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Tools for surveillance of anti‑malarial 
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Abstract 

To limit the spread and impact of anti-malarial drug resistance and react accordingly, surveillance systems able to 
detect and track in real-time its emergence and spread need to be strengthened or in some places established. Cur-
rently, surveillance of anti-malarial drug resistance is done by any of three approaches: (1) in vivo studies to assess 
the efficacy of drugs in patients; (2) in vitro/ex vivo studies to evaluate parasite susceptibility to the drugs; and/or (3) 
molecular assays to detect validated gene mutations and/or gene copy number changes that are associated with 
drug resistance. These methods are complementary, as they evaluate different aspects of resistance; however, stand-
ardization of methods, especially for in vitro/ex vivo and molecular techniques, is lacking. The World Health Organiza-
tion has developed a standard protocol for evaluating the efficacy of anti-malarial drugs, which is used by National 
Malaria Control Programmes to conduct their therapeutic efficacy studies. Regional networks, such as the East African 
Network for Monitoring Antimalarial Treatment and the Amazon Network for the Surveillance of Antimalarial Drug 
Resistance, have been set up to strengthen regional capacities for monitoring anti-malarial drug resistance. The World-
wide Antimalarial Resistance Network has been established to collate and provide global spatial and temporal trends 
information on the efficacy of anti-malarial drugs and resistance. While exchange of information across endemic 
countries is essential for monitoring anti-malarial resistance, sustainable funding for the surveillance and network-
ing activities remains challenging. The technology landscape for molecular assays is progressing quite rapidly, and 
easy-to-use and affordable new techniques are becoming available. They also offer the advantage of high throughput 
analysis from a simple blood spots obtained from a finger prick. New technologies combined with the strengthening 
of national reference laboratories in malaria-endemic countries through standardized protocols and training plus the 
availability of a proficiency testing programme, would contribute to the improvement and sustainability of anti-malar-
ial resistance surveillance networks worldwide.
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Background
“Anti-malarial drug resistance” is defined as the “ability of 
a Plasmodium parasite strain to survive and/or to multi-
ply despite the administration and absorption of a drug 
given in doses equal to or higher than the recommended 
ones, but within tolerance of the human subject” [1, 2]. 
Anti-malarial drug resistance is a global threat to malaria 
control and elimination, and is of particular concern 

in Plasmodium falciparum, the deadliest species that 
infects human. Resistance to anti-malarial drugs has also 
been reported in Plasmodium vivax; even if its extent 
is of lesser magnitude compared to P. falciparum, it is 
also becoming an increasing concern in vivax endemic 
regions, and a serious public health problem [3–5].

The first synthesized drug to become widely used 
to treat malaria was chloroquine (CQ). CQ was intro-
duced in the early 1940s, however P. falciparum resistant 
parasites emerged by the early 1960s [6, 7]. Population 
genetic studies using molecular markers and microsatel-
lites showed that P. falciparum CQ resistance (PfCQR) 
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emerged simultaneously in different geographical regions 
[8, 9]. There were at least four different origins for PfCQR, 
one in Southeast Asia on the Thai-Cambodia border, a 
second in Papua New Guinea, a third in Colombia and 
another one in Venezuela [9]. Plasmodium vivax resist-
ance to CQ (PvCQR) emerged in the late 1980s in Papua 
New Guinea and Indonesia, and has been observed later 
in other regions, but its extent so far is still difficult to 
assess [4, 10]. CQ is still recommended to treat P. vivax 
infections in most endemic settings [3].

After PfCQR spread throughout most of malaria-
endemic countries, the drug was replaced by sulfadox-
ine-pyrimethamine (SP) as first-line therapy. However, 
resistance to SP developed rapidly, appearing first in 
Southeast Asia within 1 year of its introduction [11, 12]. 
Subsequently, low levels of resistance to SP emerged 
in different places in Southeast Asia, Africa and Latin 
America [13–16], but the highly resistant parasites fol-
lowed the same path than PfCQR, spreading from South-
east Asia to Africa [17]. After SP failure, mefloquine 
(MQ) was then used to replace SP; predictably, resistance 
developed within 5  years of its widespread use [18, 19]. 
Following the failure of MQ in Southeast Asia, the use 
of drugs in combination was, therefore, proposed as the 
best way to circumvent resistance, as the probability of 
a parasite to develop resistance to two drugs simultane-
ously is considered to be lower than for a single drug [20, 
21].

Artemisinin derivatives were discovered in the 1970s, 
and are the most potent anti-malarial drugs available to 
date, showing rapid and steep declines in parasite den-
sity, despite their short half-life [20]. When combined 
with drugs that have longer half-life, the partner drug 
can clear the few remaining parasites, making the com-
bination treatment highly efficacious, and less prone to 
resistance [21, 22]. Artemisinin-based combination ther-
apy (ACT) is now the mainstay for malaria treatment in 
endemic regions, following recommendations from the 
World Health Organization (WHO) [23]; and initially 
proved to be highly efficacious in all endemic countries 
during the last 15 years [24–26]. However, parasites with 
decreased susceptibility to artemisinin derivatives have 
been reported from Southeast Asia [27–29], as well as 
resistance to the partner drug in the same region [30–32].

Artemisinin resistance has been associated with sev-
eral point mutations in a propeller domain of a kelch 
gene located on the chromosome 13 [33, 34], however 
the exact mechanism of resistance is not yet fully under-
stood, and so far those mutations associated with arte-
misinin resistance have not been detected outside of the 
Greater sub-Mekong region, China and Guyana [35, 36]. 
Multiple foci of origin for those mutations have already 
been discovered [35–37], and resistance may emerge in 

different regions with different epidemiological back-
grounds [38]. To date, there is no alternative to ACTs, 
and the next generation of anti-malarial drugs will not be 
available on the market before several years [39, 40].

Nowadays, surveillance of anti-malarial drug resistance 
relies on three different and complementary approaches: 
in  vivo efficacy studies for the detection of treatment 
failures, in  vitro assessment of parasite sensitivity to 
drugs, and the detection of molecular signatures in the 
parasite associated with drug resistance. These different 
approaches have their own advantages and challenges. 
The in vivo assessments provides information about the 
efficacy of the studied drug in patients, but are difficult 
to conduct because of the heavy logistics and cost. This 
approach is particularly challenging in low transmission 
areas where thousands of patients need to be screened. 
Moreover, treatment outcomes are confounded by many 
other factors, such as acquired immunity, treatment 
adherence, nutrition status, pregnancy and pharmacoge-
netics [41]. In vitro methods provide useful information 
on the parasite susceptibility, but require substantial lab-
oratory infrastructure and highly trained staff. Validated 
molecular markers are highly relevant to detect and mon-
itor in real time the geospatial distribution of resistant 
parasites and their prevalence in a parasite population is 
often a good indicator of the level of clinical resistance. 
However there may be sometimes a lack of strong corre-
lation between molecular markers and clinical outcomes. 
The analysis of molecular markers require as well specific 
infrastructure and highly trained personnel. There is an 
urgent need to strengthen surveillance systems for anti-
malarial drug resistance [42, 43], and develop easy-to-use 
and low-cost new tools that could provide early warning 
signals before high levels of resistance to artemisinin and 
ACT have spread beyond the greater Mekong region.

The aim of this landscape analysis is to provide an over-
view of the current methods and tools used for surveil-
lance of anti-malarial drug resistance, and to identify 
current knowledge and technology gaps. The analysis 
will first provide an overview of existing approaches and 
methods, including a description of their underlying 
principles, and then discuss the major advantages and 
limitations of each approach, concluding finally with 
suggestions on potential improvements for the different 
approaches.

Therapeutic efficacy of anti‑malarial drugs
In vivo efficacy assessment consists of prescribing the 
required dose of anti-malarial drugs (mono- or combina-
tion therapies) to patients infected with uncomplicated 
Plasmodium parasites. The WHO has developed and 
regularly updated methods which has largely contributed 
to standardize the assessment of anti-malarial efficacy 
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[44]. Having received appropriate treatment, the patients 
are followed up by parasitological and clinical assess-
ments for a specified number of days (from 28 to 63 days, 
depending upon the half-life of the medicine assessed), 
after which the treatment outcome is determined as suc-
cessful or not. Currently, this assessment is done in rou-
tine surveillance and is referred as therapeutic efficacy 
studies (TES) and have become the gold standard to 
guide treatment policy in malaria endemic countries [44].

Therapeutic efficacy studies: history
The procedures for monitoring anti-malarial in vivo drug 
efficacy were standardized for the first time in 1964 [45] 
by the WHO after the emergence of PfCQR. The protocol 
recommended a 7-day observation period. Blood samples 
were taken and thick films for malaria microscopy were 
prepared daily during the 7 days of follow-up. The para-
sitological response to the treatment was classified into 
sensitive (S) or resistant (R), with three different levels of 
resistance (Table  1). If the parasitological response was 
classified as RI, an extended observation for an additional 
21  days was usually carried out to distinguish between 
RI, RII or RIII resistance. The inconvenience of this first 
protocol included the high workload of taking samples 
daily during 7 days or more, as well as the fact that the 
classification of the therapeutic response did not take 
into account the clinical status of the patient (e.g., persis-
tence of fever, or presence of other malaria symptoms); 
the protocol was specific for CQ; and the inclusion and 
exclusion criteria for patient recruitment were not well 
defined [2]. The short surveillance period of 7 days was 
also found to result in an underestimation of the true 
percentage of therapeutic failures, especially for drugs 
with long half-life. Therefore, this protocol was appro-
priate for therapeutic efficacy studies in regions of high 
malaria endemicity, and for the surveillance of drugs with 
short half-lives.

The first major protocol revision was made in 1996, 
extending the follow up period to 14  days, with blood 
samples taken only on day 0, day 3, day 7, and day 14 of 
follow-up. Parasitological and clinical responses were 
taken into account for the evaluation of therapeutic effi-
cacy [46]. The responses to the treatment were classified 
into ‘adequate clinical response’ (ACR), ‘early treatment 
failure’ (ETF) and ‘late treatment failure’ (LTF) (Table 1). 
However, the protocol remained more appropriate for 
high transmission regions.

A second major revision was carried out in 2003, with 
recommendations for the evaluation of drugs in low and 
moderate transmission settings, to fill the gap of the pre-
vious standardized protocol version from 1996 [47]. The 
protocol included a 28-day follow-up period for low and 
moderate transmission settings, and a 14-day follow-up 

period for high transmission settings. A 28-day follow-up 
period was also recommended for the evaluation of drugs 
with long half-life. The protocol also suggested the use of 
genotyping by polymerase chain reaction (PCR) to differ-
entiate recrudescence from re-infections during the fol-
low-up period, especially for studies in high transmission 
areas [48]. The treatment responses were re-classified 
into four categories: ‘adequate clinical and parasitologi-
cal response’ (ACPR), ‘early treatment failure’ (ETF), ‘late 
clinical failure’ (LCF) and ‘late parasitological failure’ 
(LPF) (Table 1). Even when this new protocol responded 
to the needs of different transmission settings, some con-
fusion arose due to the use of the same classification of 
treatment failures, but with different definitions accord-
ing to transmission intensity.

Current protocol
The current protocol was developed in 2009, and incor-
porates recommendations for all endemic regions in a 
single procedure (Table  1). For all endemic areas, both 
clinical and parasitological observations are taken into 
account for the interpretation of treatment responses 
[44]. The protocol also includes recommendations for an 
emergency treatment in case of study exclusions. Patients 
excluded from the study are either censored or removed 
from the analysis, depending on the type of analysis 
that is required, even though, Kaplan–Meier analysis is 
the preferred to the per protocol analysis [44]. At least 
28 days (or 42–63 days for drugs with longer half-lives) 
are required for follow-up. This protocol includes a rec-
ommendation as well to take a blood sample to measure 
the concentration of the drug at day 7, which is a good 
predictor of drug absorption and its correlation with 
treatment failure [49, 50].

Genotyping to distinguish between recrudescence 
and reinfection
In the current therapeutic efficacy protocol, systematic 
genotyping is recommended in cases of clinical or para-
sitological failure, to distinguish recrudescence from 
re-infections, using three highly polymorphic genes: 
merozoite surface protein 1 (msp1), merozoite surface 
protein 2 (msp2), and glutamate rich protein (glurp) [44]. 
Genotypic profiles obtained from samples collected on 
day 0 (i.e., from the initial parasite infection) and on day 
X (i.e., the day of follow-up observation) are compared. 
Identical profiles confirm recrudescent cases, while dif-
ferent profiles are indicative of a re-infection. Notably, 
these genes encode antigens under immune selective 
pressure, and this might bias the interpretation of dis-
similar parasites in paired blood samples [51]. Moreover, 
despite the WHO recommendation, some studies only 
use 1 or 2 of the three genes, or use them sequentially 
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and only test some of the genes, and other use more than 
three genes, which limits the comparison between differ-
ent studies and could compromise the interpretation of 
the results [52]. The results of the genotyping are often 
detected by agarose gel, and there can be high inter-indi-
vidual variation in results interpretation depending on 
the quality of the gel and the experience of the labora-
tory technician [53]. This is due to the lack of resolution 
of the current genotyping methods that do not allow to 
correctly distinguish polymorphisms on agarose gel for 
digested PCR products with long fragments such as those 
from glurp [54]. Moreover, genotyping could not give 
accurate estimates, especially in area of high transmis-
sion intensity due to the high number of infecting para-
site strains (multiplicity of infection) [52].

Other methods have been developed to distinguish 
recrudescent and new infections, using microsatel-
lite markers [55] and capillary electrophoresis [56, 57]. 
Microsatellites are simple sequence repeats in the Plas-
modium genome, generally not more than three nucleo-
tides, and hundreds have been described [58]. They are 
generally not under immune selection, and the sizes of 
alleles fall at predictable, discrete lengths that may enable 
easy comparison across multiple samples and laborato-
ries [59]. By measuring the size of microsatellites using 
capillary electrophoresis, which has a resolution of one 
nucleotide and is highly reproducible, the full diver-
sity of length polymorphisms present in a population 
can be evaluated [55]. Many procedures for genotyping 
by microsatellites have been discussed [60], and some 
studies have shown that it is difficult to conclude with 
certainty the distinction between a recrudescence and a 
reinfection. The use of microsatellite markers in combi-
nation with msp1, msp2, and glurp genes may improve 
the sensitivity and standardization methods of P. falcipa-
rum genotyping [55, 61, 62].

Pharmacokinetics (PK)/pharmacodynamics (PD)
It has been shown that host factors, such as bioavailabil-
ity and immune response, can influence the therapeu-
tic response [63, 64]. Apparent drug failures may in fact 
reflect issues with the metabolism of the drug rather than 
innate parasite resistance. The impact of drug metabo-
lism on the treatment outcome can be assessed by PK 
(dynamics of the drug concentration resulting from 
administration of a certain drug dose) and PD (impact 
of a certain drug concentration on the parasite density) 
[65]. Bioavailability is one of the most important factor, 
referring to the proportion of the absorbed drug that is 
transformed into the active metabolite, enters the blood 
circulation, and has an anti-malarial effect [49, 65]. Only 
a few years ago, the WHO started promoting pharmacol-
ogy assessment as part of anti-malarial efficacy studies, 

by publishing specific methods and procedures [50]. 
The WHO’s protocol recommends taking a blood sam-
ple (venous or capillary blood) from the patient, several 
times per day, to assess drug concentration dynamics 
over the course of the treatment. These data are analysed 
using different PK models appropriate for each drug [66]. 
The results show if the drug has reached the required 
therapeutic concentration that correlates with elimi-
nation of the parasite, or if the concentration has been 
sub-optimal, in which case a treatment failure should 
not be interpreted as parasite resistance [66, 67]. Stud-
ies with different anti-malarial drugs have shown that in 
some patients, especially young children, who are fre-
quently those involved in therapeutic efficacy studies in 
high transmission settings, tend to receive a lower dose 
of the drug leading to suboptimal blood concentrations 
[68, 69]. This may lead to patient outcomes misclassifica-
tions as treatment failure due to drug resistance whereas 
the patient didn’t reach the optimal drug concentration 
to clear the parasites.

In vitro and ex vivo phenotypic assay 
for anti‑malarial susceptibility assessment
Principle
The assessment of P. falciparum parasites susceptibility 
to anti-malarial drugs can be performed phenotypically, 
using parasite strains collected from patients (ex vivo) or 
with culture-adapted isolates (in vitro) [70]. The assess-
ment can be done by culturing parasites in the presence 
of anti-malarial drugs at varying concentrations to deter-
mine the growth inhibitory effect of the drugs (Fig. 1), or 
by exposing parasites to a specific high concentration for 
a relatively short period [71]. The parasite culture is done 

Fig. 1  Inhibition of CQ-sensitive (3D7) and CQ-resistant (W2) P. falci-
parum by geldanamycin (GA) and chloroquine (CQ) (Source [72])
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in laboratory flasks with liquid medium and red blood 
cells, supplemented with amino acids, human serum, 
or bovine serum albumin (BSA). Antibiotics can also be 
added to the culture medium to avoid bacterial contami-
nation. The susceptibility assays are usually done in assay 
plates (96-, 24-, or 12-well) which have been previously 
coated with varying concentrations of the anti-malarial 
drugs. The parasite growth is then measured using vari-
ous techniques, and results used to determine either the 
concentration that inhibits parasite growth by 50% (50% 
inhibitory concentration; IC50) [73] or the survival rate 
[71]. Currently, in  vitro/ex vivo drug sensitivity assays 
use one of several different methods to measure parasite 
growth [74], as described below and in Table 2. 

Microscopy (WHO microtest)
The principle of the assay is based on counting parasite 
growth by microscopy. Parasites are cultured with dif-
ferent concentrations of drugs for 24–30 h. The baseline 
parasitemia differs between the different techniques, and 
varies from 0.1 to 1% of red blood cells being infected. 
Parasite growth in the different plate wells with different 
drug concentrations is determined by counting the para-
sites by microscopy, on a thin film, after Giemsa staining 
[75, 76]. One must take into account the number of para-
sites at different developmental stages (ring stage or schi-
zont) for the interpretation of the results.

Isotopic test
The principle of the assay is based on measuring para-
site growth by adding radioactive dye in the culture that 
is incorporate into parasite DNA. Parasites are cultured 
with different concentrations of a drug for 48  h, and a 
radioactive marker, i.e., tritium labelled hypoxanthine, is 
added to the culture medium [77, 78]. Hypoxanthine is 
a DNA precursor, and the tritium-labelled hypoxanthine 
is incorporated into the parasite DNA during the culture 
phase. After the 48 h incubation period, the culture is fil-
tered through filter paper and the paper dried. A scintil-
lating liquid is added to the paper, and in a beta-counter 
machine, the parasite DNA is measured as counts per 
minute (CPM), and resulting values are used to calculate 
the IC50.

ELISA (HRP2 and pLDH)
The principle of the assay is based on assessing parasite 
growth by measuring the concentration of proteins pro-
duced by the cultured parasites [79]. Parasites are cul-
tured with different concentrations of a drug for 72  h. 
After 72 h, the culture plates are frozen at −  20  °C and 
thawed (several times if needed) to ensure cell lysis. 
In parallel, ELISA plates are coated with monoclonal 
antibodies directed against the Plasmodium spp. LDH 

(lactate dehydrogenase), or the P. falciparum-specific 
HRP2 (histidine-rich protein 2) at 4  °C overnight [80, 
81]. The wells of the antibody coated plates are then 
incubated with parasite culture mixes transferred from 
the thawed parasite culture plates. After an incubation 
period of 2  h, biotinylated antibodies and colorimetric 
detection reagents are added. Finally, the plates are read 
on a spectrophotometer at 450 nm, and resulting absorb-
ance values are used to calculate the IC50 and determine 
the parasite susceptibility to anti-malarial drugs [82, 83].

Fluorescent markers
The principle of the assay is based on measuring parasite 
growth using a fluorescent marker that will react with 
DNA and RNA [84]. Parasites are cultured with different 
concentrations of a drug for 48 h or 72 h. After 48/72 h of 
incubation, the parasite culture plate is frozen at − 80 °C 
until the SYBR Green I assay is performed. The plate is 
thawed for 2 h at room temperature on the day of anal-
ysis, and the contents are shaken briefly, before trans-
ferring to a new plate, where SYBR Green is added and 
incubated at room temperature for 1 h. Finally, the plate 
is read on a fluorimeter, the intensity of fluorescence cor-
responding to the quantity of the DNA in the culture, and 
the IC50 is determined from the obtained values.

Flow cytometry
The principle of the assay is based on measuring parasite 
growth by counting the number of infected red blood 
cells. Parasites are cultured for 48  h with different con-
centrations of a drug [85]. The method is based on the 
detection of infected red blood cells by marking intra-
erythrocytic parasite DNA with a fluorescent dye. Vari-
ous types of permeable markers can be used to mark the 
DNA [85]. The mixture of infected and non-infected red 
blood cells is then analysed in a cytometer, and the results 
analysed to determine the amount of infected cells, hence 
the number of parasites having grown in absence or in 
presence of the anti-malarial drug, to determine the IC50 
[86, 87].

Ring stage survival assay (RSA)
This method was developed specifically to assess resist-
ance of P. falciparum parasites to artemisinin derivatives 
that cannot be well detected by the classical in  vitro/ex 
vivo assays [71, 88]. This is due to the fact that the 
decreased susceptibility to artemisinin affects the ring 
stages only [89], hence a resistance phenomenon can-
not be well detected in a culture that goes through all 
the parasites stages. For in vitro assays, parasites are cul-
tured without any drug to reach a high parasite density 
(≥  0.2%), then a tight synchronization step (ring-stages 
aged from 0 to 3 h) is performed to eliminate the schizont 
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stages, and the ring stage parasites are placed into culture 
in the presence of 700 nM of dihydroartemisinin (DHA). 
This concentration represents the typical therapeutic 
concentration found in patients treated with artemisinin 
derivatives. DHA is removed after 6 h (a physiologically 
relevant duration), and the parasites are placed into a 
fresh culture mix for another 66  h. For ex  vivo assays, 
samples collected from patients are processed within 
24  h. Plasma is removed and the blood washed three 
times in RPMI-1640. If the parasitemia is greater than 1%, 
it is adjusted to 1% by adding uninfected erythrocytes, 
but parasites are not experimentally synchronized, they 
are directly exposed to 700  nM of dihydroartemisinin 
(DHA) for 6 h, and then placed into a fresh culture mix 
for another 66 h. For both in vitro and ex vivo, survival 
rates are assessed microscopically or by flow cytometry 
by counting the proportion of viable parasites that devel-
oped into second-generation rings or trophozoites with 
normal morphology at 66 after drug removal [90].

Molecular methods for the detection of genetic 
polymorphisms associated with anti‑malarial drug 
resistance
Principle
Molecular methods have allowed for a better under-
standing of the emergence and spread of anti-malarial 
drug resistance. In the last two decades, the mechanisms 
of resistance to the most widely used anti-malarial drugs 
have been revealed in part using molecular techniques, 
and anti-malarial resistance is often associated with sin-
gle nucleotide polymorphisms (SNPs) or amplifications 
of the genes coding for drug target proteins or transport-
ers (CNVs) [91]. Various methods have been developed 
for the assessment of these known resistance markers. 
Resistance to chloroquine is associated with point muta-
tions in two different genes: P. falciparum chloroquine-
resistance transporter (Pfcrt) and P. falciparum multidrug 
resistance gene 1 (Pfmdr1) [92–94]. Resistances to sulf-
adoxine/pyrimethamine are associated with point muta-
tions in P. falciparum genes coding for dihydrofolate 
reductase (Pfdhfr) [95, 96] and dihydropteroate syn-
thetase (Pfdhps) [97], while resistance to mefloquine has 
been associated with gene amplification in Pfmdr1gene 
[98, 99]. Mutations in the parasite cytochrome b are asso-
ciated with atovaquone resistance [100] and resistance to 
piperaquine has been associated with gene amplification 
in plasmepsin 2 and 3 genes [101, 102]. More recently, 
decreased susceptibility to artemisinin derivatives has 
been associated with point mutations in the propeller 
domain of a Kelch gene located on the chromosome 13 
(K13) [33].

The basic principle of most of methodologies assess-
ing genomic markers associated with drug resistance is 

based, after DNA extraction, on the amplification of the 
gene or loci of interest, using the polymerase chain reac-
tion (PCR). To increase the detection sensitivity, a second 
amplification can be used to amplify the PCR product of 
the primary PCR (nested PCR). In resource-limited set-
tings, blood samples are often collected and dried onto 
filter papers and then stored and transported appropri-
ately to the laboratory. Parasite DNA obtained from 
dried blood spots can be stable when adequately stored 
until analysis (several years at room temperature). The 
transport of these biological samples therefore doesn’t 
require any specialized equipment for storage; however 
it is important that the blood spots are well dried to 
avoid growth of fungi and deterioration of the DNA. It 
is also critical to avoid cross contamination between dif-
ferent samples when storing and cutting the blood spots. 
The DNA extraction can be performed using a variety 
of methods, ranging from simple Chelex methods to 
commercial kits [103]. The amplification by PCR only 
requires a small amount of extracted DNA.

Restriction fragment length polymorphism (RFLP)
The PCR products are digested with specific restriction 
enzymes, to determine if the sequence of the codons of 
interest is present [104]. These restriction enzymes only 
cut the nucleotide sequence at specific sites which results 
in PCR product fragments of specific sizes. After enzy-
matic digestion the digested amplification products are 
then analysed by agarose gel electrophoresis to determine 
the length of the digested DNA products. The result can 
then be interpreted as ‘mutant’ (i.e., mutation associated 
with drug resistance), ‘wild-type’ (i.e., absence of muta-
tion associated with drug sensitivity) or mixed (presence 
of both mutant and wild-type alleles, i.e. a mixture of 
parasite strains) [105].

Sanger sequencing (capillary electrophoresis)
Sequencing can be performed on the gene or loci of inter-
est. Sanger sequencing (chain termination sequencing) is 
a method of DNA sequencing based upon the selective 
incorporation of chain terminating dideoxynucleotides 
(ddNTPs) during in  vitro DNA replication [106]. There 
are two classical methods of Sanger sequencing which 
utilize fluorescently labelled primer or labelled dNTPs. 
In most cases both strands of the targeted genomic DNA 
are sequenced. The sequences are then reassembled 
using dedicated software and compared to a sequence 
from reference strain (often 3D7) to look for new point 
mutations. The length of the DNA target which can be 
sequenced with high confidence is based upon the tech-
nique and the method utilized and how well the method 
has been optimized. In general 400–700 bases is an aver-
age read length for Sanger sequencing.
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Next generation sequencing
Next generation sequencing (NGS) can be performed on 
the gene or loci of interest or the whole genome to look 
for potential new mutations or mechanisms of resistance. 
NGS can be used as well to track the origin and spread 
of resistant parasites using microsatellites data analysis 
[36, 37, 107]. Different samples are pooled either after 
or before DNA extraction and are sequenced together. 
A DNA library is then prepared consisting of small frag-
ments of the DNA, not all of the same size, but on aver-
age 100 base pairs. NGS systems are able to sequence 
millions of small base pairs in parallel based on the “shot-
gun” approach in which millions of short nucleotides are 
sequenced in parallel for only one strand of the DNA. 
Deep sequencing refers to sequencing a genomic region 
multiple times, sometimes hundreds or even thousands 
of times. This NGS approach allows detection of rare 
clonal types compared to the classic sequencing by capil-
lary electrophoresis [108]. The sequencing data are ana-
lysed by bioinformatics tools to reconstruct the gene of 
interest or the whole genome and compare it to a refer-
ence strain (usually 3D7) [109].

Real‑time‑PCR
Real-time PCR can be used to detect both SNPs and 
gene copy number. Real-time PCR is a PCR conducted 
on a specific piece of equipment, which allows for the 
real time observation of the DNA amplification using 
nucleic acid stain dyes (i.e. SYBR green), fluorescence-
labelled amplification primers and/or probes. When the 
technique is used for quantitative assay to detect changes 
in gene copy number, fluorescent or intercalating dyes 
are added to the PCR mix to detect PCR product as it 
accumulates in real time during PCR cycles. The meas-
ured fluorescence is proportional to the total amount of 
amplicon; the change in fluorescence over time is used 
to calculate the amount of amplicon produced in each 
cycle. The cycle number at which the fluorescent signal 
emitted during the amplification first cross a threshold 
(Ct) corresponds the amount of target that was present 
in the reaction at cycle 1 of the reaction (starting concen-
tration) [110]. In order to perform SNP genotyping, two 
specific probes labelled with different dyes are used, the 
first for the wild type allele and the second for the mutant 
allele. Those oligonucleotides are constructed with a fluo-
rescent dye attached at the 5′ end and a quencher at the 
3′ end are used to detect SNPs. When the specific tar-
get sequence is present, the oligonucleotide anneals and 
during the extension phase of PCR, the probe is cleaved. 
The cleavage of the probe will remove the probe from the 
target DNA strand and separates the reporter dye from 
the quencher, allowing the increase of the fluorescence 
signal which can be detected. This process is repeated 

each cycle, resulting in an increase in fluorescence inten-
sity proportional to the amount of the PCR product. The 
mutant, wild-type, or mixed genotype can therefore be 
determined by observing the real-time increase of the 
fluorescence of the given fluorophore(s) [111].

Ligase detection reaction fluorescent microsphere 
(LDR‑FM) assay
PCR products are amplified in a multiplex ligase detec-
tion reaction containing specific primers for each muta-
tion and common primers. The specific primers are 
designed in a way that they contain a tag at the 5′ end 
complementing a sequence attached to a Luminex-Tag 
bead and 3′ end specific for the mutation of interest. 
After this second amplification, products are hybrid-
ized to Luminex-Tag beads. To quantify the abundance 
of different alleles, labelled products are then run on a 
Luminex instrument, and results are read as fluorescence 
intensity for each reaction in a 96-well format [112].

New molecular methods in development
In addition to the most common methods described 
above, new molecular methods have been developed 
over the last years or are being developed. The first step 
of these methods is the same as for the ones above, con-
sisting of a PCR amplification. However there are dif-
ferent approaches for the subsequent detection of the 
mutations.

Nucleic acid lateral flow immunoassay (NALFIA)
For this technique, there is no DNA extraction step 
needed. The blood is directly added to the PCR reac-
tion, and the target gene or part of gene is amplified for 
1 h. Thereafter, the product can be visualized with NAL-
FIA, which is a rapid immunochromatographic test to 
detect labelled amplicon products on a nitrocellulose 
stick coated with specific antibodies. The amplicons are 
labelled via specific primers that contain a biotin mol-
ecule and a hapten. This complex is detected by direct 
interaction with a colloidal, neutravidin-labelled car-
bon particle [113]. Like a malaria rapid diagnostic test, 
the NALFIA has a positive control, which is the human 
housekeeping gene glyceraldehyde 3-phosphate dehydro-
genase (GAPDH). This technique has already been used 
to detect molecular markers associated with anti-malar-
ial drug resistance and showed good correlation with 
standard sequencing and real-time PCR methods [113].

Q‑poc™

This method has been developed by a company called 
Quantum DX in collaboration with academic institu-
tions [114]. The Q-POC™ is a simple handheld molecular 
device that could provide results in less than 20 min. The 
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device does include a cassette to both collect the sample 
and perform sample preparation, DNA amplification and 
detection by microarray. The device can differentiate spe-
cies of Plasmodium parasites, and can also detect the dif-
ferent molecular markers associated with anti-malarial 
drug resistance. The company in collaboration with St 
George’s, University of London, is developing a malaria 
specific assay for molecular markers of anti-malarial 
resistance under the EU funded project NanoMal [114].

Discussion and outlook
The current decrease of P. falciparum sensitivity to arte-
misinin derivatives and the development of resistance 
to partner drugs in Southeast Asia could jeopardize 
the gains made over the last decade in the fight against 
malaria [32]. To delay the spread of drug-resistant para-
site strains, simplified, standardized and structured 
surveillance system are needed [42, 115, 116] to detect 
spatial and temporal trends at best in real time [117, 118]. 
Each of the three approaches used to assess anti-malarial 
drug resistance, i.e. in vivo, in vitro, and molecular assays, 
has its own advantages and disadvantages (Table  3), 
however their combination in a standardized and well-
coordinated way could substantially not only improve the 
results, but also decrease the required efforts (labour and 
financial) for anti-malarial drug resistance surveillance.

The in vivo approach has a standardized protocol from 
WHO [44], and remains the gold standard to evaluate 
the therapeutic efficacy of anti-malarial drugs. However, 
in  vivo studies have huge logistical and financial con-
straints [41], and several limitations, such the quality of 
microscopy. Standardized methodology to perform good 
quality microscopy with suggestions for microscopist 
selection, training, and continuous evaluation, including 
internal and external quality control schemes should be 
used to improve the quality of microscopy [119]. Digital 
microscopy could be an alternative, removing the visual 
inspection of the slide that is error-prone and time con-
suming [120]. Field testing have shown that digital micro-
scopes can have sensitivity comparable to PCR [121, 
122], however, complex algorithms need to be developed 
to analyse the data, and large scale evaluation in field set-
tings are required to assess their specificity and sensitiv-
ity compared the current gold standard, quality assured 
optic microscopy [120]. Another limitation is the inter-
pretation of the genotyping results to distinguish recru-
descence from reinfection. Indeed, most of TES are using 
msps1/msp2/glurp genotyping, as recommended by the 
WHO protocol [44]. There is high variability in results 
interpretation based on agarose gel quality; and different 
studies are using different markers, which makes difficult 
to compare PCR-corrected treatment outcomes [123]. 
Moreover, the systematic use of glurp in conjunction with 

msp1 and msp2 could lead to misclassification of treat-
ment outcomes due to the non-detection of minority 
strains in co-infections in high endemic settings [54]. The 
sensitivity of genotyping could be improved by using cap-
illary electrophoresis [56, 57], and the use of microsatel-
lites markers [55, 124].

The use of in  vitro/ex vivo techniques require good 
infrastructure for parasite culture [125], and is further 
hampered by the difficulty to compare results across 
different assay methods [126], because of the high vari-
ability in results between methods and across different 
laboratories [125]. Moreover, it is difficult to standard-
ize protocols for parasite culture, as there is always high 
intra-assay variability in parasite growth whatever pro-
tocol is used [127]. In vitro/ex vivo techniques are more 
appropriate for national reference laboratories, where 
they could be used for monitoring parasite susceptibility 
for drugs for which no validated molecular markers are 
available [128, 129], using per example a sensitive and 
cheap technique such as SYBR Green [130]. The method 
gives IC50 results comparable to HRP2 ELISA, and is 
more reproducible than ELISA methods [131]. However, 
the technique has its own limitations such as interference 
with some small proteins that could compete with the 
dye to bind the DNA [132], or drug interference with the 
dye that could cause high background [133]. The develop-
ment of standardized analytical tools such as the In vitro 
Analysis and Reporting tool (IVART), a high throughput 
in  vitro/ex vivo data analysis tool that can analyse data 
from different in vitro/ex vivo assays could help in stand-
ardizing analytical methodologies [73].

Blood sample collection and DNA extraction are cru-
cial steps in the assessment of the prevalence of anti-
malarial drug resistance molecular markers, and have 
shown to have a substantial impact on the PCR product 
[134]. Long storage of dried blood spots should be done at 
− 20 °C as opposed to current practices of storing DBS at 
room temperature and DNA extraction methods should 
be selected appropriately [134]. Even though simple, the 
RFLP method may imply logistical and financial con-
straints for laboratories to implement, in addition to the 
high workload required [112]. Furthermore the method 
can also present problems of quality and reproducibility 
if not used with the required rigour (Additional file  1), 
cannot detect minority strains and gene copy number 
changes [135]. Real-time PCR, and sequencing have the 
advantage of their higher throughput, their increasing 
availability and decreasing cost [108, 111]. For sequenc-
ing, a consortium approach could be used to gather data 
from different settings on a common platform [136, 137]. 
Regional reference laboratories with sequencing capac-
ity could be established as well, allowing multiple coun-
tries to share the cost burden, and this could be based on 
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previous experiences in developing regional networks for 
anti-malarial resistance monitoring [138, 139]. Indeed, 
the cost of sequencing has decreased substantially over 
the last decade, and laboratories in developing coun-
tries are acquiring the expertise in sequencing and have 
the required equipment and qualified staff. Nevertheless 
some investment would be needed to develop data analy-
sis capacity by training local biostatisticians. New tech-
nologies are also being developed and could simplify and 
decrease the costs of anti-malarial drug resistance sur-
veillance [113, 114].

Various initiatives aiming at standardizing method-
ologies for the surveillance of anti-malarial drug resist-
ance have been implemented. Regional networks such 
as the East African Network for Monitoring of Antima-
larial Treatment (EANMAT) and The Amazon Network 
for the Surveillance of Antimalarial Drug Resistance 
(RAVREDA) were created in 1997 and 2001, respectively, 
to monitor the spread of anti-malarial drug resistance 
[138–140]. While RAVREDA is still operating with sup-
port from PAHO and USAID, EANMAT is no longer 
active since 2006. A global network has been established 
in 2009, as the Worldwide Antimalarial Resistance Net-
work (WWARN) for the surveillance of anti-malarial 
resistance globally [117]. This is mainly a network of 
researcher institutions aimed at providing up to date 
spatial and temporal information on anti-malarial resist-
ance on a global level. The PMI supported anti-malarial 
resistance network (PARMA) is another initiative aim-
ing at standardizing, data sharing and capacity building 
in African PMI-funded countries [141]. However, efforts 

to bring together the scientific community and national 
stakeholders, especially the National Malaria Control 
Programmes (NMCPs) remain challenging. The expe-
rience from all these different initiatives show that it is 
difficult to effectively coordinate all the different stake-
holders with a common agenda focused on surveillance 
of anti-malarial drug resistance. More importantly, these 
networks strongly depend on donor funding, which if 
stopped, negatively affect the survival of these initiatives 
as was the case for EANMAT. Fortunately RAVREDA 
and PARMA are still active with support from USAID/
PMI, while WWARN continues to operate as part of a 
larger platform, the Infectious Diseases Data Observa-
tory (IDDO) with financial support from various donors. 
Developing and maintaining those networks are relatively 
costly and highly demanding in terms of staff and time. 
Moreover it is difficult to develop guidelines, protocols 
and standardized methodologies that will respond to the 
needs and opinions of all involved stakeholders.

The development of new, user-friendly and affordable 
molecular methods for anti-malarial resistance surveil-
lance could provide useful real-time information on spa-
tial and temporal trends for anti-malarial drug resistance 
to monitor the appearance and spread of anti-malarial 
resistance. Moreover, simplified sample processing 
would decrease errors and improve the final data qual-
ity. Combined with a good external quality assessment 
system such as a proficiency testing program; this could 
help to improve the standard quality of data. Frequent 
cross sectional surveys and longitudinal studies at senti-
nel sites using molecular markers could be used as early 

Table 3  Advantages and disadvantages of the different approaches for monitoring anti-malarial resistance

Advantages Disadvantages

In vivo Relatively easy to standardize
No heavy equipment required
Provides results directly obtained from patients
Provides the evidence required for modifying treatment 

policies
Helps to define the first line and second line treatment for 

case management
Can provide required safety data
Confirms association of parasite resistance with in vitro test 

results (IC50 values) or molecular resistance markers

Logistics constraints (long follow-up with many patients lost to follow up, 
lack of patients in low transmission settings, expensive)

Potential over-estimation of treatment failures because of: inter-individual 
variation in pharmacokinetics including poor absorption, rapid elimination 
(diarrhoea, vomiting) and/or insufficient or poor biotransformation of pro-
drugs because of human genetic characteristics; extrinsic factors such as 
poor patient compliance (if the totality of treatment is provided), incorrect 
dosage, poor drug quality or poor microscopy

Potential under-estimation of treatment failures because of host factors such 
as the immunity or poor microscopy

In vitro Provides the intrinsic parasite susceptibility to the drug 
without confounding factors such as immunity and 
pharmacology

Difficult to standardize
Require a special design (concentration and duration) for certain drugs (i.e. 

RSA, PSA)
Requires good infrastructure and highly trained staff
Results not always associated with therapeutic efficacy

Molecular Provides direct information on the resistance status of the 
parasite. When they are validated, their prevalence in a 
parasite population are often a good indicator of the level 
of clinical resistance

Can provide useful information on the spread of resistance
Relatively easy to implement

Requires good infrastructure and highly trained staff
Results not always associated with therapeutic efficacy
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warning signals [63, 64]. The advent of affordable new 
molecular tools, such as next generation sequencing, 
could substantially improve the information provided 
by molecular markers of resistance in combination with 
microsatellites markers, and would allow not only to 
assess the prevalence of those markers, but also how they 
spread, allowing to make predictions on the future spread 
of resistance. In parallel, cheaper and robust equipment 
as well as simplified on-line data analysis tools need to 
be developed to allow the analysis of the high amount 
of data obtained from sequencing by staff with limited 
training from malaria endemic countries.

Conclusion
The development of new molecular methods for detect-
ing SNPs or CNVs associated with anti-malarial drug 
resistance, combined with the continuous support of 
networks including national, regional reference labora-
tories in malaria endemic countries all participating in 
a similar proficiency testing programme, and/or global 
efforts such as WWARN could help facilitating and sus-
taining anti-malarial drug resistance surveillance. These 
new tools will complement effectively in  vivo data, but 
would require external evaluation scheme through pro-
ficiency testing programmes to ensure data quality and 
data standardization and collation of information to pro-
vide a comprehensive picture of anti-malarial resistance 
to guide policy.
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