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Abstract 

Background:  Although there has been a decline in the number of malaria cases in Zimbabwe since 2010, the dis-
ease remains the biggest public health threat in the country. Gwanda district, located in Matabeleland South Province 
of Zimbabwe has progressed to the malaria pre-elimination phase. The aim of this study was to determine the spatial 
distribution of malaria incidence at ward level for improving the planning and implementation of malaria elimination 
in the district.

Methods:  The Poisson purely spatial model was used to detect malaria clusters and their properties, including rela-
tive risk and significance levels at ward level. The geographically weighted Poisson regression (GWPR) model was used 
to explore the potential role and significance of environmental variables [rainfall, minimum and maximum tempera-
ture, altitude, Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), Normalized Differ-
ence Water Index (NDWI), rural/urban] and malaria control strategies [indoor residual spraying (IRS) and long-lasting 
insecticide-treated nets (LLINs)] on the spatial patterns of malaria incidence at ward level.

Results:  Two significant clusters (p < 0.05) of malaria cases were identified: (1) ward 24 south of Gwanda district and 
(2) ward 9 in the urban municipality, with relative risks of 5.583 and 4.316, respectively. The semiparametric-GWPR 
model with both local and global variables had higher performance based on AICc (70.882) compared to global 
regression (74.390) and GWPR which assumed that all variables varied locally (73.364). The semiparametric-GWPR 
captured the spatially non-stationary relationship between malaria cases and minimum temperature, NDVI, NDWI, 
and altitude at the ward level. The influence of LLINs, IRS and rural or urban did not vary and remained in the model as 
global terms. NDWI (positive coefficients) and NDVI (range from negative to positive coefficients) showed significant 
association with malaria cases in some of the wards. The IRS had a protection effect on malaria incidence as expected.

Conclusions:  Malaria incidence is heterogeneous even in low-transmission zones including those in pre-elimination 
phase. The relationship between malaria cases and NDWI, NDVI, altitude, and minimum temperature may vary at local 
level. The results of this study can be used in planning and implementation of malaria control strategies at district and 
ward levels.

Keywords:  Cluster detection, Malaria hotspots, Geographically weighted Poisson regression (GWPR) model, Malaria 
pre-elimination phase
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Background
Malaria remains one of the biggest health problems 
within the tropical region despite the improvements in 
malaria control programmes at a global scale. There were 
approximately 212 million cases of infection and 429,000 
malaria-related deaths in 2015; and more than 90% of 
these cases occurred in sub-Saharan Africa [1]. In Zim-
babwe, malaria continues to be a major public health 
threat with an estimated over half of the population of 
13.5 million at risk of contracting malaria [2]. However, 
by 2010, Zimbabwe had managed to reduce malaria inci-
dence to 45 malaria cases per 1000 inhabitants per year 
thereby surpassing the Abuja 2010 set target of 68 cases 
per 1000 inhabitants [3]. Consistent with the national 
trend, Gwanda district located in the Matabeleland 
South Province in Zimbabwe has progressed to malaria 
pre-elimination phase. A malaria pre-elimination capac-
ity assessment study conducted in Matabeleland South 
Province in 2011 reported malaria positivity rates of 8% 
and Anopheles larvae scoop of four for Gwanda district 
[4]. Malaria control in Gwanda district is mainly through 
indoor residual spraying (IRS), use of long-lasting insecti-
cidal nets (LLINs) and larviciding [5].

Malaria transmission is heterogeneous at varying geo-
graphical scales even in the malaria pre-elimination 
zones [6]. Usually malaria endemicity levels, and espe-
cially in low incidence areas, malaria tends to cluster in 
‘hotspots’ and ‘hot’ populations that become sources 
of continued infection [7]. Malaria hotspots have close 
spatial associations with vector-breeding habitats, and 
in certain ‘high-risk’ sub-sets of the population, having 
higher exposure to vector-breeding habitat: ‘hot-pops’ 
[8]. Active and timely identification of these hotspots 
and related factors is important for effective malaria con-
trol [7]. Malaria heterogeneity in time and space has also 
been attributed to risk factors, including altitude, climate, 
environmental parameters, and socio-economic factors 
[6, 7]. Rainfall, temperature and altitude are key factors 
in determining the habitat suitability of malaria vectors, 
including Anopheles arabiensis which is common in Zim-
babwe, as well as determining malaria incidences [9–12]. 
In most tropical African countries, high habitat suit-
ability of malaria vectors such as An. arabiensis mostly 
translates into increased malaria incidences [11]. Mabaso 
et  al. [12] used a model to analyse the spatial and tem-
poral role of climate in inter-annual variation of malaria 
incidence in Zimbabwe for the period 1988–1999 and 
their study demonstrated that mean values of tempera-
ture, rainfall and vapour pressure are strong predictors 
of malaria incidence. Gwitira et  al. [13] also concluded 
that annual precipitation, precipitation of the wettest 
month, isothermality and temperature seasonality com-
bined with altitude, are key predictors of An. arabiensis 

habitat suitability in Zimbabwe. In their study, the habitat 
suitability was significantly and positively correlated with 
recorded malaria incidences. Based on their observations 
they inferred that high malaria cases would be expected 
in areas of high vector habitat suitability. However, they 
also noted the need to consider malaria interventions in 
the study region in order to draw meaningful conclusions 
about the relationship between mosquito habitat suitabil-
ity and malaria incidence.

Accurately assessing the local risk of transmission is 
fundamental for the development of malaria control 
programmes. Differences in malaria transmission exist, 
not just between different regions but also at local level 
[14–16]. As Gwanda district is moving towards malaria 
elimination phase a better understanding of the distribu-
tion of malaria cases/incidence at local scale is essential. 
In this regard, it is critical to understand the key factors 
for determining variability of malaria cases at micro-spa-
tial scale for improving malaria control strategies in cases 
of relapses or outbreaks.

An exploratory study to investigate the relationship 
between the above-mentioned factors (rainfall, temper-
ature, altitude, and other factors, including vegetation 
cover and wetness) at local scale is required. This paper 
reports on the spatial distribution of malaria incidence 
in 2015 based on health facility cases and related risk 
factors, in order to strengthen control measures in the 
pre-elimination phase of Gwanda district, Matabeleland 
South Province, Zimbabwe.

Methods
Study area
Zimbabwe experiences seasonal and spatial variation in 
malaria transmission that is related to the country’s rain-
fall pattern [12]. The malaria peak transmission season in 
Zimbabwe is between February and April. This study was 
conducted in Gwanda district, Matabeleland South Prov-
ince, Zimbabwe (Fig. 1). Gwanda district receives annual 
rainfall of lower than 700 mm, and that has necessitated 
the construction of dams and establishment of irriga-
tion schemes to improve peoples’ livelihoods as many of 
them rely on subsistence agriculture. However, this has 
also resulted in increased exposure and vulnerability of 
people to malaria. Gwanda recorded the second high-
est incidence of malaria and mortality due to malaria in 
Matabeleland South Province in the period 2009–2013 
[5].

Malaria control measures in Gwanda district include 
IRS; the use of LLINs and larviciding [5]. The planning 
of these control measures is done at district level and 
implemented at ward level. A ward is an administrative 
area under a district that consists of an average of 10 vil-
lages with each village comprised of an average of 100 
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households [5]. Gwanda has 24 and 10 rural and urban 
wards, respectively. Wards implement different malaria 
control programmes and also experience environmental 
conditions that could determine the spatial and distribu-
tion of malaria incidence/cases. The district implements 
IRS in some wards and the LLNs in other wards. This is 
a provincial decision where the areas with higher prev-
alence use IRS while those with lower prevalence use 
LLNs. The idea is to finally stop the use of IRS and focus 
on personal protection as the prevalence goes down. 
Given the variations across wards there is need to under-
stand the transmission dynamics at ward level to improve 
the overall control programme to reach the elimination 
phase.

Data collection
Mapping malaria in low-transmission settings is a chal-
lenge due to low incidence and malaria transmission 
tends to concentrate in hot spots and hot pops (popu-
lations that maintain malaria transmission) [17]. Data 
from health facilities (passive surveillance) provide a 
means of detecting hot spots of transmission [18, 19]. In 
this regard malaria cases recorded at health facilities in 
Gwanda district for 2015 were considered in the analysis 
in this study. Cases and their corresponding Global posi-
tioning systems (GPS) coordinates for the households 
were obtained from District Health Information System 
version 2 (DHIS2) through Ministry of Health and Child 
Care, Zimbabwe. These cases from health facilities had 
been parasitologically confirmed through rapid diagnos-
tic tests (RDTs) or microscopy, and were complete both 

spatially and temporally. The DHIS2 system was imple-
mented in mid-2014, hence 2015 had a complete dataset 
by the time of data collection (August 2016). The esti-
mated total population per ward was used to calculate 
the incidence per ward [20].

The environmental/ecological/climatic/topographic fac-
tors considered include rainfall, temperature, wetness, 
vegetation cover. Table  1 shows data on these variables 
indicating the sources. These variables were accessed and 
processed (including the calculation of averages per ward) 
through the IRI data library portal [21]. The seasonal vari-
ation and within ward heterogeneity were not considered 
in this study.

Malaria control measures considered in this study 
include the coverage of LLINs and IRS. The data on 
malaria control measures per ward in Gwanda district 
and the extent of coverage were obtained from Ministry 
of Health and Child Care, Zimbabwe. The data were pre-
sented as percentage coverage or percentage population 
protected (%). It was also considered whether the ward 
was rural or urban.

Spatial analysis
The Poisson purely spatial model [22] was used to deter-
mine the malaria hot spots/clusters and the geographi-
cally weighted Poisson regression (GWPR) model [23] 
to examine the potential role of environmental variables 
and malaria control strategies on the spatial patterns of 
malaria cases recorded at health facilities and aggregated 
to a ward level. The GPS coordinates from DHIS2 were 
plotted and overlaid on the Gwanda ward boundaries to 

Fig. 1  Gwanda district, Matabeleland South Province, Zimbabwe
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obtain the number of cases per ward. Malaria incidence 
was calculated as number of cases per ward divided by 
the total population per ward multiplied by 1000. The 
Poisson purely spatial model in SatScan spatial scan sta-
tistic [22] was used to detect the malaria hot spots or 
clusters. In this model, the numbers of malaria cases fol-
low a heterogeneous Poisson process [23, 24]. The spatial 
scan statistic is a local cluster test [24] which has been 
widely used in spatial-epidemiological studies to detect 
local clusters with statistically significant elevated risk of 
infectious diseases [24–27]. The input data for this model 
included the number of malaria cases per ward, the 
approximate total population per ward, and the centroid 
coordinates for each ward. Considering that Gwanda is in 
the pre-elimination phase characterized by low number 
of cases, the maximum population at risk was set not to 
exceed 2% of the total population. This improves the pre-
cision in detecting local clusters since the default value 
of 50% of the population at risk is more likely to produce 
clusters of no practical use [25, 28].

The GWPR model [23] in GWR4.09 package (GWPR 
development team) was used to explore the local vari-
ation of malaria cases in relation to the environmental 
factors and coverage of control measures at local scale 
(ward level). Exploratory disease mapping and local clus-
ter tests have been used for identifying areas with statisti-
cally significant high risks—hot spots or clusters. GWPR 
has proved to be very effective for measuring the spatially 
varying association between possible factors and disease 
risk. This allows the development of disease control meas-
ures targeting specific population groups that are most at 
risk in specific locations across the landscape [25, 29–31].

In this study it was assumed that the numbers of 
malaria cases in each ward follow independent Poisson 

distributions. Hence, Yi denote the number of malaria 
cases observed in ward i in Gwanda district, i = 1,…, 34. 
GWPR allows the examination of the spatially varying 
coefficients over space and the semiparametric GWPR 
uses the local and global terms. The GWPR and sem-
iparametric GWPR models are defined in Eqs.  1 and 2, 
respectively:

where yi, xi,k, and Ni denote, respectively, dependent vari-
able (the total number of malaria cases), kth independent 
variable including the constant term and the offset varia-
ble [population size at risk (ward population) in the ward 
i]. (ui, vi) is the geographic coordinate of the centroid of 
the ith ward (the location of i). The coefficients βk (ui, vi) 
are assumed to be smoothly varying conditional on their 
location. zl,i is the lth independent variable with a fixed 
coefficient γl.

Three models were computed: (1) a global model that 
assumes that the process accounting for the disease is 
spatially constant throughout the study area; (2) a local 
model that assumed all environmental factors and con-
trol measures vary locally; and, (3) a model including 
local and global variables. The adaptive bi-square kernel 
for geographically weighting was used in this study. This 
is suitable for clarifying local extends for model fitting 
and keeping constant the number of areas to be included 
in the kernel [32]. The adaptive bi-square kernel is also 

(1)yi ∼ Poisson

(

Ni exp

(

∑

k

βk(ui, vi)xi,k

))

(2)yi ∼ Poisson

(

Ni exp

(

∑

k

βk(ui, vi)xi,k +
∑

l

γlzl,i

))

Table 1  Source of environmental data used at ward level for 2015 in Gwanda district, Matabeleland South Province, Zim-
babwe

Tmax maximum temperature, Tmin minimum temperature
a  Normalised Difference Vegetation Index
b  Enhanced Vegetation Index
c  University of California Santa Barbara
d  United States geological survey
e  National Aeronautics and Space Administration

Variables Minimum Mean Maximum Data source Resolution Reference

Rainfall 16.990 21.731 24.090 UCBSc 5 km ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/

Tmax 37.374 39.490 43.029 USGSd 1 km http://modis.gsfc.nasa.gov/data/dataprod/mod11.php

Tmin 13.979 15.958 17.990 USGSd 1 km http://modis.gsfc.nasa.gov/data/dataprod/mod11.php

Altitude 653.24 918.465 1071.89 NASAe 1 km http://www2.jpl.nasa.gov/srtm

NDVIa 0.301 0.366 0.442 USGSd 250 m http://modis.gsfc.nasa.gov/data/dataprod/mod13.php

EVIb 0.172 0.209 0.243 USGSd 250 m http://modis.gsfc.nasa.gov/data/dataprod/mod13.php

NDWI − 0.040 0.024 0.133 USGSd 250 m Calculated based on MODIS reflectance

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
http://modis.gsfc.nasa.gov/data/dataprod/mod11.php
http://modis.gsfc.nasa.gov/data/dataprod/mod11.php
http://www2.jpl.nasa.gov/srtm
http://modis.gsfc.nasa.gov/data/dataprod/mod13.php
http://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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more suitable for when one seeks a definitive local extent 
for model fitting [33]. The golden search was used as a 
bandwidth selection method. Considering that the sam-
ple size was small, the minimum and maximum band-
width ranges were defined as 30 and 34 respectively in 
GWR4.09. The golden search helps to automatically 
reach or obtain the optimum bandwidth size based on 
the Akaike information criterion (AICc) [34].

The local model computed a spatial weights matrix 
based on the assumption of spatial autocorrelation. 
This means that the individual observation was influ-
enced by the surrounding observations and the extent 
of this influence was inversely related to distance [35]. 
The local model provided locally varying parameter esti-
mates, standard errors, as well as the respective pseudo 
t values as described by Nakaya et  al. [23]. A pseudo t 
value less than − 1.96 or greater than + 1.96 indicates a 
p value   <   0.05. The weighting function, the bandwidth 
size of the matrix and the best model regarding different 
independent variable sub-sets were based on the small 
sample size bias corrected AICc comparison as suggested 
by Alves et  al. [33]. The smaller AICc indicates a bet-
ter model performance. If the difference between AICc 
is larger than 2, the model with lower AICc is selected 
[36]. The coefficients and the percent deviance explained 
(measure of local goodness-of-fit and is a type of pseudo-
R2 [37]) were only showed for the best performing model 
based on the AICc. These coefficients were mapped using 
QGIS 2.2.0. The wards with significant coefficients were 
also shown on each local coefficient map.

Statistical analysis
Before performing the GWPR model, correlation analy-
ses was conducted in Excel 2007 to ensure that the 
variables (Table  2) were not highly correlated. Strong 
multicollinearity can impair the model and produce arti-
ficial and erroneous effects [38]. The variance inflation 
factor (VIF) was used as an indicator of multicollinearity. 
Generally, VIF value of greater than 4–10 is regarded as 
severe multicollinearity [39–41]. Hence, the lower limit 
(> 4) was used as a cut-off in this study as also used by 
Ehlkes et al. [35].

Results
Distribution of malaria in 2015
A total of 75 cases in a total population of approximately 
137,105 in Gwanda was recorded in 2015. This translates to 
overall annual malaria incidence of 0.547 per 1000 inhabit-
ants. The cases were distributed in the wards as shown in 
Fig. 2. The incidence per ward ranged from 0 to 2.59 per 
1000 inhabitants (Fig.  3). Two significant malaria clusters 
for year 2015 were detected in Gwanda district. The prop-
erties of these clusters (Fig. 3) are shown in Table 2.

The clusters were detected in both rural and urban 
wards; cluster 1 (ward 24) and cluster 2 (ward 9), respec-
tively. Rural cluster had higher relative risk compared to 
the urban cluster (Table  2). The coefficients of the vari-
ables from the s-GWPR model in rural and urban areas 
including the clusters are shown in Fig. 4.

Local variation of exploratory variables in determining the 
heterogeneity of malaria incidence
The semiparametric-GWPR model with mixed variables 
(after local to global) had an AICc of 70.882 and a per-
cent deviance explained of 0.529. This model used 34 
(all samples) as the optimum bandwidth based on the 
adaptive kernel and golden search for bandwidth selec-
tion. This model performed better than other models 
(Table 3) and was further used to explore the local vari-
ation of the exploratory variables in relation to malaria 
cases.

Table 2  Characteristics of  malaria clusters for  year 2015 
in  Gwanda District, Matabeleland South Province, Zimba-
bwe

Cluster 1 Cluster 2

Wards included Ward 24 (rural—South) Ward 9 (urban—North)

Population 2699 2539

Number of cases 7 6

Expected cases 1.48 1.39

Annual cases/1000 2.59 2.36

Observed/expected 4.74 4.32

Relative risk 5.13 4.61

Log likelihood ratio 5.583 4.316

p value 0.0024 0.012

Fig. 2  Malaria cases per ward in Gwanda district, Matabeleland 
South Province, Zimbabwe (2015)
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After local to global variable selection, only three 
variables were moved to global. These variables include 
LLINs, IRS and rural or urban with the following esti-
mated coefficients: 0.844, − 0.171, and − 0.873, respec-
tively. The influence of these variables did not vary across 
the study area and remained in the models as global 
terms. The other exploratory variables were varying at 
ward level (Fig.  4); the summary of their coefficients is 
shown in Table 4.

The semiparametric-GWPR captured the spatially 
non-stationary relationships between malaria cases and 
some of the exploratory variables (minimum tempera-
ture, Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Water Index (NDWI), and alti-
tude) at the ward level. The coefficients of these variables 
and the intercept in the GWPR varied spatially, suggest-
ing the effects of the exploratory variables were different 
between wards. Gwanda district is not entirely homoge-
neous as it was shown by wide ranges of estimated coef-
ficients for NDWI, NDVI, minimum temperature and 
altitude. NDWI (proxy for surface water or wetness) 
estimated coefficients showed positive association with 
malaria cases per ward and was significant in the rural 
wards located to the southern and southeastern part 
of the study area. Altitude and minimum temperature 

estimated coefficients ranged from negative to positive 
but not significant. The estimated NDVI coefficients 
were negative over the whole study area and significant 
in all urban wards and most of the rural wards. The inter-
cept coefficients were negative and significant across the 
whole study area.

Multicollinearity
The VIF for all the variables was ranging from 0.822 to 
19.378. Three variables showed high correlation with 
other variables. These include rainfall, maximum tem-
perature and EVI with VIF of 10.509, 19.378 and 4.929, 
respectively; hence these variables were not considered 
in the model.

Discussion
Results of this study have shown that the distribution of 
annual cases or incidence of malaria is heterogeneous 
even in the malaria pre-elimination zones, as observed 
in other studies [6–8]. Differences exist not just between 
different regions but also at local level [14–16]. Identify-
ing the malaria clusters (areas with elevated number of 
cases) is critical in developing or improving malaria con-
trol strategies at local scale. In this study, clusters were 
detected in rural and urban areas. This indicates that 

Fig. 3  Malaria incidence and clusters per ward in Gwanda district, Matabeleland South Province in Zimbabwe (2015)
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Fig. 4  Variation of local coefficient estimates from GWPR a intercept, b Normalized Difference Vegetation Index (NDVI), c minimum temperature, d 
Normalized Difference Water Index (NDWI), e altitude in Gwanda district, Matabeleland South Province, Zimbabwe (2015)
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malaria incidence could be high or above average in both 
rural and urban settings in Gwanda district. However the 
cluster had a higher relative risk compared to the urban 
cluster. These clusters may point to the areas that need 
immediate attention in terms of preparation and imple-
mentation of the disease control strategies.

Heterogeneity of malaria cases is driven by a variety 
of ecological, biological and sociological factors [6]. As 
noted by Ehlkes et al. [35] most studies assume homoge-
neous influence of exploratory variables [42–45] but this 
may not always be most appropriate [23]. In this study, 
the analysis showed that assuming that other variables 
vary at local level substantially improves the GWPR 
model performance. Allowing spatial heterogeneity 
within the regression model allows clearer interpretation 
regarding the true nature of potential associations [35]. 
That could be because the LLINs are mostly distributed 
to the wards that are known to have higher incidences 
in Gwanda district and there was limited data regarding 
the actual use of these nets. When assessing the associa-
tions between environmental variables and malaria cases 
one must consider the pathways in which these variables 
under study lie [35]. For example, the environmental 
variables: minimum temperature, NDVI, altitude, NDWI 
which influence the malaria cases were considered in 
this study as they determine the abundance of mosquito 
or their breeding habitats. Malaria control strategies 
(IRS and LLINS coverage) per ward were also consid-
ered in this study. These factors tend to reduce the cases 
of malaria. The interaction between these factors and 
malaria cases may bring out unexpected results, defying 
the norms regarding the relationship between environ-
mental factors and malaria. It has been established that 

transmission potential decreases as the altitude increases 
[2, 46, 47]. This was also noted in this study as altitude 
showed its expected negative relationship with malaria 
cases in some of the wards but also showed positive rela-
tionship in the wards to the southern part of Gwanda dis-
trict. However, it was not significant in any of the wards. 
NDWI coefficients showed the expected positive associa-
tion with malaria cases and were significant in the rural 
wards located in south and southeastern part of Gwanda 
district. Altitude and minimum temperature estimated 
coefficients ranged from negative to positive over 
Gwanda district. This indicates that GWPR successfully 
captured the spatially non-stationary of these factors and 
how the global model can be misleading since averaging 
these local effects reveals a single impact assumed to hold 
across all regions [33]. The estimated NDVI coefficients 
were negative over the study area, which was against the 
expectation.

The weak positive and strong negative correlation 
coefficients between environmental factors and malaria 
incidences in some of the wards could be due to the pro-
tection effect of malaria control factors, such as vector 
control methods including LLINs and IRS. These malaria 
interventions contribute significantly to the decline in 
malaria cases particularly in areas progressing towards 
malaria elimination [47]. Gwitira et  al. [13] also noted 
that in cases where there is effective malaria control, 
there will be weak correlations between habitat suitability 
and malaria cases. This was observed in this study based 
on the proxies for land cover (NDVI), wetness (NDWI). 
However, there is need to consider mapping the land use 
and land cover types and relate to malaria cases at micro-
scale. Changes in land use and land cover have also been 
found to be critical in determining the survival of Anoph-
eles malaria vectors [35, 48]. Significant land cover and 
land use changes may lead to increase in the abundance 
of malaria vectors and consequently increased malaria 
transmission.

Geographically weighted regression (GWR) has 
shown its ability to handle the socio-economic vari-
ables in relation to disease transmission. For example, 

Table 3  Comparison of model performances based on AICc

Model AICc

Global regression 74.390

GWPR (before local to global) 73.364

Semiparametric-GWPR (after local to global) 70.882

Table 4  Summary of the coefficients of the locally varying variables based on the best s-GWPR model

a  Normalised Difference Vegetation Index
b  Enhanced Vegetation Index

Coefficients Minimum Lower quartile Median Upper quartile Maximum

Intercept − 7.936 − 7.795 − 7.776 − 7.729 − 7.652

Minimum temperature − 0.506 − 0.346 − 0.278 − 0.191 0.169

NDVIa − 0.845 − 0.622 − 0.541 − 0.516 − 0.391

NDWIb 0.223 0.347 0.374 0.509 0.738

Altitude − 0.242 − 0.088 − 0.011 0.099 0.449
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the semiparametric-GWR (s-GWR) managed to detect 
schistosomiasis hot spots based on socio-economic and 
environmental factors at household level in Ndumo area, 
uMkhanyakude in South Africa [35]. Active surveys are 
required to capture the data on socio-economic factors, 
including housing structure and entomological data. Pre-
vious studies showed that malaria transmission tends to 
be higher in houses built with mud and thatch than those 
with asbestos or iron sheets and are built using cement 
[9]. All these factors influence the spatial and tempo-
ral distribution of malaria incidence. The assessment of 
the effect of malaria control measures may need to be 
done in spatio-temporal modelling. The temporal aspect 
would be able to show the decrease or increase in malaria 
cases in relation to control measures and environmental 
factors over time. There was also no information regard-
ing larviciding for 2015 and 2016. In the pre-elimination 
and elimination phases, interventions have to be targeted 
to entire villages or towns with higher malaria incidence 
until only individual episodes of malaria remain and 
become the centre of attention [49].

This study has shown the feasibility of using passive sur-
veillance data from health facilities to map malaria cases 
and detect clusters. The passively identified health facil-
ity cases reflected malaria transmission levels in places 
where malaria cases tend to cluster at ward level as also 
noted by Rulisa et  al. [7]. These cases were parasitologi-
cally confirmed using RDTs or microscopy and were com-
plete both spatially and temporally. The clinical malaria 
cases were previously used in trend analysis of malaria 
transmission in relation to climatic and environmental 
factors in Tubu village, Botswana [50]. However, these 
data are usually incomplete [51], and future studies may 
consider approaches that adjust for health facility utili-
zation and under-reporting [52, 53]. Sturrock et  al. [17] 
noted that mapping malaria in low transmission settings 
is a challenge, given that as incidence drops, transmission 
concentrates in hot spots and hot pops. It is challenging 
to identify hot pops operationally because only a sub-set 
of febrile individuals may seek treatment at formal health 
facilities [53]. In low malaria transmission settings, the 
treatment-seeking patterns may be determined by indi-
vidual immune status [54]. For example, the onset of fever 
in low-immunity populations may lead to presentation 
at peripheral health centres, while populations highly 
exposed (hot pops) are less likely to seek treatment [55]. 
These malaria hot spots may serve to perpetuate residual 
malaria transmission in low-transmission seasons and 
hinder efforts to eliminate malaria [56]. Active and timely 
identification of these hot spots and associated risk fac-
tors through active surveys is essential for targeting inter-
ventions to optimize malaria control [49].

This study presents an analysis of a single year of cross-
sectional data that was temporally aggregated, hence 
the temporal dimension was not considered. Using only 
1 year of data may only reflect where cases occurred dur-
ing that single year, but not temporally stable areas of 
high malaria risk. This ignores and masks any seasonal 
pattern, which is highly important in areas approach-
ing elimination. However the results of this study will 
inform further exploratory studies in pre-elimination 
zones also considering the amount of data which will 
be collected through DHIS2. The analysis in this study 
was also restricted by the limited number of wards in 
Gwanda district which impacted on sample size. Ward 
is the smallest political administrative unit with reliable 
data on population size. This might have impacted on the 
analysis as Paez et al. [57] advised that GWR may not be 
used in cases with sample size less than 160 as the small 
sample size issue could result in inaccurate estimates 
in statistical modelling [57–60]. However, Li et  al. [61], 
noted that after considering the spatial heterogeneity in 
the county-level data, with sample size less than 160, the 
GWPR outperformed the traditional generalised linear 
models (GLM) in predicting fatal crashes in individual 
counties [61]. Therefore this study contributes to other 
GWR studies on disease and risk factors, most of which 
show that global statistical models may produce mislead-
ing results [62]. GWPR models are capable of capturing 
the spatial heterogeneity of phenomenon compared to 
global estimates/models [63]. The local coefficient maps 
in this study also show the magnitude, significance and 
direction of the relationships between malaria cases and 
exploratory variables. For local planning, such as district 
or ward (as in this case), the local GWR models seem to 
be more appropriate, since global models may not cap-
ture local changes or variation [63].

Conclusions
This study has confirmed that malaria incidence is het-
erogeneous in low-transmission zones including those in 
pre-elimination phase. It explored local variations in the 
relationship between malaria cases and environmental 
and malaria control factors at ward level in Gwanda dis-
trict, Matabeleland South Province, Zimbabwe. In 2015, 
Gwanda district had two significant clusters: ward 24 
(rural) and 9 (urban). The NDVI and NDWI showed sig-
nificant association with malaria cases in some of the 
wards in Gwanda district. Despite the tendency to under-
estimate malaria burden, routine data from health facilities 
are helpful in reflecting the spatial distribution of malaria, 
especially in low malaria incidence settings. The results of 
this study can be used in planning and implementation of 
malaria control strategies at both district and ward levels.
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