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Abstract 

Background:  Malaria, a parasitic infection, is a life-threatening disease in South Sumatra Province, Indonesia. This 
study aimed to investigate the spatial association between malaria occurrence and environmental risk factors.

Methods:  The number of confirmed malaria cases was analysed for the year 2013 from the routine reporting of the 
Provincial Health Office of South Sumatra. The cases were spread over 436 out of 1613 villages. Six potential ecological 
predictors of malaria cases were analysed in the different regions using ordinary least square (OLS) and geographically 
weighted regression (GWR). The global pattern and spatial variability of associations between malaria cases and the 
selected potential ecological predictors was explored.

Results:  The importance of different environmental and geographic parameters for malaria was shown at global 
and village-level in South Sumatra, Indonesia. The independent variables altitude, distance from forest, and rainfall in 
global OLS were significantly associated with malaria cases. However, as shown by GWR model and in line with recent 
reviews, the relationship between malaria and environmental factors in South Sumatra strongly varied spatially in dif-
ferent regions.

Conclusions:  A more in-depth understanding of local ecological factors influencing malaria disease as shown in 
present study may not only be useful for developing sustainable regional malaria control programmes, but can also 
benefit malaria elimination efforts at village level.

Keywords:  Geographically weighted regression (GWR), Ordinary least squares (OLS), Akaike information criterion 
(AIC), Physical environment, Local climate, Sumatra, Rainfall, Elevation, Distance to water
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Background
Malaria is a significant public health concern worldwide, 
including Indonesia [1]. The Indonesian government has 
set a national goal to be malaria-free by 2030. Currently, 
24 out of 576 districts in Indonesia classified as being 
malaria endemic, and an estimated 45% of Indonesia’s 
total population are living at risk of contracting malaria 
[2]. In South Sumatra Province, the malaria incidence 

was 0.46 per 1000 people in 2013. In this province, the 
proportion of children under 5 years of age who applied 
mosquito nets was 32.7%, and the percentage of chil-
dren under five who treated for fever with antimalarial 
medication was 89.8% in 2013 [2]. Malaria elimination 
has been a priority in the millennium development goals 
(MDGs) [3], and since then has continued to be central 
to the sustainable development goals (SDGs), supporting 
Indonesia’s malaria elimination commitments [4]. It is 
now essential to generate the knowledge that is necessary 
to develop lasting policies for the national malaria elimi-
nation programme.

Several meteorological and environmental variables are 
risk factors for malaria [5]. Since specific meteorological, 
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environmental factors are at interplay and different fac-
tors can affect malaria transmission within a given prov-
ince [3, 6, 7], it is important to differentiate between 
factors that influence the vector, the parasite and the 
host-vector relationship [8]. Atieli et  al. have demon-
strated that the topographic variables elevation, slope, 
and aspect are influencing the development of Anoph-
eles mosquitoes [9]. In north-eastern Venezuela, there 
is a significant association of malaria transmission with 
local spatial variations like population density, lowland 
location, and proximity to aquatic environments [10]. 
Elsewhere (e.g., Ethiopia and Senegal) spatial relation-
ships between climatic variability like rainfall and malaria 
occurrence have been demonstrated [11]. Rainfall indi-
rectly benefits Anopheles mosquitoes by increasing rela-
tive humidity which prolongs adult longevity [12], and 
the number of breeding places which in turn favours 
population growth [13]. Temperature and the extent of 
water availability for larval breeding are crucial factors in 
the vector life-cycle, affecting transmission [3]. Vectors 
and parasites are both highly sensitive to any temperature 
changes, for example, the parasite proliferation depends 
on temperatures [14]. Temperatures above 28  °C have 
been shown to reduce malaria incidence in Africa [15]. 
In Indonesia, the optimum temperature for malaria mos-
quitoes ranges between 25 and 27 °C [3]. For the vector-
host relationship, factors such as the distance of people’s 
houses from a river, lakes, pond, distance to the regional 
urban centre [16–18] distance to forest [19, 20] were 
shown to be significant predictors.

Spatial nonstationary is a condition in which a simple 
“global” model cannot define the relationship amongst 
several sets of variables [21]. Thus, global OLS and local 
GWR modelling was performed to analyse the environ-
mental risk factors for malaria in South Sumatra that 
vary geographically at the regional level. The locally dif-
ferent ecological factors studied to potentially predict the 
response variable ‘confirmed malaria case’ (Y) are alti-
tude (X1), aspect (X2), distance from the river (X3), dis-
tance from lakes to pond (X4), distance from the forest 
(X5), and rainfall (X6).

Methods
Study area
The study area is located between 1°46′ and 4°55′ of 
southern latitude and between 102°4′ and 104°41′ 
of eastern longitude and has a total surface area of 
46,377.40  km2 (Fig.  1). It covers eight endemic malaria 
districts of South Sumatra, Indonesia, namely Lahat, 
Muara Enim, Musi Banyuasin, Musi Rawas, North Musi 
Rawas, Ogan Komering Ulu, South Ogan Komering Ulu, 
and Lubuk Linggau. The topography of the area varies 
from lowland to mountainous landscapes. The elevation 

in the study area varies between 0 and 3150 metres above 
sea level. The climate is tropical and wet [22]. In 2013 in 
South Sumatra, the lowest rainfall was 31 mm (August) 
in Lahat district, and the highest rainfall was 613  mm 
(March) in Palembang City. Monthly average tempera-
tures ranged from 26.6 to 28.3  °C and relative humidity 
from 81 to 88% in 2013 [23].

Indonesia’s South Sumatra Province is home to 
7828,700 inhabitants. In 2013, the gross regional domes-
tic product (GRDP) with oil and gas was IDR 231.68 
trillion (17.32 billion USD) [22], based on IDR to USD 
exchange rates at the time of writing. South Sumatra is an 
ethnically highly diverse province and home to different 
local languages and diverse cultural and socioeconomic 
practices [2]. Local people engage in coffee, rubber and 
palm oil plantation activities or work in the industrial 
mining area, which shapes not only people’s lives but also 
the environment [24]. Indonesia contributes significantly 
to deforestation in Southeast Asia. Recent developments 
of deforestation have led to unsustainable practices 
which have resulted in a high frequency of deforestation 
in some regions and are an important factor influencing 
malaria incidence [25]. Deforestation has been shown 
to be connected with malaria incidence in the county 
(Município) of Mâncio Lima, Acre State, Brazil. There, 
a cross-sectional study shows 48% increase in malaria 
incidence are associated with cumulative deforestation 
within respective health districts in 2006 [26].

Study population and data collection
36,372 patients seeked treatment due to suspected 
malaria fever in 140 primary health centres (PHC) in the 
study region South Sumatra during January to December 
2013. Among them, 3578 were laboratory positive for 
malaria. The cases spread over 436 out of 1613 villages 
that were used for unit analysis. The detailed number 
of malaria cases in different provinces are presented in 
Fig.  2. The spatial distribution of participants who had 
confirmed cases of malaria is shown in Fig. 3.

The patients are categorised into “clinical diagnosis”, 
“suspected malaria” and “confirmed malaria cases”. Cat-
egories “clinical diagnosis” or “suspected malaria” are 
based on the patient’s symptoms and physical findings 
at examination. A  “confirmed malaria case” is a case of 
malaria diagnosed microscopically (examination of blood 
specimen/preparation) or rapid diagnosis test (RDT) 
with positive results for Plasmodium. Either RDT or 
microscopic assessment or both were used to confirm the 
diagnosis of malaria. The malaria diagnostic data were 
obtained from the regular health information reporting 
system of the Provincial Health Office of South Sumatra. 
The data had been collected during 12  months (Janu-
ary to December 2013) at the village level from patients 
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seeking treatment in PHC, locally called Pusat Keseha-
tan Masyarakat (“puskesmas”), and that were reported 
monthly to the Provincial Health Office via the malaria 
programmes in the District Health Offices.

Geographic information
The study area map (Fig.  1) uses the World Geodetic 
System (WGS84) as its reference coordinate system. As 
shown in Fig. 4, three stages of working with geographic 
information were distinguished: data acquisition and pro-
cessing, data analysis and data presentation [27]. GWR 
4.0 version 4.0.90 and Arc GIS 10.3 were used for data 
processing, analysis, and visualization. Malaria case data 
were collected from the Provincial Health Department, 
Ministry of Health (see previous paragraph) as well as 
topographic (toponymy map, hypsographic map, hydro-
graphic maps, land cover map) and climate data (rain-
fall map). The primary spatial data were obtained from a 
topographical map of Indonesia (cartographic material) 
which has a scale of 1:50,000 and consists of several lay-
ers of plots grouped. The malaria input data is aggregated 
village level data with the village centroid used as the 

spatial unit. This map consisted of a collection of geo-
graphic data presented as thematic layers for land cover, 
hydrographic data and a sheet of hypsography. Indone-
sian topographic map known as Peta Rupabumi Indo-
nesia (RBI) was updated in 2014. In 2013, topographic 
data visualisation has been changed into geodatabase 
cartography to reduce the steps of creating cartography 
visualisation in topographic mapping activity [28]. These 
maps were obtained from the Geospatial Information 
Agency (BIG) of Indonesia. Authorization for the use 
of the topographical map of Indonesia was provided by 
the Indonesian Geospatial Information Agency. How-
ever, restrictions were put to use the availability of these 
data and therefore are not publicly available. Data were 
collected by creating a research protocol which is used 
under license for the current study. The data that backs 
the findings of the research are served in the main paper.

The forest cover maps were extracted from the land 
cover map in 2013 on the scale of 1:250.000. The map 
was sourced from Ministry of Environment and Forestry, 
Indonesia. The precipitation map (annual average) was 
obtained by inserting the data of average yearly rainfall 

Fig. 1  Map of the study area covering one city and seven districts of South Sumatra Province, Indonesia
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Fig. 2  Malaria cases and their geographical locations in the study area
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from BMKG Climatological Station Class I in Palembang, 
South Sumatra, Indonesia. The distance between weather 
observation stations was 50–100  km in flat topography 
and 10 km in hilly terrain.

Data pre‑processing
The malaria distribution map (Fig. 2) was created and six 
selected explanatory variables plotted (Fig.  5). The alti-
tude map was obtained by interpolation and contouring 
of the map into a digital elevation model (DEM). Subse-
quently, the DEM data was converted into a map con-
taining the direction of the slope (aspect). The parameter 
distance from the river, and distance from lake and pond 
processed from river, lakes, and ponds maps which were 
derived from the topographic map whereas distance from 
the forest processed from forest cover map. These vari-
ables were analysed using Euclidean distances. Rainfall 
parameter was calculated based on annual average rain-
fall over 5  years, and it was interpolated from several 
weather observation stations in study area. The rainfall 
map (isohyets map) was obtained from the scanned maps 
which are the result of interpolation and classified into 
several classes. The map needed to be rectified and digit-
ised to get a digital rainfall map.

Data processing and modelling
The response variable “malaria case” and explanatory 
variables “altitude/aspect”, “distance from river”, “distance 
from lake and pond”, “distance from forest” and “rainfall” 
were tested for multicollinearity. Therefore, the values 

of all explanatory variables were extracted for each case 
location. An index based on predictive modelling vari-
ance, the variance inflation factor (VIF) was used [29]. 
Multicollinearity could occur when one independent 
variable was a linear function of another independent 
variable and previously observed in GWR modelling [30]. 
The pattern of connection between confirmed malaria 
cases and environmental factors was expressed by the 
OLS method. Here, OLS model is called global regres-
sion model because the existence of local variation had 
not taken into account in regression so that the estimate 
of the regression remained constant. Thus, the regression 
parameters had the same value for each point within the 
study area. If spatial heterogeneity occurred in regres-
sion parameters, then the information that could not be 
processed by the global regression model was seen as 
an error. In such cases, the global regression model was 
less able to explain the actual data phenomenon [31]. A 
global regression coefficient value close to zero indicated 
that the explanatory variables had a small effect on the 
response variable.

As alternative, the GWR model was used to investi-
gate the relationships between response and explanatory 
variables since the study area was characterized by spa-
tial heterogeneity [32]. A semiparametric GWR4.09 for 
Windows (provided by Nakaya et al. [32]) was carried out 
which is a new release of the windows application soft-
ware tool for modelling spatially varying relationships 
among variables by calibrating GWR.

The estimated parameter of the GWR model uses 
the least squares given the location coordinates as a 

Fig. 3  Malaria cases at village level
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weighting factor. The influence of the points in this 
neighbourhood varies according to the distance to the 
central point [33]. The optimum distance threshold (also 
known as the bandwidth) or the optimum number of 
neighbours determined in two ways: by minimising the 
square of the residuals cross-validation (CV) or by mini-
mising the Akaike Information Criterion (AIC) [34]. At 
this stage, the type of weighing (kernel type) and opti-
mum bandwidth selection method based were selected 

on AIC selection criteria. Classic AIC chooses smaller 
bandwidths in geographically varying coefficients are 
possible to be under smoothed [32]. In a GWR context, 
the measurement of utility is the AIC to know whether a 
global regression model or GWR is most useful [33].

The local GWR model as earlier described is as follows:

(1)yi = β0(ui, vi)+
∑

k
βk(ui, vi)xik + εi

Fig. 4  Flow chart of the research strategy
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Fig. 5  Each explanatory variable mapped in the study area
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Based on the model, yi , xik , (ui, vi) , βk(ui, vi) , and εi 
were sequentially the response and explanatory variables 
k to location i , location coordinates to i , realization of the 
continuous function βk(ui, vi) at point i , and Gaussian 
error to location i . It is noteworthy that the kernel Fixed 
Gaussian function was used which highlights the opti-
mal bandwidth found by using the Golden section search 
with the AIC selection criteria. Also, the Gaussian ker-
nel supported the constant weight, and the value became 
less from the centre of the kernel but never touched zero. 
The kernel was suitable for fixed kernel because it could 
prevent the risk of the absence of data in the kernel. The 
Fixed Gaussian kernel earlier described [33] is as follows:

Also, wij was the weight value observed at the location j 
to approximate the calculation of the coefficients on area 
i , dij was the Euclidean distance between i and j , and b 
was the size of fixed bandwidth given by the size of met-
ric. The Golden section automatically searched the opti-
mal frequency range value by comparing indicators of the 
model with the bandwidth size. A positive R2 indicates a 
positive correlation. A positive coefficient means X and Y 
changed in the same direction and if the environmental 
risk factor increased, then number of confirmed malaria 
cases increased. Conversely, a negative coefficient means 
X (explanatory variable) and Y (the response variable) 
changed in opposite directions. Student’s t distribu-
tion that had values outside the range of − 1.97 and 1.97 
formed a critical region with a 0.05 (95% CI) level of sig-
nificance, whereas values outside the range of − 2.59 and 
2.59 formed critical regions with a 0.01 (99% CI) level 
of significance. Step-wise computation performed with 
these data is shown in Fig. 4.

The locally weighed R2 between the observed and fit-
ted values has been calculated to measure how well the 
model replicates the local malaria incident values around 
each observation. A variable is correctly clarified for each 
location by the model if R2 = 1 with values ranging from 
0 to 1.

To compare the performance between global OLS and 
local GWR, GWR4 software was also used. We per-
formed an ANOVA testing the null hypothesis that the 
GWR model represents no improvement over a global 
model. For local GWR, the sufficient number of degrees 
of freedom was a function of the bandwidth.

Results
Data pre‑processing
Multicollinearity does not occur, because the VIF value 
is less than 10 and the tolerance value is higher than 0.1.

(2)wij = exp
[

−
(

dij/b
)2
]

Environmental factors influencing confirmed malaria cases 
at global level: OLS model
The global OLS model reveals that altitude and distance 
to the forest (negative coefficients) and rainfall (posi-
tive coefficient) significantly influence the number of 
malaria cases. Confirmed malaria cases are more com-
mon in regions with high rainfall, lowland and areas 
adjacent to forest. On the other hand, environmental 
factors such as aspect or direction towards the slope, 
distance from the river, and the distance from lakes 
to pond do not have any significant association with 
malaria cases. Based on OLS model each factor has a 
different predictor of malaria case preferences in GWR 
model stage.

Environmental factors influencing confirmed malaria cases 
at local level: GWR model
The results of GWR using Fixed Gaussian are shown in 
Table 1. The best bandwidth generates 9184 neighbours 
and a significant spatial relationship with a specific region 
has been found. The GWR model provides evidence for 
a locally different influence of environmental factors on 
malaria cases as shown by varying parameter estimate 
value (Fig.  6). “Altitude” and “distance from lake and 
pond” show a positive association and “aspect” a negative 
association with malaria incidence in the Northern study 
area (Musi Banyuasin). “Rainfall” and “distance from 
river” show a positive association with malaria cases in 
the Eastern part of Musi Rawas and Lahat. The variables 
“aspect”, distance from lake and pond” and “distance from 
forest” are positively associated with confirmed malaria 
cases in large parts of the study area. The significance 
thresholds of explanatory variables according to Stu-
dent’s t test in the GWR model are shown in Fig. 7. The 
local coefficient of determination (local R2) for confirmed 
malaria cases at the local level ranges between 0.18 and 1 
(Fig. 8).   

Table 1  GWR result based on  fixed Gaussian (distance) 
kernel function for geographical weighting

Bandwidth and geographic ranges Value

Bandwidth size 9184.47

Diagnostic information

 Residual sum of squares 33,549.28

 Classic AIC 3482.17

 BIC/MDL 4198.30

 CV 178.92

 R2 0.69

 Adjusted R2 0.41
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Fig. 6  Predicted value from GWR for parameter estimates of explanatory variables of malaria cases in the study area
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Fig. 7  Student’s test significance (95 and 99% confidence interval) for each explanatory variable and village location
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Comparison between the two methods OLS and GWR​
Like OLS, GWR is a statistical model that provides 
insights into the relationship between the dependent 
variable confirmed malaria cases and six independent 
explanatory variables. GWR is selected as best model 
based on the residual sum of square, and classic AIC, and 
the R2 as stated in Table 2.

The global regression model indicates that the varia-
bles have some influence on the study area (Table 3). The 

Fig. 8  Goodness-of-fit of GWR model (local coefficient of determination R2) for malaria cases associated with environmental factors in South 
Sumatra, Indonesia

Table 2  Comparison between  global OLS and  local GWR 
models

Value OLS GWR​

Residual sum of square 100,625.26 33,549.28

Classic AIC 3625.82 3482.17

R2 0.06 0.69

Adjusted R2 0.05 0.41
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global OLS model explains 6.2% variation of malaria inci-
dences by environmental factors (R2 = 0.06). This implies 
that 93.8% of the malaria incidence is caused by unknown 
environmental factors related to local variation which are 
not taken into account in the OLS model [33]. The local 
GWR explained 68.7% variation in malaria incidences (Y) 
by environmental factors (R2 = 0.69). The DIFF criterion 
indicates that the spatial distribution of malaria incidence 
is associated with the independent variables “altitude”, 
“distance from lakes and pond”, “distance from forest”, 
and “rainfall” with local spatial heterogeneity (Table  3). 
Though the testing of local coefficients for “aspect” 
and “distance from river” suggests no spatial variability 
(Table 3).

The GWR model explains the relationship between 
the response variable “confirmed malaria case” and six 
explanatory variables significantly better than the global 
regression model OLS (F = 2.12, P < 0.05) (Table 4). The 
best model weights are automatically determined for 
each location and are mapped in Fig. 7.

Discussion
Climate data are frequently used to predict for the spa-
tial, seasonal and interannual variation for malaria 
transmission, for example the dynamic malaria model 
forecasting malaria prevalence with seasonal climate 
published by Hoshen and Morse [35]. The global OLS 
model revealed here that altitude, distance to forest, 
and rainfall significantly influence malaria incidence in 
South Sumatra. Similarly, land use, humidity, altitude 
and rainfall have been identified by GWR to determine 
the regional vulnerability to malaria in Purworejo, Indo-
nesia [36]. However, the GWR model considering spatial 
heterogeneity explains better the association of malaria 
case with environmental factors in South Sumatra. Like-
wise in Venezuela, GWR analysis revealed that ecologi-
cal interactions that act on different scales play a role in 
malaria transmission and that modelling enhances the 

understanding of relevant spatiotemporal variability [10]. 
The environmental factors shown to be significantly asso-
ciated with malaria cases vary strongly at the village level. 
This finding is consistent with those obtained in studies 
in Ethiopia (Addis Ababa), the Amazon region of Brazil 
(Rondôia), and Cambodia [11, 37, 38]. A validated OLS 
can lead to a global policy and a validated relationship 
with GWR is more appropriate to drive to the local sys-
tem. A geostatistical model based on analysis of residuals 
and using climatic, population and topographic variables 
has also been shown to be an important tool for local 
malaria prediction in Mali [39]. In the highlands of west-
ern Kenya, topographic parameters could be used to 
identify the risk of malaria and thereby helped to improve 
malaria monitoring or targeted malaria control activities 
[9].

The relationship of altitude and malaria cases has been 
shown in present study as well and may relate to the 
biology of malaria vectors. Globally, Anopheline species 
diversity and density decline from the lowlands to high-
lands [40]. Accordingly, poor villagers living in forested 
lowland areas in Papua, Indonesia, were found to be at 
higher risk of malaria infection than those in the high-
lands [41]. In contrast, a positive correlation between 
altitude and the abundance of Anopheles mosquitoes 
has observed in the highlands of Ethiopia, Colombia 
and Ecuador, particularly in warmer years [42–44]. This 
observation may be related to the direction towards the 
slopes as the distribution and density of mosquito popu-
lations may be affected by wind direction [45]. In an Ethi-
opian study, minimum temperatures were significantly 
associated with malaria cases in cold areas, while pre-
cipitation was associated with transmission in hot areas 
[46]. In accordance to many studies, malaria case was 
significantly associated with rainfall in villages of South 
Sumatra. Rainfall showed correlation with the incidence 
of clinical malaria cases in Tubu village, Botswana [47]. 
Variations in monthly rainfall in rural Tanzania were 

Table 3  The result of global regression model and geographical variability test of local coefficients for six environmental 
factors

Variables Global regression model output Geographical variability test

Estimate SE T value P value F DOF for F test DIFF of criterion

Intercept 7.98 4.63 1.72 0.04 33.20 10.48 261.38 − 347.99

“Altitude (X1)” − 0.02 0.00 − 4.03 0.00 0.24 12.02 261.38 19.19

“Aspect (X2)” − 0.01 0.01 − 1.60 0.05 0.55 22.68 261.38 24.91

“Distance from the river (X3)” 0.00 0.00 − 0.84 0.24 1.84 18.15 261.38 − 16.03

“Distance from lakes and pond (X4)” 0.00 0.00 0.39 0.71 0.90 15.04 261.38 7.99

“Distance from forest (X5)” 0.00 0.00 − 3.69 0.00 2.99 14.61 261.38 − 38.12

“Rainfall (X6)” 0.00 0.00 2.38 0.02 13.07 10.17 261.38 − 158.91
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largely associated with malaria [48]. Rainfall creates ovi-
position sites for female mosquitoes, whereas humidity 
is a key parameter for adult mosquito daily survival [49]. 
Anopheline mosquitoes require stagnant water to com-
plete their larval and pupal development. Thus, rainfall 
affects the transmission of malaria by providing water 
to create aquatic habitats. The number of malaria cases 
was significantly positively connected with higher winter 
rainfall, but also with a higher average maximum temper-
ature and significantly negatively associated with increas-
ing distance from water bodies in South Africa [50]. 
Southern Africa Development Community estimates the 
positive correlation between increasing rainfall and the 
number of cases in Botswana during 2013 and 2014 [51].

Next to climatic and environmental factors, distance 
of houses to a forest are interrelated through anthropo-
genic activities influencing the local and regional climate 
[52, 53]. These observations can be confirmed for the 
relationship of malaria case with distance to lake, pond 
and forest for South Sumatra. A cross-sectional view in 
Brazil revealed for example that malaria incidence across 
health districts is positively correlated with the percent-
age of aggregated deforestation  [26]. Indonesia contrib-
utes indeed significantly to deforestation in Southeast 
Asia. Anopheles was reported from eight sources at 47 
independent sites. The first record of Anopheles paran-
gensis from Sumatra was reported by O’Connor and Sopa 
(1981), but with no details on location [54]. Anopheles 
(Cellia) leucosphyrus is considered to be of epidemiologi-
cal importance for malaria transmission in forested areas 
of Sumatra [54]. In current research, the main Anophe-
les vector diversity in each study area was however not 
investigated.

Present study has identified Lahat as the South Suma-
tran district in which environmental factors were of 
greatest relevance for malaria incidence. Lahat District 
has both lowland and mountain regions and is home to 
diverse ethnic groups, such as the Gumai who live along 
the rivers of the highland areas [55].

One of the key activities for malaria elimination should 
be the establishment of systems and tools to reduce 
disease burden where local transmission is high. By 
comparing the local GWR model with the global OLS 
model  (Table  4), it became apparent that GWR yielded 

new information about the spatial variation of malaria 
incidence and thereby better explains local phenomena. 
The variability of malaria cases in our study was due to 
environmental and geographical local differences [8]. 
GWR should be used as a diagnostic model discover-
ing spatially varying relationships between confirmed 
malaria cases and environmental factors. The use of 
GWR allows the uncovering of significant environmen-
tal variation for malaria incidence, which has previously 
been unobservable in a specific location [56].

Limitations of research
Due to practical constraints, this study was unable to 
encompass the entirety of environmental factors, par-
ticularly climate parameters, temperature and humid-
ity, for which only limited data were available and hence 
not-representative data could not be included. Also the 
factor land use was eliminated. Malaria location informa-
tion was plotted using a village centre approach which 
ignored all other locations where actual infections may 
have occurred (e.g., forests, plantations). The number of 
positive malaria per village, did not include the specific 
coordinates of each positive malaria case and thus, each 
positive case was placed in the centre of the settlement. 
Therefore, if land use variables would be involved, there 
will very likely be a strong bias. However, these elimi-
nated or uninvestigated variables may be correlated with 
existing variables, for example, the temperature con-
nected with altitude and with aspect or direction of the 
slope. In the same way, land use may be associated with 
the distance from the river and the distance from lakes 
and ponds. Thus, although these parameters (tempera-
ture, humidity, land use) were excluded from analysis, 
these environmental factors were represented by our 
chosen set of variables. In the future, additional explana-
tory variables should be addressed to provide a compre-
hensive review of malaria in the study area. It should 
comprise, for example, the behavior of mosquito vectors 
and that of community members, the access to and the 
delivery of health services, and other eco-bio-social fac-
tors that affect the incidence of malaria. Despite these 
limitations, our study sheds light on relevant  informa-
tion, not only in regional but also local realities regard-
ing environmental variation which might interplay with 
vector-host relationships and sociocultural practice  and 
provide a suitable environment for malaria mosquitoes.

Conclusion
In the present study, the importance of different environ-
mental and geographic parameters for malaria disease 
was shown at global and village-level in South Sumatra, 
Indonesia. The independent variables altitude, distance 
from forest, and rainfall in global OLS were significantly 

Table 4  ANOVA testing the  null hypothesis that  the  GWR 
model represents no improvement over a global model

Source SS DF MS F Count F Table

Global residuals 100,625.26 429.00

GWR improvement 67,075.98 197.74 339.22

GWR residuals 33,549.28 231.26 145.07 2.34 2.12
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associated with malaria cases. As shown by GWR model 
and in line with recent reviews, the relationship between 
malaria and environmental factors in South Sumatra 
was found to vary spatially in different regions. A more 
in-depth understanding of local ecological factors influ-
encing confirmed malaria case cannot only be used for 
developing sustainable regional malaria control programs 
but can also benefit malaria elimination efforts at village 
level.
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