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Abstract 

Background:  The correct identification of disease vectors is the first step towards implementing an effective control 
programme. Traditionally, for malaria control, this was based on the morphological differences observed in the adults 
and larvae between different mosquito species. However, the discovery of species complexes meant that genetic 
tools were needed to separate the sibling species and today there are standard molecular techniques that are used 
to identify the two major malaria vector groups of mosquitoes. On the assumption that species-diagnostic DNA 
polymerase chain reaction (PCR) assays are highly species-specific, experiments were conducted to investigate what 
would happen if non-vector species were randomly included in the molecular assays.

Methods:  Morphological keys for the Afrotropical Anophelinae were used to provide the a priori identifications. All 
mosquito specimens were then subjected to the standard PCR assays for members of the Anopheles gambiae com-
plex and Anopheles funestus group.

Results:  One hundred and fifty mosquitoes belonging to 11 morphological species were processed. Three species 
(Anopheles pretoriensis, Anopheles rufipes and Anopheles rhodesiensis) amplified members of the An. funestus group 
and four species (An. pretoriensis, An. rufipes, Anopheles listeri and Anopheles squamosus) amplified members of the An. 
gambiae complex.

Conclusions:  Morphological identification of mosquitoes prior to PCR assays not only saves time and money in the 
laboratory, but also ensures that data received by malaria vector control programmes are useful for targeting the 
major vectors.
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Background
Malaria continues to be an ongoing problem in African 
countries south of the Sahara and although a lot has been 
achieved in the past 15  years, millions of people still 
remain at risk of contracting the parasite [1]. Africa pro-
vides a stable and ecologically diverse ecosystem and is 

home to the most efficient malaria vectors in the world 
[2–4], and is likely to remain so in the face of global cli-
mate change [5]. The major anopheline malaria vectors 
across sub-Saharan Africa are Anopheles funestus s.s. and 
three members of the Anopheles gambiae complex: An. 
gambiae s.s., Anopheles coluzzii and Anopheles arabiensis 
[2–4, 6–9]. There are, however, many additional species 
outside of these that play a role in malaria transmission 
within their geographic distribution, for example the 
Anopheles moucheti and Anopheles nili groups [3], and a 
host of secondary or incidental vectors [10–12]. Consid-
ering that the genus Anopheles contains over 500 species 
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globally, of which only a few are considered important 
species for malaria transmission [2, 13], the morphologi-
cal identification of species is crucial in order to target 
scarce resources for controlling the malaria vectors only.

Species groups and species complexes are common 
within the genus Anopheles [14] and this complicates 
vector control since not all species within a complex have 
similar behaviours or similar roles in malaria transmis-
sion [3, 4, 6]. In the An. gambiae complex, for example, 
species range from the non-vectors Anopheles quadri-
annulatus and Anopheles amharicus to minor vectors 
Anopheles melas, Anopheles merus and Anopheles bwam-
bae, to the major vectors An. gambiae, An. coluzzii and 
An. arabiensis [4, 6, 9]. Genetic tools to identify the spe-
cies have ranged from cross-mating wild mosquitoes with 
known laboratory colonies [15] to chromosomal banding 
patterns [16] and enzyme electrophoresis [17]. Today, 
the Scott et  al. [18] molecular species-diagnostic PCR 
method is the gold standard for identifying members of 
the An. gambiae complex, and the five most common 
members of the An. funestus group are identified by the 
multiplex PCR assay of Koekemoer et al. [19]. However, 
prior to molecular analysis, accurate morphological iden-
tification is critical if correct interpretation of the results 
is to be used for vector control programme planning.

The purpose of the present study was to evaluate the 
impact of incorrect or no morphological identification 
of 150 specimens of 11 anopheline species from different 
African countries, by determining if these species could 
be misidentified using the standard vector-specific An. 
gambiae complex [18] and An. funestus group [19] PCR 
assays.

Methods
Mosquito collections
The species used in this study came from five African 
countries: Mali and Guinea in West Africa and Namibia, 
Botswana and South Africa in southern Africa. Collec-
tions were made between 2009 and 2017 by different 
entomological field teams on request and were made by 
sampling larvae, indoor resting catches and outdoor bit-
ing collections. Some were once off collections where 
field work was being conducted in other African coun-
tries, while other collections were made during routine 
surveillance around South African provinces. The inclu-
sion of more specimens of the less abundant species in 
this study was limited due to methods of collection, 
species distribution and number of times that field sites 
were visited. Adults, larvae and pupae were brought back 
to Johannesburg, South Africa where further rearing 
of immatures to adults and processing of adult samples 
took place (Table  1). Adult mosquitoes were preserved 

in silica tubes for further morphological and molecular 
identification.

Laboratory analyses
Adults were morphologically identified to species using 
the dichotomous key of Gillies and Coetzee [6]. DNA 
was extracted from a mosquito leg or wing using the 
prepGEM Insect DNA extraction kit (ZyGEM; E3BG6M; 
New Zealand). The amount of DNA used for each speci-
men was standard for the controls and specimens (1 µl). 
The DNA concentration that was present in the 1  µl of 
DNA extraction product was determined with the use of 
the NanoDrop One spectrophotometer (Thermo Scien-
tific; Cat No. 13400518). A random sample (n = 42) pro-
duced an average of 39 ng/µl for the samples compared 
to the 44 ng/µl for the positive controls. Each specimen 
was then processed using PCR assays according to the 
standard protocols for the An. gambiae complex [18], An. 
funestus group [19], An. funestus-like [20] and Anoph-
eles rivulorum-like [21]. Due to the fact that a number of 
non-specific amplification occurred during the latter two 
assays, only the first 111 samples were processed accord-
ing to these protocols. Controls consisted of laboratory 
colony mosquitoes (An. funestus FUMOZ Mozambique; 
An. coluzzii NAG Nigeria; An. arabiensis AMAL South 
Africa; An. merus MAFUS South Africa and An. quadri-
annulatus SANGWE Zimbabwe) and two negative con-
trols (one for DNA extraction and one for the PCR mix). 
DNA of a Malawian An. funestus-like specimen [20] was 
used for the An. funestus-like assay, and Kruger National 
Park specimens were used for the An. rivulorum-like 
control. The PCR product of each assay was electro-
phoresed on a 2.5% TAE agarose gel.

Gels were viewed with a Geldoc system and the ampli-
con sizes determined by comparing them with the base 
pair sizes of the DNA ladder. The base pair sizes were 
analysed with the QIAxcel Advanced system and DNA 
screening kit (2400) (Lot No. 154049015; Germany).

Results
A total of 150 mosquito specimens belonging to 11 dif-
ferent anopheline species were analysed using four spe-
cies-diagnostic PCR assays (Table  1). Five of the species 
amplified and produced diagnostic fragments for either 
An. funestus group or An. gambiae complex species or 
both (Table  2), but no amplification was observed for 
Anopheles crypticus, Anopheles coustani, Anopheles ten-
ebrosus, Anopheles wellcomei, Anopheles marshallii or 
Anopheles maculipalpis. The assays for An. funestus-like 
and An. rivulorum-like produced non-specific amplifica-
tions where no distinct base pair size recognition could be 
made that was diagnostic for either of these two species.
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Using the diagnostic An. funestus multiplex PCR assay, 
8% (12/150) of the samples amplified. Seven of 52 Anoph-
eles rufipes specimens had amplicon sizes correspond-
ing to either Anopheles leesoni (n = 6) or An. rivulorum 
(n  =  1), while the single An. rhodesiensis showed an 
amplicon size similar to An. leesoni. Only four out of 46 
Anopheles pretoriensis specimens showed amplification 
during this assay—three produced a fragment size simi-
lar to An. funestus s.s. and one had a base pair size cor-
responding to that of Anopheles vaneedeni.

For the An. gambiae species-diagnostic PCR assay, 
11.3% (17/150) amplified. Two Anopheles squamosus 
specimens showed amplicons similar to An. gambiae s.s. 

(Table 2). Seven out of 52 An. rufipes had amplifications 
similar to An. gambiae s.s. (n = 3), An. arabiensis (n = 3) 
and An. merus (n =  1). Five of the 12 An. listeri speci-
mens showed fragments diagnostic for either An. gam-
biae s.s. (n = 3) or An. merus (n = 2). Four out of 46 An. 
pretoriensis samples amplified products similar in size to 
An. arabiensis (n = 1) and An. gambiae s.s. (n = 3). Some 
specimens also revealed non-specific amplification, most 
likely due to the fact that these protocols are not opti-
mized for other anopheline species. Both amplification 
and non-amplification was present for specimens of the 
same species, irrespective of the amount of DNA that 
was present. Examples are shown in Fig. 1.

Interesting geographical variation was noted for An. 
rufipes in particular. Specimens from two West Afri-
can countries, Guinea (Siguiri) and Mali (Yanfolila), had 
amplicons from the An. funestus species-diagnostic PCR 
assay but none for the An. gambiae species-diagnostic 
PCR assay. However, for South African sites it was the 
other way around with no amplification during the An. 
funestus species-diagnostic PCR assay and only ampli-
cons produced by the An. gambiae assay in specimens 
from the Kruger National Park and surrounding areas in 
Mpumalanga.

Discussion
As with other techniques used to identify mosquitoes, 
there are drawbacks to morphological species identi-
fication, such as when specimens have lost important 
external features of their anatomy (e.g. legs), a com-
mon occurrence when using collection methods such as 
CDC light traps where mosquitoes are damaged as they 
are sucked through the fan blades. In addition, the level 

Table 2  Morphological species that  amplified to  approxi-
mate base pair (bp) sizes of species within the An. gambiae 
complex and An. funestus group

Species complex Expected 
band size (bp)

Morphological species 
that showed approximate 
amplification

An. gambiae complex

 An. merus 464 An. rufipes; An. listeri

 An. gambiae 390 An. squamosus; An. rufipes; 
An. listeri; An. pretoriensis

 An. arabiensis 315 An. pretoriensis; An. rufipes

 An. quadriannulatus 153

An. funestus group

 An. vaneedeni 587 An. pretoriensis

 An. funestus 505 An. pretoriensis

 An. rivulorum 411 An. rufipes

 An. parensis 256

 An. leesoni 146 An. rufipes; An. rhodesiensis

Fig. 1  Anopheles gambiae species-diagnostic PCR gel electrophoresis showing the amplification by other anopheline species. Lanes 1 and 26: 
100 bp DNA Ladder; lanes 2–5: positive controls for An. arabiensis; An. gambiae; An. merus and An. quadriannulatus; lanes 6, 7: negative controls for 
DNA extraction and PCR master mix; lane 10: An. rufipes; lanes 11–21: An. listeri; lanes 22, 23: An. squamosus; lanes 24, 25 contained no specimens
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of relevant skills to carry out the identifications may be 
inadequate or lacking.

A recent study carried out in eastern Zambia com-
paring morphological identifications with two molecu-
lar assays (COI mtDNA and ITS2 rDNA) [22] provides 
interesting insights. For example, of the 18 molecular 
species/forms they identified, 16 contained specimens 
that were morphologically identified as the An. funestus 
group and 12 as the An. gambiae complex. The molecu-
lar “Anopheles coustani” was being identified morpho-
logically as both An. funestus and An. gambiae groups 
[22]. This variation either demonstrates a very low level 
of morphological skills, or there is a lot of variation in 
the molecular sequencing of individual mosquitoes. This 
latter is not unlikely given the amount of variation that 
was found in An. gambiae through the recently published 
1000 Genome study [23]. Furthermore, sequence vari-
ability in the ITS2 region has been demonstrated previ-
ously between specimens of An. rivulorum from different 
countries [24] and this needs further investigation on a 
broad spectrum of species.

The present study showed that five of the 11 species 
amplified three members of the An. gambiae complex 
and four members of the An. funestus group. 30.8% of 
the An. pretoriensis gave amplicons of four different spe-
cies, while 25% of the An. rufipes produced fragments of 
five species. But not every individual specimen of each 
species gave the same results, indicating considerable 
molecular variation. Some specimens also revealed non-
specific amplification, most likely due to the fact that 
these protocols are not optimized for other anopheline 
species, thus possibly creating confusion in the routine 
analysis of the results.

It is well-known that almost every morphological taxon 
studied so far is a species complex. The best known are 
the An. gambiae complex and the An. funestus group 
based on various genetic techniques [6, 9, 25]. Others 
include Anopheles coustani/crypticus (chromosomes 
[26]), Anopheles nili/ovengensis/carnevalei (morphology, 
molecular [27, 28]) and Anopheles marshallii/letaben-
sis/hughi (chromosomes [29, 30]). Complexes that still 
require formal morphological descriptions include An. 
pharoensis (chromosomes, 2 species [31]), Anopheles lon-
gipalpis (molecular, 2 species [32]) and An. squamosus 
(chromosomes, 5 species [Green and Hunt, unpublished 
data]). It is, therefore, not surprising when molecular 
studies show possible new species [22, 33], but in order 
to understand their importance in malaria transmission, 
these molecular forms need to be linked to iso-female 
lines that can be used to provide information on genetic 
variation within families and appropriate morphologi-
cal descriptions. Such iso-female lines could also be 
used to produce reference sequence data for use in the 

development of accurate molecular species-diagnostic 
assays.

Morphological and molecular identification techniques 
should complement each other in order to intensify vec-
tor surveillance and our understanding of mosquito bio-
diversity [22, 34]. Morphological identification with the 
use of dichotomous keys forms the basis for the develop-
ment of molecular techniques [35] and their subsequent 
use in surveillance or research [18, 19, 36, 37]. The above 
results indicate how important it is to carry out a priori 
morphological identification before using the standard 
molecular assays for the two major vector groups and if 
unusual species composition is reported, to initiate fur-
ther investigations. Unfortunately, the loss of taxonomic 
expertise over the years has had a severe negative impact 
on describing mosquito biodiversity [14].

Conclusions
This study showed that poor morphological identifica-
tion cannot necessarily be detected and corrected during 
molecular PCR identification and can negatively affect 
vector surveillance since control interventions can likely 
be based on wrong identifications. Furthermore, process-
ing mosquitoes for molecular identification is expensive 
and scarce resources should be limited to those speci-
mens that require them. Malaria control programmes 
should continue to invest in capacity building for ento-
mology teams and morphological training should be pri-
oritized for entomological surveillance, particularly as 
more reports appear on secondary or incidental vectors 
playing a role in residual malaria transmission [10–12, 
37, 38].
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