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Abstract 

Background:  One pillar to monitoring progress towards the Sustainable Development Goals is the investment in 
high quality data to strengthen the scientific basis for decision-making. At present, nationally-representative surveys 
are the main source of data for establishing a scientific evidence base, monitoring, and evaluation of health metrics. 
However, little is known about the optimal precisions of various population-level health and development indicators 
that remains unquantified in nationally-representative household surveys. Here, a retrospective analysis of the preci-
sion of prevalence from these surveys was conducted.

Methods:  Using malaria indicators, data were assembled in nine sub-Saharan African countries with at least two 
nationally-representative surveys. A Bayesian statistical model was used to estimate between- and within-cluster 
variability for fever and malaria prevalence, and insecticide-treated bed nets (ITNs) use in children under the age of 
5 years. The intra-class correlation coefficient was estimated along with the optimal sample size for each indicator 
with associated uncertainty.

Findings:  Results suggest that the estimated sample sizes for the current nationally-representative surveys increases 
with declining malaria prevalence. Comparison between the actual sample size and the modelled estimate showed a 
requirement to increase the sample size for parasite prevalence by up to 77.7% (95% Bayesian credible intervals 74.7–
79.4) for the 2015 Kenya MIS (estimated sample size of children 0–4 years 7218 [7099–7288]), and 54.1% [50.1–56.5] for 
the 2014–2015 Rwanda DHS (12,220 [11,950–12,410]).

Conclusion:  This study highlights the importance of defining indicator-relevant sample sizes to achieve the required 
precision in the current national surveys. While expanding the current surveys would need additional investment, the 
study highlights the need for improved approaches to cost effective sampling.
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Background
There is an increasing demand for high quality data and 
statistics to support decision-making and track progress 
towards the Sustainable Development Goals in low- and 
middle-income countries [1, 2]. This is not only impor-
tant for scientific understanding of infectious disease 

epidemiology and health advocacy [3, 4], but is also use-
ful for evaluating the impact of health investments [5, 6]. 
Since the mid-2000s there has been a renaissance in the 
use of nationally-representative cross-sectional house-
hold surveys [7], such as the Malaria Indicator Surveys 
(MIS) developed by the Roll Back Malaria Partnership 
[8], the Multiple Indicator Cluster Surveys [9], and the 
Demographic and Health Surveys (DHS) [10], as a source 
of public health intelligence data to track progress on 
uptake of some health interventions [11].
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The above surveys are nationally-representative, and 
provide data on many indicators. For example, the DHS 
surveys include variables on population demograph-
ics, fertility in women, family planning, maternal and 
child health, and infectious diseases. The precision of 
these cross-sectional surveys is related to the sample 
size, budget, reference sampling indicator, the effect of 
indicator clustering, and the overall data quality affected 
by non-sampling errors [12–14]. In practice a reference 
indicator, usually an indicator for women of reproductive 
age (15–49  years) or indicator for pregnant women in 
the Kenya 2010 MIS, is used to determine sample size at 
design stage. Sample design is usually based on two-stage 
sampling design where primary sampling units (PSU) 
are first selected based on a complete list of census enu-
meration areas (EAs), followed by a random selection of 
households within the PSU [10]. While it is advantageous 
to collect data on many variables in a single cross-sec-
tional survey, the overall optimal sample size require-
ments for all indicators are not always met and remain 
poorly defined due to difference between the reference 
sampling indicator and other indicators. Quantifying the 
precision in these indicators is important, not only in 
interpreting findings from the surveys, but also in design-
ing future surveys.

Indicator precision can be quantified based on the 
effect of clustering as estimated via the intra-class cor-
relation coefficient (ICC) [15, 16]. The ICC, in general, 
estimates the similarity of individual characteristics at a 
primary sampling unit [15]. It has previously been used in 
the design and analysis of cluster-randomized trials [17, 
18]. Thus, a large estimate of ICC indicates greater homo-
geneity within the cluster and this requires only a small 
sample of households per cluster at the design stage. 
Conversely, a small intra-class correlation requires a large 
sample of households at cluster level, but fewer clusters 
nationally. ICC is related to the survey design effect due to 
clustering (loss of effectiveness) [19] commonly included 
in current national survey reports. Bayesian estimation of 
ICC has been examined in the design of clinical trials [20, 
21]. The added value of the Bayesian approach includes: 
(i) such a framework is tractable for complex statistical 
models and various sources of uncertainty can be incor-
porated into the assessment of precision to aid compara-
bility between indicators and surveys [22] and (ii) prior 
beliefs can be imposed on the cluster precision param-
eters which are updated upon observing the data. Such 
methods are used here for assessing survey effectiveness 
in sub-Saharan Africa.

In this research, measures of cluster-sample survey 
efficiency in recent cross-sectional surveys in nine coun-
tries in sub-Saharan Africa, were estimated. Although 
these surveys may differ in terms of implementation, 

the objective here was to assess the precision of three 
malaria-related indicators independently of the survey or 
the base sampling indicator. A retrospective analysis was 
conducted based on variability in malaria parasitaemia, 
and two other indicators, namely fever and the use of 
insecticide-treated nets (ITNs) for children under 5 years 
(0–4  years). For example, the effective sample sizes was 
estimated, retrospectively, for parasite prevalence inde-
pendent of survey costs, and compared with the original 
survey estimates that were based on prospective analysis. 
Such estimates of clustering can be useful in interpreta-
tion of current survey data, and in designing and evalu-
ating future surveys related to health and development. 
Moreover, costing modules can be implemented readily 
with these estimates to assess future financial needs.

Methods
Child morbidity indicators data
The main source of data was from nationally-represent-
ative population-based household surveys undertaken 
for estimating population health outcomes and risk fac-
tors. These included the demographic and health sur-
veys (DHS), and the related disease-specific surveys, the 
Tanzania HIV/AIDS and malaria indicator survey and 
the standalone malaria indicator surveys (MIS). Data 
were assembled for the three indicators namely; preva-
lence of reported fever in the preceding 2 weeks, malaria 
test results from a rapid diagnostic test (RDT) based on 
a finger (or heel) prick blood sample, and use of ITNs. 
The three data variables were extracted only for children 
under the age of 5  years, along with survey dates, and 
geographical coordinates for each cluster-sample. Coun-
tries were selected if more than two nationally-represent-
ative household survey datasets were accessible, and data 
for the three indicators, including parasitaemia testing 
were available along with geographic coordinates at clus-
ter level. Therefore, although data on the use of ITNs and 
prevalence of fever were available from earlier DHS and 
MIS surveys (i.e. since 2000), the incorporation of parasi-
taemia testing started in 2006 [23]. This resulted in nine 
countries that met the criteria where data were available 
and the coverage period of surveys ranged from 2007 to 
2016 (n = 20 surveys, 5839 clusters). These were in east 
Africa (Kenya, Uganda, Tanzania, and Rwanda), south-
east Africa (Madagascar, Malawi), and in west Africa 
(Nigeria, Liberia, and Senegal). 14 of these surveys were 
MIS surveys, five were DHS surveys (two in Rwanda, two 
in Senegal and one in Tanzania), and one was an HIV/
AIDS and MIS survey in Tanzania. The average number 
of households per selected cluster varied from 18 house-
holds in the 2012 Tanzania survey to 36 households in 
the 2007 Kenya MIS survey. Data points were excluded 
if the measure of child health outcome was not present 
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(i.e., if a child was not listed in the household or due to a 
child death). Missing data were imputed as NAs if a child 
was listed in the household with the response marked as 
“don’t know”, or missing the result of parasitaemia.

Random spatial sampling of DHS clusters
Simple random spatial sampling at the cluster level, rep-
resenting 30% of clusters, was drawn without replace-
ment (i.e. using an unweighted simple random sample). 
Consequently, no survey cluster appeared twice in the 
respective samples. Sampling was performed in ARCGIS 
10 using the spatial random sampling design tool based 
on a sampling seed. For Kenya and Rwanda, a further 
test sample was drawn randomly without replacement 
representing 20% (n greater than 30 clusters) and 40% 
of clusters stratified by Administrative level 1 (ADMIN 
1). The 30% subset sample (and 20, 40% samples) was 
used to estimate prevalence under simple random sam-
pling (SRS) for the three indicators of fever, ITN use, and 
malaria parasitaemia testing. Of the total 5839 clusters in 
the nine countries, only a few (n = 34; 0.6%) did not have 
geographic coordinates and, therefore, these were not 
used in spatial random sampling selection. An estimate 
of bias was, therefore, based on the difference between 
the Bayesian simulated posterior mean and the expected 
value under SRS. The remaining 70% sample was used for 
simulation via the Bayesian Markov chain Monte Carlo 
(MCMC) [24, 25] approach to generate posterior distri-
butions for various measures of survey effectiveness. The 
objective of the MCMC algorithm was to obtain a sta-
tionary distribution with Monte Carlo integration used to 
approximate posterior expectations of the parameters of 
interest. The posterior samples were then used for infer-
ence. These included summary statistics of the posterior 
distribution of the indicator, between- and within-cluster 
posterior variance, the intra-class correlation coefficient 
(ICC), the survey design effect (deff), and posterior esti-
mate of the effective sample size (ESS).

Modelling household survey effectiveness parameters
Data were analysed by survey and by country, rather than 
pooling, such that there was no method induced corre-
lation between surveys. The Bayesian hierarchical model 
was implemented via the MCMC approach in JAGS ver-
sion 4.2.0 [26] and the R2jags package in R version 3.3.1 
[27]. The proportion of total variability between- and 
within-clusters was estimated using the ICC(ρ). ICC was 
estimated assuming a binomial distribution for number 
of individuals examined at a cluster based on RDT result, 
prevalence of fever or use of ITN, adjusting for person 
age, and survey domain stratification by urban or rural 
setting. The survey design effect was then modelled in 
the same framework based on estimates of ICC and used 

to derive the optimal sample size based on the same 
number of clusters used in the original survey. For exam-
ple, 200 clusters with an average cluster size of 36 house-
holds were used to simulate the effective sample size in 
the 2007 Kenya MIS. The model parameter convergence 
rate was evaluated using a combination of the Gelman-
Rubin [28] and Raftery-Lewis methods [29]. For the for-
mer, a reduction factor of < 1.05 was used (the proposed 
threshold for detecting stationarity of a target posterior 
distribution in MCMC implementation). The latter pro-
vided estimates of burn-in and thinning factors given an 
accuracy of 0.005 and coverage probability of 0.95 (prob-
ability of the true values contained within predicted cred-
ible interval). Extended descriptions of the methods are 
provided in Additional file 1.

Results
Table 1 shows the results for the 5839 clusters (134,399 
children 0–4  years) split into the multiple data sources 
across nine countries, including estimated household 
survey effectiveness parameters for malaria prevalence 
only. For reasons of space, tables for the reported 14-day 
fever prevalence and the use of ITNs are included as 
Additional file  2: Table S1, Additional file  3: Table S2, 
respectively). Figure 1a shows the spatial distribution of 
these clusters in the nine countries. The Bayesian mean, 
median and 95% credible intervals (Crl) are presented 
along with estimates of ICC, deff and the ESS.

There was little difference in absolute bias, across the 
three indicators, between prevalence estimated from a 
simple spatial random sampling scheme and prevalence 
estimated from the Bayesian parameter model adjusted 
for age. This was also the case when simple random 
spatial sampling represented only 20 or 40% of the clus-
ters (Additional file  4: Table S3). The test for conver-
gence (Gelman–Rubin test) was less than 1.05 for all the 
parameters monitored in the MCMC implementation. 
The Raftery–Lewis method showed that a minimum of 
3746 iterations were required to achieve an accuracy of 
0.005 at coverage probability of 0.95 for most indicators 
and a minimum of 10,510 iterations to achieve an accu-
racy of 0.0025 at coverage probability of 0.99. However, 
all the Bayesian model-based results are based on 55,000 
iterations on two chains with a burn-in of 5,000 iterations 
and retaining every 50th iteration to produce a weakly 
dependent sample of size n = 1000. An example of con-
vergence and mixing diagnostics for the 2010 Senegal 
DHS is shown in the Additional file 5: Figure S1.

Figure 1b shows a scatterplot of modelled ICC estimate 
against the mean model-based prevalence for the three 
indicators in the 20 surveys. Figure 1c shows a scatterplot 
of ICC by indicator against the modelled estimates of ESS 
with an associated Bayesian credible interval. The range 
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of ICC was between 0 and 0.05 for the three indicators, 
and was consistent with the expected value for popula-
tion studies [30, 31]. Zero ICC indicated no correlation 
of responses between and within the cluster. This was 
the case, for example, for malaria prevalence in Tanza-
nia, Senegal, and Rwanda (median ρ 0 (95% CrI [0–0])). 
The values of ICC for the indicator, ρ = 0.01 or ρ = 0.02, 
suggest that the within-cluster variance was greater than 
the between-cluster variance. The larger ICC values 
(ρ > 0.02) were associated with a larger prevalence. The 
effect of ICC was also reflected in the survey design effect 
which was close to 1.0 (median deff 1.01 [1.0–1.01] when 
ρ = 0), for example, for malaria prevalence in the 2010–
2011 Rwanda DHS, and in the 2010–2011 and 2012–
2013 Senegal DHS surveys. A design effect close to one 
suggests similarity to simple random sampling. The deff 
was also larger for the larger estimates of ICC (ρ > 0.04 
and deff  >  2.0), for example, for fever prevalence in the 
2011 Liberia MIS (deff 2.52 [2.12–3.02]), or, ITN use in 
the 2010 Kenya MIS (deff 2.40 [2.07–2.77]).

Figure  2 shows the ranking for each survey indepen-
dently by indicator and by prevalence for the modelled 

ESS. Note that these surveys and countries are assessed 
independently rather than a direct comparison. The com-
bination of the deff and the ICC resulted in mixed results 
in terms of the modelled estimated effective sample sizes 
for prevalence of fever, malaria and for ITN use by sur-
vey. For some indicators, the ESS was higher while in 
other indicators lower deff (less sampling complexity) 
and ESS were estimated (mostly for fever and ITN use) 
(Additional file 6: Figure S2). There was a change in ESS 
across all the surveys by indicator. For example, in the 
2014–2015 Rwanda DHS the estimated ESS for malaria 
prevalence increased by 54.08% [50.67–56.47] (median 
ESS of children 0–4 years 12,220 [11,950–12,410]) while 
in the Tanzania 2015–2016 DHS the ESS increased by 
19.26% [18.15–20.26] (ESS 13,000 [12,880–13,110]). The 
largest percentage increase in the sample size require-
ment for malaria prevalence based on surveys conducted 
in the last 5 years was for the 2015 Kenya MIS (by 77.65% 
[74.72–79.37]; ESS 7129 [7077–7164]). In three countries 
(Nigeria, Liberia, and Uganda) the ESS was lower than 
that of the survey sample for children of 0–4 years for all 
three indicators.

Fig. 1  a The spatial distribution of clusters (n = 5839) in the 20 surveys in nine countries. b A scatterplot of the intra-class correlation coefficient 
and the modelled estimate of prevalence for the three child morbidity indicators [fever prevalence, ITN use and malaria prevalence based on rapid 
diagnostic testing (RDTs)]. Each data point in the scatter represents a survey. ρ refers to the variability between clusters and shows that surveys with 
low prevalence exhibit small between-cluster variance. c A scatterplot showing the decrease in ρ as Effective Sample Size increases with a Bayesian 
95% credible interval
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Discussion
Using malaria indicators as an example, this study 
showed that variability at cluster level has an impact 
on the desired sample size for the indicator. On the one 
hand, the requirement for large sample size to support 
intervention monitoring reduces with the increasing use 
of interventions, but on the other hand the sample size 
increases with declining prevalence (of the indicator). 
At very low prevalence, variability within clusters was 
smaller, and the results suggest that large sample sizes 
are required at this low prevalence especially for blood 
tests compared to intervention use (ITN use). This sug-
gests defining sample sizes for malaria indicator surveys 
to increase the precision of detecting prevalence. Com-
parison between the actual sampled numbers of children 
aged 0–4 years in the most recent surveys and the esti-
mated effective sample sizes for RDTs showed a deficit in 
the actual sample size of up to 77.65% [74.72–79.37] for 
the 2015 Kenya MIS, 25.88% [15.25–35.26] for the 2014 
Malawi MIS, 53.3% [54.08–56.47] for the 2014–2015 
Rwanda DHS, and by 19.26% [18.15–20.26] for the 2015-
to-2016 Tanzania DHS. Smaller required sample sizes 
(when compared to the actual national sample) were 
estimated across the three indicators in only Senegal, 
Liberia, Nigeria, and Uganda suggesting a sub-national 
relevance of estimates for surveys in these countries.

This study quantified sample size requirements for 
three malaria-related indicators in recent household sur-
veys. Although such an assessment could be extended 
to other indicators, it is important to establish the rel-
evance and basis of such an undertaking. Findings here 
suggest that it may be advantageous to optimize malaria 
surveys using biomarkers as reference variables. Such an 
approach could improve precision requirements for other 
indicators included in these surveys, for example fever 
prevalence and use of ITNs in children aged 0–4  years, 
as estimated in these nine study countries with varying 
transmission. This may also have an added value in sur-
veys where the initial reference sampling indicators were 
based on prevalence of interventions (for example, the 
2007 Kenya MIS [32]), thereby contributing to reduced 
precision for biomarkers. Biomarkers were introduced in 
these nationally representative surveys in 2006 and this 
study highlighted the requirement for larger sample sizes 
for malaria blood testing in recent surveys. Such bio-
markers have the advantage of being an objective meas-
ure of health compared to self-reported conditions [33].

There are additional challenges for sub-national varia-
tion in malaria prevalence. First, the national malaria pro-
grammes face the challenge of expanding future malaria 
focussed cross-sectional surveys as the malaria burden 
declines without an increase in resources. For example, 

Fig. 2  Ranking of country-level estimated effective sample size (ESS) based on RDT positivity (prevalence of malaria) from Bayesian modelling. The 
countries (y-axis) has been ordered based on RDT positivity from low to high prevalence (Liberia 2011)
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in the recent 2015 Kenya MIS, the estimates of intra-class 
correlation and the design effect suggest that much larger 
sample sizes may be required for the parasitaemia indica-
tor compared to past survey designs predating the intro-
duction of this RDT-based biomarker. Under conditions 
of pre-elimination (i.e., parasite prevalence < 1%), the use 
of surveillance through combined active and passive case 
detection is already encouraged by the current policy [34, 
35]. Thus, there is a need to design cost-effective ways of 
focussed cross-sectional surveys in sub-national areas 
experiencing stable malaria transmission with routine 
surveillance in regions with low-unstable transmission to 
meet future monitoring and evaluation needs.

While variation between the clusters was observed, 
the individual responses were correlated within clusters 
due to similarities in geographic and contextual charac-
teristics. Estimates of intra-class correlation are invariant 
to scale and, therefore, subsequent estimates of sample 
sizes require estimates of associated uncertainty as con-
ducted in this study. In general, these estimates have an 
important utility in interpreting the findings from recent 
surveys, thus, increasing our understanding of current 
policy as seen in other health studies [19]. For example, 
ICC has direct relevance to the disbursement of health 
interventions. Universal coverage for the entire at-risk 
population [36] should be emphasized when there is a 
relatively low degree of clustering [37, 38]. When the ICC 
is large, a combination of universal and population-based 
targeting (e.g. households in the low income category or 
high risk groups) in these settings may be beneficial [39]. 
In addition, ICC is useful in the planning of future sur-
veys. While the size of survey (i.e., number of clusters) 
is constrained by funding, estimates of ICC may also 
inform decisions around which indicators are prioritized. 
ICC decreases with increasing sample size (Fig.  1c) and 
larger estimates of ICC amplify the design effect. The 
design effect is less comparable across countries because 
it is highly dependent on survey complexity. The design 
effect is also directly proportional to the average house-
hold size and the sampling error, being larger in countries 
such as Uganda where household size in rural areas was 
5.1 compared to 4.1 in urban areas and Nigeria (5.1 and 
4.6 for urban and rural areas, respectively).

Estimates for fever were not restricted to children aged 
0–4 years with a positive RDT test. Although the propor-
tion (or prevalence) of malaria-related fever decreases 
with declining transmission [40, 41], some fever cases are 
still treated presumptively in many settings due to several 
logistical and operational challenges including the avail-
ability of diagnostics, and patient or clinician behaviour 
[42–44]. Consequently, without the use of parasitologi-
cal testing, fever cases are undistinguishable from other 
childhood infections such as respiratory tract infections 

[45, 46]. In addition, limitations around individual per-
ception of fever, the possibility of multiple episodes of 
fever within the 14-day window, and recall bias remain 
[47]. Thus, the current national cluster-sample surveys 
may underestimate fever prevalence if multiple episodes 
with varying duration occur within the 14  days preced-
ing the survey. In addition, there are possible limitations 
of not mimicking the practical realities of these surveys 
in the Bayesian modelling framework (including cost, 
and the quality of data collection during fieldwork or 
non-sampling errors) [48, 49]. While budget plays a role 
at sample selection stage in addition to other factors 
such as implementing agency, the aim was to investigate 
the optimal sample sizes independent of costs in vary-
ing transmission intensity settings. The DHS survey, for 
example, requires a longer fieldwork period (> 6 months) 
due to the expansive nature of the questionnaire, which 
presents additional seasonal challenges compared to the 
MIS (maximum 4 months). Lastly, it is important to note 
that the objective of the study was not to examine sub-
national or fine-scale spatial variation (spatial and tempo-
ral heterogeneities) in clustering and prevalence of these 
indicators, nor to quantify the determinants or drivers 
of prevalence in the current survey data. Such analysis 
is carried out as part of mapping studies [50–52], and in 
studies on the role of environmental drivers in quantify-
ing risk [53–55]. Sub-national precision estimation could, 
however, be explored by future surveys aiming for more 
localized survey designs. However, it will be beneficial to 
first evaluate the costs and benefits of such an adaptation.

Conclusion
Surveys are often used to provide timely information at 
a national level. In practice, however, there is usually a 
trade-off between providing high precision and resource 
availability at a national level. Firstly, this study highlights 
the importance of defining indicator-relevant sample 
sizes, and using biomarkers as reference sampling indi-
cators to achieve the required precision in the current 
nationally representative surveys. Secondly, the study 
highlighted that obtaining valid and reliable high qual-
ity data for monitoring biomarkers will require expand-
ing current surveys especially in the context of declining 
prevalence [56]. A major impediment to achieving this, 
however, is the degree and size of funding allocated to 
these surveys. The DHS and the Multiple Indicator Clus-
ter Surveys include many more variables and biomarkers 
such as HIV testing. Thus, while an extended analysis on 
variability at cluster level in other indicators will also be 
beneficial, new approaches are required to increase the 
validity and precision of current surveys including links 
between household surveys and the administrative level 
health information systems data.
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