMalaria is an open source simulation platform, con-
sisting of an ensemble of models of malaria in humans 
integrated with a model of malaria in mosquitoes, that 
allows the comparison of the effectiveness and cost-
effectiveness of current and planned control interven-
tions in various settings [13]. The ensemble of stochastic 
individual-based models for malaria in humans, using 
a discrete time step of 5  days, have been fit to multiple 
field data sets, and include detailed aspects of malaria 
dynamics, such as demography; acquired immunity and 
super-infection; variations in parasite densities and infec-
tiousness to mosquitoes within humans; and the clinical 
effects of malaria [14–16]. The population-based dis-
crete time model for malaria transmission in mosqui-
toes includes multiple mosquito species, heterogeneity 
in human hosts, nonhuman hosts, and seasonality [17, 
18]. Additional details of the models can be found in the 
references above, or on the OpenMalaria website [13], 
which also provides a link for downloading software to 
simulate the model with the baseline parameterizations 
provided in the Additional files 1 and 2.

Simulations of these models determined the effects 
of scaling back from universal coverage of vector con-
trol interventions, specifically long-lasting insecticidal 
nets (LLINs). Simulations were run with multiple ran-
dom seeds to include the effects of stochasticity; differ-
ent model versions to include uncertainty in underlying 
model assumptions; and multiple parameterizations to 
allow for various assumptions of base (pre-intervention) 
transmission level, coverage of indoor vector control 
interventions, rate of imported infections, and coverage 
of case management and mass treatment interventions. 

The outputs of the simulations include the number of 
episodes of uncomplicated malaria, and the probability of 
resurgence following the scaling back of vector control.

Baseline parameterizations of an African setting (based 
on western Kenya) and a Western Pacific setting (based 
on the Solomon Islands) were created that described the 
bionomics of mosquito vectors and the seasonal profile 
of transmission for those locations. Numerical simula-
tions were run for a population of 10,000 humans of 
these baseline scenarios, and of scenarios with different 
coverage levels of vector control and active case detec-
tion interventions and varying levels of pre-intervention 
transmission, imported infections, and case manage-
ment coverage. A population size of 10,000 humans was 
selected because it is large enough to account for sto-
chastic variation in clinical incidence.

The model was run for one human life span where 
humans are subjected to a periodically varying pre-inter-
vention entomological inoculation rate (EIR) to induce 
malaria immunity in the human population and to esti-
mate the mosquito emergence rate that leads to this EIR. 
After this warm-up period and a short stabilizing period, 
deployment of LLINs to humans occurs through four 
mass distribution campaigns, repeated every 3  years. 
Coinciding with the last deployment of nets, quarterly 
mass screen and treat campaigns simulate active case 
detection in the population for the remainder of the sim-
ulation. A schematic of the generic simulation scenario is 
shown in Fig. 1.

Monthly measurements of the annual EIR, the inci-
dence of new infections—or force of infection (FOI), the 
number of patent infections, the number of uncompli-
cated clinical malaria cases per person per year, and the 
number of diagnostic tests were conducted for a total 
of 32 years. The first 3 years form the baseline period in 
the absence of any interventions (but with ongoing case 
management of clinical cases). The following 9  years 
form the vector control period (between the first and 
the fourth deployment of LLINs) where the probabil-
ity of elimination is determined. The final 20 years form 
the post-vector control period where the probability of 
resurgence is determined. The post-vector control period 
begins directly after the final distribution of LLINs so a 
proportion of the population are initially protected by 
effective LLINs.

Start Simulation

(∼100 years) 0

Begin Monitoring

(3 years) 3

Start VC

(9 years) 12

End VC and start AS

(20 years) 32

Stop Simulation

Fig. 1  Schematic of generic scenario description for OpenMalaria simulations conducted for this study. “VC” stands for vector control and “AS” 
stands for active surveillance. Bold numbers indicate reference years for monitoring
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Since the simulations stochastically include imported 
infections, complete cessation of all transmission is 
unlikely. Therefore, elimination during the vector con-
trol period (between survey years 3 and 12) is defined 
as occurring when the number of new infections in any 
1 year is less than 3 times the 97.5 percentile of the Pois-
son distribution of the expected number of imported 
infections (in 1  year), as in a previous publication [19]. 
Similarly, resurgence in the post-vector control period 
(between survey years 12 and 32) is defined as occur-
ring when the number of new infections in any 1 year is 
greater than 3 times the 97.5 percentile of the Poisson 
distribution of the expected number of imported infec-
tions (in 1 year). In a sensitivity analysis, these thresholds 
are varied to between two and four times the importation 
rate to determine if the choice of threshold has a mean-
ingful effect on the results. These definitions were cho-
sen because: (A) The number of imported infections in 
a given simulation is Poisson distributed, thus the actual 
number of imported infections when accounting for sto-
chasticity is 97.5% certain to fall below the 97.5 percen-
tile of a Poisson distribution with mean and variance of 
the selected infection importation rate for that simula-
tion. (B) If each imported infection produced two local 
cases, one would be certain that local transmission was 
reestablished. The definition of resurgence is independ-
ent of the definition of elimination, so resurgence could 
occur in a scenario regardless of whether or not elimina-
tion occurred in that scenario. Additionally, because the 
observation period post vector control was purposefully 
set to be longer than the vector control period, there is 
more opportunity to observe resurgence than elimination 
due to stochastic variation.

Time until resurgence is defined as the number of 
months before a monthly period where the number of 
new infections exceeded 3 times the 97.5 percentile of the 
Poisson distribution of the expected number of imported 
infections (in 1 month). As the time to resurgence analy-
sis is conducted on a monthly scale, resurgence is more 
likely to occur in this analysis than in the definition of 
resurgence on an annual scale above.

Severity of resurgence in the post vector control period 
is defined using mean API with the equation,

where API3−12 is the mean API during the vector control 
period and API12−32 is the mean API during the post-
vector control period.

Baseline African scenario parameterization
The African scenario parameterization is based on a 
western Kenya setting from previously published work 
[20], including the transmission and entomological 

Severity of resurgence = API12−32 − API3−12,

parameters (for Anopheles gambiae, Anopheles funestus 
and Anopheles arabiensis—except for seasonality pro-
files which were defined for the three vectors separately); 
the human demographic parameters; the parameteriza-
tion of the initial effectiveness of LLINs and their rate of 
decay; the health systems parameters; and the profiles of 
the diagnostic tests and anti-malarial drugs used. This 
baseline parameterization can be found in the Additional 
file 1.

Baseline Western Pacific scenario parameterization
The Western Pacific scenario parameterization is based 
on the Solomon Islands, where the main vector spe-
cies is Anopheles farauti. The seasonality profile for EIR 
is calculated from climate data using the EMOD model 
[21]. The extrinsic incubation period (10 days) and the 
duration of the mosquito resting period (2 days) are cal-
culated from average temperature data in Guadalcanal 
using established relationships [22]. The value for the 
human blood index (72%) [23] and for the proportion of 
mosquitoes who are host-seeking on the same day that 
they laid eggs (73%) [24] are based on data for An. far-
auti from Papua New Guinea. The parous proportion of 
mosquitoes (58%) and the proportion of mosquitoes that 
bite indoors at times when humans are sleeping indoors 
(35%) are based on data from northern Guadalcanal 
[25]. The human demographic profile is estimated from 
United Nations population data [26]. Other parameters, 
such as the properties of the anti-malarial drugs and 
diagnostic tests, and the decay and effectiveness of LLINs 
are assumed to be similar to those used in the African 
scenario. This baseline parameterization can be found in 
the Additional file 2.

Experiment set‑up
A full factorial design of varying the historical transmis-
sion level, the coverage of vector control interventions, 
the importation rate, the case management coverage, the 
intensity of active case detection, and the model assump-
tions, all for multiple random seeds to account for the 
effects of stochasticity, is performed to conduct a more 
thorough sensitivity analysis and simulate a wide range of 
potential settings.

Transmission level: Levels of baseline (pre-interven-
tion) EIR of {0.1, 0.5, 1, 2, 5} infectious bites per adult 
per year are simulated to represent a range of histori-
cal transmission intensities, with an upper limit of 5 
infectious bites per adult per year because it is unlikely 
that an area with a higher historical transmission rate 
would consider withdrawing vector control unless it 
could permanently reduce receptivity.
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Coverage of vector control interventions: Coverage of 
LLINs is varied with values of {0, 0.2, 0.5, 0.8} of the 
proportion of the population sleeping under an LLIN 
on a given night during the VC period to simulate a 
wide range of vector control coverage.
Importation rate: Importation rates of {0.1, 1, 10} 
infections per 1000 people per year are chosen to 
simulate a reasonable range of potential importation. 
Imported infections are simulated as new infections 
(not caused by the local mosquito population) in ran-
domly chosen individuals with a probability drawn 
from a Poisson distribution, implicitly assuming that 
the imported cases have a similar level of acquired 
immunity to the local population.
Case management coverage: Values of 20, 50, 80% 
are assumed for the percentage of all uncomplicated 
malaria cases are treated effectively to simulate a wide 
range of case management coverage.
Active case detection: Mass screen and treat (MSAT) 
interventions every 3 months using rapid diagnos-
tic tests (RDTs) and artemether–lumefantrine is 
simulated at coverage levels of {0, 2.5, 10, 20%} of the 
population to model increased active surveillance. 
Although it is unlikely that any programme would sus-
tain quarterly MSAT campaigns of 20% of its popula-
tion for 20  years, this is included as an approximation 
of targeted active surveillance.
Model variants: Fourteen model variants, as described 
in more detail below, from a previous publication [16] 
are simulated to explore the implications of various 
model assumptions such as varying rates of decay of 
acquired immunity in humans and correlations of het-
erogeneities in humans.
Stochasticity: Ten random seeds per model param-
eterization are simulated to include the effects of sto-
chasticity.

Model variants
OpenMalaria contains 14 different model variants so that 
uncertainty in model assumptions can be explored:

R0001: Base OpenMalaria model.
R0063: Mass action of the force of infection.
R0065: Mass action of the force of infection.
R0068: Mass action of the force of infection.
R0111: Fixed decay in effective cumulative exposure 
(half-life 1000 years).
R0115: Fixed decay in effective cumulative exposure 
(half-life 10 years).
R0121: Fixed decay in immune proxies (half-life 1000 
years).
R0125: Fixed decay in immune proxies (half-life 10 
years).

R0131: Estimation of decay in effective cumulative 
exposure (half-life 1187 years).
R0132: Estimation of decay in immune proxies (half-
life 14 years).
R0133: Estimation of decay in effective cumulative 
exposure (half-life 250 years) and immune proxies 
(half-life 19 years).
R0670: Heterogeneity in susceptibility to comorbidity.
R0674: Uncorrelated heterogeneities in access to treat-
ment and susceptibility to comorbidity.
R0678: Heterogeneity in access to treatment.

These variants and their parameterizations are described 
in more detail in a previous publication [16, Table  2, 
Text  S1]. Some variants describe the same model with 
different parameterizations. Models R0111, R0115 and 
R0131 allow a decay in the memory of cumulative pre-
vious exposure to malaria (that leads to acquired immu-
nity); models R0121, R0125 and R0132 allow a decay in 
the effectiveness of acquired immunity in reducing asex-
ual parasite densities; and model R0133 allows both kinds 
of decays.

Precision and bias
In order to examine the potential for surveillance sys-
tems to mis-measure or mis-classify important metrics 
suggested here as tools for determining the safety of 
vector control withdrawal, several additional simulation 
exercises using Monte Carlo simulation algorithms with 
the R software package [27] were conducted to estimate 
the precision and bias inherent in measurements of the 
infection importation rate (IIR) and ABER. Details of 
these simulation methods and results are included in the 
Additional file 3.

Results
OpenMalaria simulations of stopping the deployment of 
vector control in an African setting are presented here; 
parallel results of simulations in a Western Pacific set-
ting are presented in the Additional file 3. Results of the 
Monte Carlo simulations estimating the precision and 
bias inherent in measurements of the IIR and ABER are 
also presented in the Additional file 3.

Descriptive results of OpenMalaria simulation outputs
Simulation outputs allowed for the calculation of the 
time course of API, the force of infection (FOI) and 
ABER. Fig. 2 shows a sample of the simulation results for 
API with ongoing transmission in the baseline period in 
the first 3 years (where there are no interventions), little 
to no transmission during the vector control period, and 
resurgence in some of the simulations in the post-vector 
control period. API provides a metric, that is relatively 
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easy to measure in the field, for estimating true infection 
incidence, especially at high case management coverage 
and low entomological inoculation rate (EIR). However, 
it can be biased by health system access (low case man-
agement coverage) and active surveillance activities, so 
it is not used here to define elimination and resurgence 
outcomes. Instead, these outcomes are defined using the 
number of new infections (including super-infections) 
at each model time step. Although FOI is sometimes 
defined as the number of new infections ignoring super-
infections, and molecular FOI (or mFOI) defined as the 
number of new infections including super-infections, 
FOI is defined here as including super-infections. Indeed, 
at low values of EIR, in elimination and pre-elimination 
settings, super-infection is expected to be rare and the 
two metrics to be similar. Fig. 3 shows FOI for a subset 
of relevant simulation outputs, with similar patterns to 
the plots for API, but with resurgence apparent in most 
simulation runs. ABER provides a metric of the annual 
per capita number of diagnostic tests used. Results of a 
subset of simulations for ABER are shown in Fig. 4, where 
the number of tests used are dependent on transmis-
sion levels in the baseline and vector control periods, but 

increase due to active surveillance in the post vector con-
trol period.

Each simulation run was classified by whether elimina-
tion occurred or not (if transmission was interrupted by 
vector control) and whether or not resurgence occurred 
(if transmission was sustained after the deployment 
of vector control was stopped). Descriptive results are 
shown in Tables  1, 2, 3, 4, 5 and 6 for elimination and 
resurgence by various input parameters. Most simu-
lations resulted in elimination during vector control 
roll-out. However, a smaller but similar fraction of sim-
ulations showed resurgence after vector control with-
drawal (Table  1). When results for elimination and 
resurgence were examined in bivariate analysis for back-
ground characteristics of simulation, elimination during 
the vector-control period was associated with level of 
vector control coverage achieved (Table  2), case man-
agement coverage (Table  3), baseline pre-intervention 
EIR (Table 4), and model assumptions (Additional file 3: 
Table  S1). Resurgence during the post-vector control 
period was associated with the level of vector control 
coverage achieved, case management coverage, baseline 
pre-intervention EIR, infection importation rate, active 

Fig. 2  OpenMalaria simulation results for API per 1000 per annum (African scenario) with an annual pre-intervention EIR of 0.1 infectious bites per 
adult per year, case management coverage of 80%, and LLIN coverage of 80% during the period of vector control implementation. API is the annual 
parasite incidence computed at each time step and the x-axis is in months. Each chart shows simulations results for varied levels of IIR and active 
surveillance (through quarterly MSAT coverage). These values are shown just above each chart in the form: IIR per thousand per year (top line), 
proportion of population tested per quarter (second line). Colours of lines within the chart represent simulation runs with different random seeds 
(thus capturing stochastic uncertainty). LLINs are distributed at months 36, 72, 108, 144. Increased active surveillance starts immediately coincident 
with the last distribution of LLINs
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surveillance coverage (Tables 2, 3, 4, 5 and 6), and model 
assumptions (Additional file 3: Table S1).

Overall, there were 100,776 successfully completed 
simulations (a small number of simulation runs (24) 
failed to complete). Table 1 shows the proportion of sim-
ulations which resulted in elimination and/or resurgence. 
In the majority of simulations (69%) the level of malaria 
transmission during vector control deployment met the 
criteria for elimination during vector control deploy-
ment. The majority of simulations (55%) also resulted in a 

resurgence after withdrawal of vector control. Of the sce-
narios where malaria was eliminated, a majority showed 
no resurgence (64%). However, a substantial proportion 
(36%) showed resurgence after malaria had been elimi-
nated. In a small proportion (5%) of scenarios, malaria 
was not eliminated but there was also no resurgence (due 
to stochastic variation and increased active surveillance 
in the scenarios where coverage of vector control was 
0%). Since the definition of resurgence only depends on 
the ratio of incidence (of infections) to the importation 

Table 1  Simulation outputs for  elimination and  resurgence: here column labelled Elim shows the number of  scenarios 
and the column labelled % shows the percentage of scenarios

The subscript 0 denotes scenarios where elimination did not occur; 1 denotes scenarios where elimination occurred; and all summarizes the results for all scenarios. 
The rows for the variable, Elim. correspond to the scenarios where elimination occurred (Lev. 1) or did not occur (Lev. 0), and for the variable, Resur. 
correspond to the scenarios where resurgence occurred (Lev. 1) or did not occur (Lev. 0). The entries for the rows for elimination are trivial in this table but are 
included here for consistency with the other tables

Var. Lev. Elim0 %0 Elim1 %1 Elimall %all

Elim. 0 31,232 100.0 0 0.0 31,232 31.0

1 0 0.0 69,544 100.0 69,544 69.0

p <  0.0001 All 31,232 100.0 69,544 100.0 100,776 100.0

Resur. 0 1530 4.9 44,263 63.6 45,793 45.4

1 29,702 95.1 25281 36.4 54,983 54.6

p < 0.0001 All 31,232 100.0 69,544 100.0 100,776 100.0

Fig. 3  OpenMalaria simulation results for FOI per 1000 per annum (African scenario) with an annual pre-intervention EIR of 1 infectious bite per 
adult per year, case management coverage of 80%, and LLIN coverage of 80% during the period of vector control implementation. FOI is the 
number of new infections (including super-infections) over the previous month (normalised to units of infections per 1000 people per year) and 
the x-axis is in months. Each chart shows simulations results for varied levels of IIR and active surveillance (through quarterly MSAT coverage). These 
values are shown just above each chart in the form: IIR per thousand per year (top line), proportion of population tested per quarter (second line). 
Colours of lines within the chart represent simulation runs with different random seeds (thus capturing stochastic uncertainty). LLINs are distributed 
at months 36, 72, 108, 144. Increased active surveillance starts immediately coincident with the last distribution of LLINs
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rate, it does not require elimination to have occurred 
earlier.

Increasing coverage of LLINs during vector control 
deployment was associated with an increased prob-
ability of elimination and as well as a reduced prob-
ability of resurgence (Table 2). Changes in the level of 
case management coverage were associated with differ-
ences in the probability of elimination and resurgence 
(Table  3). Baseline pre-intervention EIR was strongly 

associated with probabilities of both elimination and 
resurgence. These associations showed trends in the 
expected directions with elimination much less likely 
to occur at higher input EIRs and resurgence much 
more likely to occur at higher baseline EIRs (Table 4). 
IIR was associated with the probability of resurgence 
but not with elimination (Table 5), implying that where 
vector control was sufficient to eliminate malaria, it 
could do so even in the presence of higher importation 

Fig. 4  OpenMalaria simulation results for ABER (African scenario) with an annual pre-intervention EIR of 0.1 infectious bites per adult per year, case 
management coverage of 80%, and LLIN coverage of 80% during the period of vector control implementation. ABER represents the number of 
diagnostic tests used per person over the previous month (smoothed to remove the visual effects of widely varying ABER between time periods 
with quarterly MSAT surveys and normalised to units of tests per person per year) and the x-axis is in months. Each chart shows simulations results 
for varied levels of IIR and active surveillance (through quarterly MSAT coverage). These values are shown just above each chart in the form: IIR per 
thousand per year (top line), proportion of population tested per quarter (second line). Colours of lines within the chart represent simulation runs 
with different random seeds (thus capturing stochastic uncertainty). LLINs are distributed at months 36, 72, 108, 144. Increased active surveillance 
starts immediately coincident with the last distribution of LLINs

Table 2  Simulation outputs for elimination and resurgence in terms of LLIN coverage during vector control: here column 
labeled ITN shows the number of scenarios and the column labeled % shows the percentage of scenarios

The subscript denotes the proportion of the population sleeping under LLINs during the vector control period. The rows for the variable, Elim. correspond to the 
scenarios where elimination occurred (Lev. 1) or did not occur (Lev. 0), and for the variable, Resur. correspond to the scenarios where resurgence occurred 
(Lev. 1) or did not occur (Lev. 0)

Var. Lev. ITN0 %0 ITN0.2 %0.2 ITN0.5 %0.5 ITN0.8 %0.8 ITNall %all

Elim. 0 23,729 94.2 7397 29.4 106 0.4 0 0.0 31,232 31.0

1 1467 5.8 17,797 70.6 25,084 99.6 25,196 100.0 69,544 69.0

p <  0.0001 All 25,196 100.0 25,194 100.0 25,190 100.0 25,196 100.0 100,776 100.0

Resur. 0 1741 6.9 11770 46.7 15,382 61.1 16,900 67.1 45,793 45.4

1 23,455 93.1 13,424 53.3 9808 38.9 8296 32.9 54,983 54.6

p <  0.0001 All 25,196 100.0 25,194 100.0 25,190 100.0 25,196 100.0 100,776 100.0
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rates. Changes in active surveillance across the range 
tested was not related to the probability of elimination. 
Increasing active surveillance coverage was associated 
with a downward trend in the probability of resurgence. 
Since active surveillance was not deployed during the 
period of vector control in these simulations the lack of 
any association with elimination during vector control 
is expected (Table 6).

The model assumptions, as denoted by the variant 
of the OpenMalaria model used, were also associated 
with the probabilities of resurgence and elimination 
(See Additional file  3: Table  S1). Although the decay of 
immunity did not substantially vary the probability of 
elimination over 20 years, model variants that included 
heterogeneity in access to treatment showed a substan-
tially higher probability of resurgence. Lowering the 
threshold for elimination or resurgence substantially 
lowered the fraction of simulations in which elimination 
occured and increased the fraction in which resurgence 
occurred, while increasing these thresholds increased the 
probability of elimination and decreased the probability 
of resurgence. Details of sensitivity analysis are presented 
in the Additional file 3.

Regression results
In order to estimate the impact of various predictors on 
the probability, timing and severity of resurgence follow-
ing scale back of vector control in a multivariate frame-
work, logistic, Cox-proportional hazards and linear 
regression were applied using the input parameters and 
malaria outcomes during vector control of each simula-
tion as predictors; and the occurrence, time until resur-
gence event and severity of resurgence post-withdrawal 
as the outcomes.

Table  7 summarizes the results for the probability of 
resurgence. These results indicate that most parameters 
which were significant in bivariate analysis retained 
important predictive value for the probability of a resur-
gence in multivariate analysis. Overall model results 
reinforce the importance of pre-intervention EIR, case 
management coverage, active surveillance coverage, 
infection importation rate and the level of control suc-
cess during vector control deployment as major driving 
factors in predicting the probability of resurgence after 
withdrawal.

These logistic regression model results can be used 
to summarize the predicted probability of a resurgence 

Table 3  Simulation outputs for elimination and resurgence in terms of case management coverage: here column labelled 
CM shows the number of scenarios and the column labelled % shows the percentage of scenarios

The subscript denotes the proportion of cases of malaria receiving effective treatment. The rows for the variable, Elim. correspond to the scenarios where 
elimination occurred (Lev. 1) or did not occur (Lev. 0), and for the variable, Resur. correspond to the scenarios where resurgence occurred (Lev. 1) or did not 
occur (Lev. 0)

Var. Lev. CM0.2 %0.2 CM0.5 %0.5 CM0.8 %0.8 CMall %all

Elim. 0 11,439 34.0 10,269 30.6 9524 28.4 31,232 31.0

1 22,161 66.0 23,326 69.4 24,057 71.6 69,544 69.0

p < 0.0001 All 33,600 100.0 33,595 100.0 33,581 100.0 100,776 100.0

Resur. 0 11,646 34.7 15,770 46.9 18,377 54.7 45,793 45.4

1 21,954 65.3 17,825 53.1 15,204 45.3 54,983 54.6

p < 0.0001 All 33,600 100.0 33,595 100.0 33,581 100.0 100,776 100.0

Table 4  Simulation outputs for  elimination and  resurgence in  terms of  baseline pre-intervention EIR: here column 
labelled EIR shows the number of scenarios and the column labelled % shows the percentage of scenarios

The subscript denotes the pre-intervention EIR in units of infectious bites per adult per year. The rows for the variable, Elim. correspond to the scenarios where 
elimination occurred (Lev. 1) or did not occur (Lev. 0), and for the variable, Resur. correspond to the scenarios where resurgence occurred (Lev. 1) or did not 
occur (Lev. 0)

Var. Lev. EIR0.1 %0.1 EIR0.5 %0.5 EIR1 %1 EIR2 %2 EIR5 %5 EIRall %all

Elim. 0 3785 18.8 4886 24.2 5249 26.0 7205 35.7 10107 50.1 31,232 31.0

1 16,352 81.2 15,274 75.8 14910 74.0 12,955 64.3 10,053 49.9 69,544 69.0

p < 0.0001 All 20,137 100.0 20,160 100.0 20159 100.0 20,160 100.0 20,160 100.0 100,776 100.0

Resur. 0 15,652 77.7 12,268 60.9 9390 46.6 6393 31.7 2090 10.4 45,793 45.4

1 4485 22.3 7892 39.1 10769 53.4 13,767 68.3 18,070 89.6 54,983 54.6

p < 0.0001 All 20,137 100.0 20,160 100.0 20,159 100.0 20,160 100.0 20,160 100.0 100,776 100.0
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Fig. 5  Predicted probabilities of resurgence based on logistic regression results plotted against the mean API during the last 3 years of vector 
control (years 9–12). Darker lines represent increasing EIR (0.1, 1, 2) while red-orange lines represent active surveillance coverage of 1% per quarter 
and grey lines represent active surveillance coverage of 10% per quarter. The plot on the left is for an IIR of 1 imported infection per 1000 people 
per year while the plot on the right is for an IIR of 10 imported infections per 1000 people per year. All slopes here are for LLIN coverage of 80%, case 
management coverage of 50% and using the base model variant

Table 5  Simulation outputs for elimination and resurgence in terms of infection importation rate per 1000 per annum: 
here column labelled IIR shows the number of scenarios and the column labelled % shows the percentage of scenarios

The subscript denotes the Infection Importation Rate per 1000 person-years. The rows for the variable, Elim. correspond to the scenarios where elimination 
occurred (Lev. 1) or did not occur (Lev. 0), and for the variable, Resur. correspond to the scenarios where resurgence occurred (Lev. 1) or did not occur (Lev. 0)

Var. Lev. IIR0.1 %0.1 IIR1 %1 IIR10 %10 IIRall %all

Elim. 0 10,455 31.1 10,512 31.3 10,265 30.6 31,232 31.0

1 23,134 68.9 23,083 68.7 23,327 69.4 69,544 69.0

p = 0.10 All 33,589 100.0 33,595 100.0 33,592 100.0 100,776 100.0

Resur. 0 21,085 62.8 14,281 42.5 10,427 31.0 45,793 45.4

1 12,504 37.2 19,314 57.5 23,165 69.0 54,983 54.6

p < 0.0001 All 33,589 100.0 33,595 100.0 33,592 100.0 100,776 100.0

Table 6  Simulation outputs for  elimination and  resurgence in  terms of  active surveillance coverage: here column 
labelled AS shows the number of scenarios and the column labelled % shows the percentage of scenarios

The subscript denotes the proportion of the population covered by active surveillance in each quarter. The rows for the variable, Elim. correspond to the scenarios 
where elimination occurred (Lev. 1) or did not occur (Lev. 0), and for the variable, Resur. correspond to the scenarios where resurgence occurred (Lev. 1) or did 
not occur (Lev. 0)

Var. Lev. AS0 %0 AS0.025 %0.025 AS0.1 %0.1 AS0.2 %0.2 ASall %all

Elim. 0 7804 31.0 7812 31.0 7830 31.1 7786 30.9 31,232 31.0

1 17,389 69.0 17,382 69.0 17,367 68.9 17,406 69.1 69,544 69.0

p = 0.98 All 25,193 100.0 25,194 100.0 25,197 100.0 25,192 100.0 100,776 100.0

Resur. 0 10,499 41.7 10,793 42.8 11,672 46.3 12,829 50.9 45,793 45.4

1 14,694 58.3 14,401 57.2 13,525 53.7 12,363 49.1 54,983 54.6

p < 0.0001 All 25,193 100.0 25,194 100.0 25,197 100.0 25,192 100.0 100,776 100.0
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occurring with varying levels of input parameters. Fig. 5 
shows the predicted probability of resurgence at varying 
levels of API, IIR, EIR and active surveillance coverage 
for the base model variant. The predicted probability of 
resurgence is generally high for most parameter combi-
nations and only falls below 0.25 for a set of simulations 
in which pre-intervention EIR was less than 1 infectious 
bite per adult per year, IIR was 1 per 1000 per year, mean 
API during vector control deployment was below 25 per 
1000 persons per year and there was some level of active 
surveillance. Although the definition of an acceptable 
probability of resurgence would need to context-specific, 
it is unlikely that a probability of resurgence greater than 
0.25 would fall under this definition. Raising or lowering 

the threshold for elimination or resurgence did not sub-
stantially affect the magnitude or direction of any regres-
sion coefficients used for predicting the probability of 
resurgence. However, the changes produce noticeable 
shifts in the predicted probability of resurgence under 
different scenarios, indicating that understanding the 
background of transmission and the history of vector 
control in an area is important to determining the prob-
ability of resurgence. Further, these results show that the 
definition of resurgence is an important consideration 
in a full risk model. Full details of sensitivity analysis are 
presented in the Additional file 3.

The time to resurgence was analysed by fitting a Cox-
proportional hazard model to these time to event out-
comes, assuming that the simulations in which no 
resurgence occurred were right censored. The results of 
this regression are summarized in Table 8. All predictors 
for the probability of the occurrence of resurgence were 
similarly related to the time until resurgence, notably 
high vector control coverage, indicating strong suppres-
sion of malaria transmission during the vector control 
period was important not only to reducing the prob-
ability of resurgence occurring but also to delaying the 
occurrence of resurgence.

Linear regression to estimate the effects of the vari-
ous parameters on severity of resurgence are presented 
in Table 9. Similarly, the main model parameters were all 
associated with severity in similar manners to the timing 
and probability outcomes. Higher LLIN coverage dur-
ing the VC period was associated with less severe resur-
gences. Across all three outcomes, model variants when 
compared to the base model of malaria transmission 
dynamics [14] were associated with less severe resur-
gence, less likelihood of resurgence but shorter times to 
resurgence when it did occur.

Discussion
Monte Carlo simulations were conducted to examine 
the precision and bias associated with IIR measurement 
and ABER measurement; and a full factorial simulation 
experiment using the OpenMalaria platform to identify 
determinants of potentially safe withdrawal of vector 
control. Overall, the results indicate that only in a minor-
ity of situations could withdrawal of vector control be 
expected to be safe (with a low probability of resurgence). 
These situations are characterized by low historic EIRs, 
low importation rates, highly successful vector control 
activities and high case management and surveillance 
coverage. In addition, ABER and the infection importa-
tion rate may be useful indicators for measuring impor-
tation risk (or vulnerability) and surveillance coverage. 
While both have significant potential for bias, in general 
the largest biases and the most important effects of their 

Table 7  Logistic regression of  input model parameters 
on resurgence

The number before “ITN” refers to the coverage of LLINs. The number after “IIR” 
refers to the importation rate in infections per 1000 people per year. The entries 
“R0063” through “R0678” refer to model variants (as described in more detail in 
the section, “Model variants”)

* p < 0.1

** p < 0.5

*** p < 0.01

Dependent variable:

Resurgence 95% C.I.

Mean API during VC (per 1000) 1.077*** (1.072, 1.082)

Case Management Cov. 0.021*** (0.019, 0.023)

EIR 3.304*** (3.239, 3.371)

(10x) Active Surv. Cov. 0.590*** (0.574, 0.606)

0.2 ITN 0.152*** (0.136, 0.170)

0.5 ITN 0.066*** (0.058, 0.075)

0.8 ITN 0.040*** (0.035, 0.045)

IIR 1 10.409*** (9.784, 11.079)

IIR 10 16.165*** (14.998, 17.427)

R0063 0.839*** (0.751, 0.938)

R0065 0.442*** (0.394, 0.496)

R0068 0.798*** (0.715, 0.892)

R0111 0.873** (0.782, 0.975)

R0115 0.619*** (0.554, 0.692)

R0121 1.041 (0.933, 1.162)

R0125 1.356*** (1.217, 1.512)

R0131 1.344*** (1.205, 1.499)

R0132 1.860*** (1.669, 2.074)

R0133 1.241*** (1.113, 1.384)

R0670 1.068 (0.957, 1.192)

R0674 2.520*** (2.261, 2.810)

R0678 3.170*** (2.844, 3.535)

Constant 1.296*** (1.128, 1.488)

Observations 100,776

Log Likelihood − 27,995.100

Akaike Inf. Crit. 56,036.200
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limited precision are likely to either result in conserva-
tive decisions, such as maintaining vector control, or to 
be of a small magnitude at relevant levels of the indica-
tors. However, care should be taken to ensure that these 
indicators are measured in spatially (geographically) and 
temporally (seasonally) representative manners. Addi-
tionally, pre-intervention EIR remained strongly predic-
tive after controlling for other inputs and programme 
measurable factors demonstrating that one of the most 
important independent predictors of malaria resurgence 
risk, timing and severity cannot be measured at the time 
the decision to withdraw vector control is made.
During the Global Malaria Eradication Programme 
(GMEP), many countries targeted specific regions for 
complete coverage with IRS. After the end of GMEP 

when vector control was withdrawn, some countries, 
such as Greece, Italy and the United States of America, 
remained malaria-free, as certified by the WHO. How-
ever, vector control is still sometimes deployed in these 
countries and/or often remains a part of a response strat-
egy to introduced malaria cases (often focally around the 
cases), and malaria transmission potential may remain 
indefinitely [28]—as recent outbreaks of autochthonous 
transmission in the Bahamas, Greece, Singapore and the 
United States of America, demonstrate [29–32]. Further-
more, and more crucially, many other countries saw large 
resurgences of malaria after vector control was with-
drawn [4].

This confirms the expectation that return to an 
endemic equilibrium after withdrawal of vector control 
interventions may be slow in low transmission settings, 
but that it will eventually occur [33]. It also indicates 
that measurements of entomological and parasitological 
parameters shortly after the withdrawal of vector control 
will not be useful indicators of the propensity of an area 
to eventually re-equilibrate to historic transmission and 
disease levels.

Areas where vector control interventions had little 
to no impact on malaria transmission due to improper 
deployment, poor intervention choice or possibly resist-
ance in the vector, may withdraw these interventions 
without much danger. However, given the broad utility 
of malaria vector control, especially the continued effec-
tiveness of LLINs in the presence of pyrethroid resist-
ance [34] and of adult vector control even with partially 
zoophagic and exophilic vectors [35, 36], the situations in 
which well deployed adult vector control has no mean-
ingful impact on malaria transmission are expected to be 
limited, and such areas should focus on improving cover-
age of locally appropriate vector control interventions.

For areas that satisfy the general characteristics sug-
gested to be safe for vector control withdrawal by this 
analysis, decisions to stop universal coverage of vector 
control interventions will need to be supported by fur-
ther analyses that include more detailed descriptions of 
those settings to provide better calibrated risks. Addi-
tionally geo-spatial Bayesian analysis, if properly vali-
dated, can guide countries in safely transitioning from 
universal vector control to geographically targeted vector 
control, such as recent analysis of malaria receptivity in 
Somalia [37] and residual malaria transmission in Swazi-
land [38].

Limitations
This study relies on Monte Carlo simulation and sto-
chastic individual-based simulation models of malaria 
epidemiology and immunology. While mathematical 
modelling techniques have been useful in understanding 

Table 8  Cox model regression of  input model parameters 
on time to resurgence

The entries “R0063” through “R0678” refer to model variants (as described in 
more detail in the section, “Model variants”)

* p < 0.1

** p < 0.5

*** p < 0.01

Dependent variable

Time to resurgence 95% C.I.

Mean API during VC (per 1000) 1.038*** (1.036, 1.040)

Case Management Cov. 0.484*** (0.468, 0.500)

EIR 1.271*** (1.265, 1.278)

(10x) Active Surv. Cov. 0.901*** (0.893, 0.910)

ITN coverage 0.281*** (0.271, 0.291)

IIR 1.092*** (1.089, 1.095)

R0063 0.757*** (0.727, 0.788)

R0065 0.773*** (0.743, 0.804)

R0068 0.914*** (0.878, 0.951)

R0111 0.975 (0.936, 1.014)

R0115 0.958** (0.921, 0.997)

R0121 1.022 (0.982, 1.063)

R0125 1.078*** (1.036, 1.121)

R0131 1.050** (1.009, 1.092)

R0132 1.085*** (1.043, 1.129)

R0133 1.029 (0.989, 1.070)

R0670 1.032 (0.992, 1.073)

R0674 1.109*** (1.066, 1.154)

R0678 1.186*** (1.140, 1.234)

Observations 70,908

R2 0.302

Max. possible R2 1.000

Log likelihood − 694,204.000

Wald test 26,609.350*** (df = 19)

LR Test 25,491.790*** (df = 19)

Score (Logrank) test 28,846.640*** (df = 19)
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malaria epidemiology and planning control, they contain 
inherent simplifications of the real world [39]. Model 
structures and assumptions can result in biases inherent 
in the models and limit their use for predicting real world 
outcomes.

This analysis, using OpenMalaria, mainly consid-
ered the effects of changes in immunity and increased 
active case detection in preventing resurgence. Active 
case detection was modelled as repeated regular rounds 
of mass test and treat at various levels of coverage. 
This serves as a crude approximation to the increased 

surveillance and potential reactive case detection that 
could be deployed to prevent resurgence. Reactive case 
detection is a form of test and treat that may have an 
increased likelihood of finding cases (that varies with 
prevalence), than mass test and treat. This model cap-
tures the increased likelihood of reactive case manage-
ment—by assuming a higher coverage—but does not 
capture the dependence on prevalence. Other focal strat-
egies such the spatial targeting of interventions around 
index cases (including focal vector control) or control 
based on other local circumstantial knowledge were 
also not considered. Such strategies are likely to be an 
important facet of scaling back from universal coverage 
of vector control interventions in some situations and the 
results in this manuscript do not explicitly capture this 
possibility.

In these simulations, receptivity of an area was 
assumed to be stable. This excludes the potential effects 
of secular changes such as improved housing and gen-
eral economic development on the likelihood of resur-
gence. These changes are likely to occur over the 20 year 
post-vector control period, but quantifying the possible 
decrease in transmission potential is difficult and the 
focus here is only on those factors directly related to 
malaria transmission. Smith et al. [11] show that in addi-
tion to secular changes, decreasing malaria transmission 
may make resurgence more unlikely, for example due to 
decreasing immunity leading to a reduced probability of 
asymptomatic cases; and some of these effects are cap-
tured through OpenMalaria model variants that include 
the decay of immunity. Indeed, these model variants 
showed lower probabilities of resurgence and reduced 
severity of resurgence, suggesting that these effects are 
important, even though they also predicted shorter times 
until resurgence occurred.

Furthermore, the human malaria models of OpenMa-
laria have been developed and parameterized for P. fal-
ciparum. The effects of persistence in the liver stage of 
P. vivax would alter the dynamics of resurgence, so this 
would need to be considered for settings close to elimi-
nation where P. vivax predominates, or at least forms a 
substantial proportion of infections.

Imported infections in OpenMalaria are simulated by 
stochastically introducing an infection in a member of 
the local population. This corresponds to assuming that 
all imported infections arise from residents travelling 
abroad and returning with malaria. In reality, imported 
infections may also occur due to visitors (or immigrants) 
with substantially different immune profiles to those 
of the local population. Since areas considering scaling 
back vector control are likely to have little malaria, resi-
dents are likely to have low immunity to malaria. There-
fore, visitors with different immune profiles to the local 

Table 9  Linear regression of  input model parameters 
on severity of resurgence

The number before “ITN” refers to the coverage of LLINs. The number after “IIR” 
refers to the importation rate in infections per 1000 people per year. The entries 
“R0063” through “R0678” refer to model variants (as described in more detail in 
the section, “Model variants”)

* p < 0.1

** p < 0.5

*** p < 0.01

Dependent variable

Severity

Case Management 
Coverage

− 22.556*** (− 24.298, − 20.813)

EIR 25.260*** (25.017, 25.502)

(10x) Active Surv. Cov. − 22.729*** (− 23.277, − 22.180)

0.2 ITN 114.306*** (113.099, 115.513)

0.5 ITN 92.247*** (91.040, 93.454)

0.8 ITN 82.173*** (80.966, 83.380)

IIR 1 13.928*** (12.883, 14.973)

IIR 10 42.540*** (41.495, 43.586)

R0063 − 6.713*** (− 8.973, − 4.454)

R0065 − 9.736*** (− 11.994, − 7.477)

R0068 − 13.044*** (− 15.303, − 10.786)

R0111 − 0.193 (−2.451, 2.066)

R0115 − 3.134*** (− 5.392, − 0.876)

R0121 1.154 (− 1.104, 3.412)

R0125 7.293*** (5.035, 9.552)

R0131 3.567*** (1.309, 5.825)

R0132 9.814*** (7.556, 12.072)

R0133 4.119*** (1.861, 6.377)

R0670 2.113* (− 0.145, 4.371)

R0674 18.419*** (16.161, 20.677)

R0678 19.057*** (16.799, 21.315)

Constant − 84.218*** (− 86.361, − 82.076)

Observations 100,776

R2 0.490

Adjusted R2 0.490

Residual Std. Error 69.120 (df = 100,754)

F Statistic 4,603.479*** (df = 21; 
100,754)
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population would have high immunity to malaria and 
are likely to be asymptomatic. Short-term visitors could 
infect mosquitoes that lead to new infections in the local 
population (as is modelled here). Longer term visitors 
could remain a source of infection to mosquitoes until 
they self-cure or get clinically ill and seek treatment. This 
would be equivalent to a higher rate of secondary infec-
tions in the native population than is modelled here.

The analysis of the simulation results presented here 
depends on a particular definition of elimination and 
resurgence. This definition was chosen because it is con-
sistent with previous work [19], and because it is strict 
and consistent with re-establishment of endemic trans-
mission. Although other definitions may produce dif-
ferent conclusions, a sensitivity analysis of varying the 
threshold level showed little difference in the qualitative 
results. The proportion of scenarios showing elimination 
increased as the threshold was increased; and the pro-
portion of scenarios showing resurgence decreased as the 
threshold was increased. However, the decrease in the 
proportion of scenarios showing resurgence was small, 
and the increase in the proportion of scenarios showing 
elimination was minimal. A consequence of using a defi-
nition based on IIR is that higher IIR scenarios can expe-
rience significantly more cases without being defined as 
resurgent. Another aspect of the definition is that it is 
limited to a defined temporal period. It is possible that 
the simulations that did not show resurgence would 
have shown resurgence if they had been conducted for a 
longer time span. However, this is likely mitigated by the 
long length of monitoring (20 years) after the withdrawal 
of vector control in these simulations.

The results of the statistical model emulation used 
to summarize the results of the simulation models are 
presented here with tests of statistical significance and 
associated p-values as is custom for standard statistical 
analysis and modelling. As the sample size in these model 
simulation runs is artificially constructed by the research-
ers the results of tests of statistical significance are some-
what irrelevant, and rather the direction of effect is more 
important. For this reason, the statistical significance of 
the results is not extensively discussed here. However, 
since it is possible for associations due purely to chance 
to arise because of the stochasticity inherent in these 
model formulations, the tests of significance are included 
here to help the reader discern which associations are 
likely true relationships present in the models and which 
are likely to be spurious or only weak associations.

Conclusions
While these simulation results suggest that there are 
a set of scenarios in which it is possible to withdraw 
vector control without a significant probability of 

resurgence, they suggest that these situations are lim-
ited. Furthermore, there is no guarantee that resurgence 
will not occur even when its probability is low. There-
fore, it is crucial that programmes maintain surveil-
lance coverage (both clinical as well as entomological) 
not only for the benefits related to preventing resur-
gence, but also so that malaria control and elimination 
programmes which choose to scale back vector control 
are aware and prepared to make rapid responses should 
resurgence occur.

In areas with ongoing local malaria transmission, the 
scale-back from universal coverage of vector control is 
likely to lead to resurgence and a return to pre-interven-
tion levels of malaria parasite transmission and disease. 
The speed and severity of such a resurgence might be 
exacerbated by high pre-intervention malaria transmis-
sion, poor vector control coverage before scaling back, 
and low case management coverage.

In areas in which local malaria transmission has been 
substantially reduced or interrupted, the scale-back 
of vector control is also associated with a high prob-
ability of resurgence for the vast majority of situations. 
The conditions which hold a low probability of resur-
gence include having a low pre-intervention EIR, high 
case management coverage, low importation rate of 
infections, and very successful control of transmission 
during the intervention period. The degree to which 
programmes can safely plan to withdraw or scale back 
vector control must be determined by the tolerance of a 
programme for risk of resurgence and its expected sever-
ity. When tolerance for the risk of resurgence is low, few 
situations would be a priori suitable for vector control 
withdrawal. If a 20% probability of resurgence is consid-
ered to be a threshold for safety, only scenarios with a 
pre-intervention EIR below 1 and moderate case man-
agement coverage (>  50%) with successful achievement 
of universal vector control coverage (> 80%) during the 
intervention phase were considered safe for withdrawal. 
These results held for both African and Western Pacific 
scenarios.
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