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Abstract 

Background:  Countries planning malaria elimination must adapt from sustaining universal control to targeted 
intervention and surveillance. Decisions to make this transition require interpretable information, including malaria 
parasite survey data. As transmission declines, observed parasite prevalence becomes highly heterogeneous with 
most communities reporting estimates close to zero. Absolute estimates of prevalence become hard to interpret as 
a measure of transmission intensity and suitable statistical methods are required to handle uncertainty of area-wide 
predictions that are programmatically relevant.

Methods:  A spatio-temporal geostatistical binomial model for Plasmodium falciparum prevalence (PfPR) was devel-
oped using data from cross-sectional surveys conducted in Somalia in 2005, 2007–2011 and 2014. The fitted model 
was then used to generate maps of non-exceedance probabilities, i.e. the predictive probability that the region-wide 
population-weighted average PfPR for children between 2 and 10 years (PfPR2–10) lies below 1 and 5%. A comparison 
was carried out with the decision-making outcomes from those of standard approaches that ignore uncertainty in 
prevalence estimates.

Results:  By 2010, most regions in Somalia were at least 70% likely to be below 5% PfPR2–10 and, by 2014, 17 regions 
were below 5% PfPR2–10 with a probability greater than 90%. Larger uncertainty is observed using a threshold of 1%. 
By 2011, only two regions were more than 90% likely of being < 1% PfPR2–10 and, by 2014, only three regions showed 
such low level of uncertainty. The use of non-exceedance probabilities indicated that there was weak evidence to 
classify 10 out of the 18 regions as < 1% in 2014, when a greater than 90% non-exceedance probability was required.

Conclusion:  Unlike standard approaches, non-exceedance probabilities of spatially modelled PfPR2–10 allow to quan-
tify uncertainty of prevalence estimates in relation to policy relevant intervention thresholds, providing programmati-
cally relevant metrics to make decisions on transitioning from sustained malaria control to strategies that encompass 
methods of malaria elimination.
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Background
All countries where malaria currently exists are encour-
aged to accelerate toward elimination [1, 2]. The path-
way to elimination requires several important strategic 
policy decisions, adaptations of control interventions 
and changing malaria surveillance to become a key 

intervention [1, 2]. Many countries in Africa continue 
to support moderate-to-high Plasmodium falciparum 
transmission and must sustain funding to maintain high 
levels of vector control coverage, diagnostics and treat-
ment. There are, however, large areas of Africa where 
the intensity of P. falciparum transmission has always 
been moderate-to-low or have transitioned to low trans-
mission, in part as a direct result of intervention. These 
countries must decide how they might adapt previous 
control strategies that demand maintaining universal 
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coverage to a more nuanced, cost-efficient and efficacious 
combination of interventions. For example, the inclu-
sion of low dose primaquine to the standard artemisinin-
based combination therapy for all clinical cases [3], the 
possible introduction of mass drug administration, with 
or without screening at detected foci of transmission [4], 
and the scaling back of universal coverage of insecticide-
treated nets and intermittent presumptive treatment in 
pregnancy, toward more targeted interventions at foci of 
transmission [2, 5, 6].

During the Global Malaria Eradication era, recommen-
dations were made to begin planning a pre-elimination 
stage when community-based parasite prevalence was 
consistently below 2% [7–9]. With time this included 
metrics based on the prevalence of infections in fevers 
below 5% [10]. The current international guidelines for 
malaria elimination remain non-specific on the precise 
criteria for accelerating elimination efforts, but define 
low transmission areas where community based preva-
lence is between 1–10% and very low as below 1% [2]. 
Less than 1% infection prevalence in the population has 
been identified as a signal for possible migration to an 
elimination-style approach for national malaria strate-
gies [11]. However, it is recognized that there are areas 
which have recently transitioned to this state of parasite 
prevalence < 1%, while prevalence levels in sub-popula-
tions remain below a higher threshold (e.g., lower than 
5% prevalence) suggesting heterogeneous endemicity. 
In these areas, immediate withdrawal of vector control 
is likely to result in rebound. This is distinguished from 
“low endemic malaria” where the natural state is such 
that transmission intrinsically occurs at a prevalence of 
< 1% because ecological conditions cannot support trans-
mission above this value [11, 12].

For countries considering malaria elimination, or 
selecting sub-national areas to begin the process of elimi-
nation, knowing the epidemiological status of areas of 
low malaria prevalence,  <  1% (very low) or  <  5% (low), 
becomes an important pre-requisite. Deciding to change 
from national universal coverage of vector control and 
chemoprevention to focused targeting and increasing the 
sensitivity of surveillance systems comes with costs and 
benefits. To make definitions of low transmission opera-
tionally useful requires innovative analysis of field data to 
provide sensitive metrics at programmatically useful spa-
tial resolutions to support malaria elimination activities.

Increasingly, model-based geo-statistical methods are 
applied to predict malaria prevalence across Africa at 
high spatial resolutions using temporally and spatially 
sparse empirical data [13, 14]. However, the uncertainty 
in relation to prevalence thresholds which define differ-
ent control progress scenarios, has not been applied to 

national decision-making for malaria elimination. Esti-
mates of prevalence are not sufficient to classify areas into 
different endemicity levels due to their intrinsic uncer-
tainty. Current approaches used to convey uncertainty in 
estimates of mean predicted prevalence are based on the 
use of standard error or quantile (usually those at 0.025 
and 0.975 levels) maps. These two approaches can help 
to visualize the overall dispersion around prevalence esti-
mates but do not provide any information on the uncer-
tainty relating to the exceedance, or not, of prevalence 
thresholds. This is particularly important in areas of low 
transmission, where heterogeneity increases and most 
survey data approach zero infection.

Here, a large collection of P. falciparum survey data 
from Somalia was used to demonstrate the value of 
summarizing prediction uncertainty with respect 
to policy-relevant prevalence thresholds in the sub-
national targeting of pre-elimination, and formally intro-
duce the empirical interpretation of uncertainty for 
decision-making.

Methods
Country and policy context
Somalia is in the Horn of Africa (Fig.  1) and has had a 
long history of sub-national targeting of vector control 
[15, 16] in concert with its extremely heterogeneous pat-
terns of malaria transmission [17–19]. These ecologically 
driven heterogeneities have persisted over time [20, 21], 
however at the launch of the Roll Back Malaria initiative 
in 2000, Somalia elected to pursue a national strategy of 
universal coverage of insecticide treated nets (ITN) and 
presumptive treatment of all fevers with chloroquine 
[22], changing to artemisinin–sulfadoxine–pyrimeth-
amine combinations in 2006 [23] and changed again in 
2016 to artemether–lumefantrine [24]. The third national 
malaria strategic plan, 2011–2014, proposed a stratified 
approach emphasising the need for a targeted control 
effort to attain near zero transmission (parasite preva-
lence < 1%) in the north while maintaining sustained uni-
versal coverage of ITN in the southern regions [25]. The 
current 5-year malaria strategic plan, launched in 2017, 
is based on intervention strategies to sustain the preva-
lence levels below 1% in the north and increasing access 
to treatment and vector control in the south [26].

The country has three operational ministries of health, 
Somaliland, Puntland and the Federal government [27, 
28]. The country is divided into 18 health regions, which 
serve as the principle sub-national levels of health infor-
mation aggregation, management and resource allocation 
[27, 28] (Fig. 1).



Page 3 of 10Giorgi et al. Malar J  (2018) 17:88 

Fig. 1  Somalia, showing three broad health regions of Somaliland (yellow), Puntland (brown) and South Central Zone (green) and the 18 health 
regions used to allocate federal resources



Page 4 of 10Giorgi et al. Malar J  (2018) 17:88 

Population distribution
The last complete national census was undertaken during 
the 1970s. Using combinations of land cover, UN agency 
developed settlement databases and crude population 
counts at sub-national levels a modelled distribution and 
density of human settlement was developed for Somalia 
in 2010 [29]. This has recently been updated using data 
from a Population Estimation Sample Survey undertaken 
in 2013–2014 [30] and updated settlement, landcover 
and modelled approaches to distribution of populations 
[31]. Data were downloaded from WorldPop (http://
www.world​pop.org.uk) at 1 decimal degree/1200 spatial 
resolution across each of the 18 health regions.

Assembling parasite survey data
Sub-national and national cluster sample surveys of 
malaria intervention and infection prevalence were 
undertaken in 2005 [20, 21] and 2014 [32] respectively. 
Between 2007 and 2011, the Food and Agriculture Organ-
ization Food Security and Nutrition Analysis Unit (FAO-
FSNAU) in Somalia, included finger prick blood samples 
for malaria testing using rapid diagnostic tests (RDTs) as 
part of routine monthly, sample nutritional surveillance 
across the country [20]. All community-based surveys 
included the examination of all residents within sampled 
households. Variations in age-groups per cluster were 
standardized to a single age group (see below). Each sur-
vey location was geo-coded to provide a unique longitude 
and latitude using a variety of methods and all checked 
using Google Earth. The final database included 2128 
surveys at 1626 unique locations sampled between Janu-
ary 2005 and March 2014. Data were available for every 
region for each of the survey years; no data were available 
in 2006, 2012 and 2013. All surveys used RDTs for para-
site detection, except in three locations where micros-
copy was used. For FSANU surveys ethical approval was 
provided by the Ministry of Health Somalia, Transitional 
Federal Government of Somalia Republic, Ref: MOH/
WC/XA/146./07, dated 02/02/07 For the national sur-
vey in 2014 ethical approval was provided by the regional 
governments of Puntland (MOH/PL/DGO/196/013), 
Somaliland (MOH/DG/688/25001/13) and South Central 
Zone (MOHD&PS/DOH/00245/12/2013).

Spatio‑temporal geostatistical analysis
A spatio-temporal geostatistical model was developed 
to borrow strength of information in PfPR between sam-
pled locations and predict risk on a 1 by 1  km regular 
grid covering the whole of Somalia for every year 2005, 
2007–2011 and 2014. Conditionally on a set of spatio-
temporal random effects W(x,t), the counts of positive 
P. falciparum tests are assumed to follow mutually inde-
pendent binomial distributions with number of trials N, 

corresponding to number of sampled individuals, and 
probability of a positive outcome p(x,t) at location x and 
year t, such that

where f(·) and g(·) are linear splines of the minimum and 
maximum age among the sampled individuals, denoted 
in the equation above by a and A, respectively. These 
were then used to standardize to a single age group 
2–10 years (PfPR2–10), traditionally used for malaria risk 
assessments [9, 33], when carrying out predictions, by 
setting a = 2 and A = 10.

The spatio-temporal analysis of the data under-
went several formative stages. First, a spatio-temporal 
exploratory analysis was undertaken, using a non-spatial 
binomial mixed model, where W(x,t) is assumed to be 
Gaussian noise, to assess the presence of residual spatio-
temporal correlation in the data, based on the empirical 
spatio-temporal variogram (ESTV) of the point estimates 
of W(x,t). In a second step, a spatio-temporal covariance 
function was specified for the stochastic process W(x,t) 
[34] and fitted the model using Monte Carlo maximum 
likelihood. Finally, the validation of the model was car-
ried out. Since the objective was to identify areas where 
prevalence lies below pre-specified thresholds, the vali-
dation approach aimed to test the validity of the adopted 
spatio-temporal structure for W(x,t). An algorithm was 
developed to generate 10,000 data-sets under the fitted 
model and, for each of these, the ESTV was computed 
as in the first step of exploratory analysis. The resulting 
10,000 ESTVs were then used to generate 95% confidence 
intervals, at each spatial distance of the ESTV, under the 
assumption that the fitted model generated the data. If 
the observed ESTV fell within the 95% tolerance band-
width, the conclusion was that there was no evidence 
against the adopted spatio-temporal covariance func-
tion. All computations were undertaken in the R software 
environment using the open-source package PrevMap 
[35]. Further details on the model formulation are pro-
vided in section 1.1 of Additional file 1.

Non‑exceedance probabilities of regional PfPR2–10
For a given year t and region R, the target for prediction 
is the regional population-weighted average PfPR2–10, 
formally defined as

 where the summations at the numerator and denomi-
nator are taken over a 1  km2 regular grid within region 

(1)

log

{

p(x, t)

1− p(x, t)

}

= α + f (a) + g(A) + W (x, t)

p(R, t) =

∑

x∈R d(x)p̂(x, t)
∑

x∈R d(x)

http://www.worldpop.org.uk
http://www.worldpop.org.uk
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R,   p̂(x, t) is the predictor of PfPR2–10 from the spatio-
temporal geostatistical model and d(x) represents the 
density population extracted from the WorldPop data-
base. Non-exceedance probabilities (NEPs) are used to 
summarize the uncertainty in the estimates of regional 
PfPR2–10 with respect to their likelihood of being below 
a pre-defined threshold l. More specifically, NEPs are 
defined as the predictive probability that PfPR2–10 is 
below l, formally expressed by NEP = Probability{p(R,t) 
< l|data}. Values of NEP close to 100%, indicate that p(R,t) 
is highly likely to be below the threshold l; conversely, 
for values close to 0%, p(R,t) is highly likely to be above 
l; finally, values around 50% correspond to the case of 
highest uncertainty, since p(R,t) is with equal probability 
below or above the threshold l.

Results
The spatio-temporal exploratory analysis showed resid-
ual spatio-temporal correlation between data-locations, 
which mostly manifests within 2 years of time separa-
tion between surveys (Additional file  1). A spatio-tem-
poral geostatistical model was fitted as specified by (1) 
in ‘Spatio-temporal geostatistical analysis’. The empirical 
spatio-temporal variogram fell within the 95% tolerance 
intervals generated by the algorithm described in SI-1.4 
(Additional file  2). Hence, the conclusion was that the 
data do not show evidence against the fitted geostatistical 
model.

Population‑weighted mean prediction and standard error 
maps of PfPR2–10
Between 2005 and 2014, an overall decrease was observed 
in the mean predictions of the regional population-
weighted average PfPR2–10 (Fig.  2). However, two differ-
ent sets of regions with distinct spatio-temporal patterns 
can be identified. The southern regions—with Glagadud 
being the northernmost—show a constantly decreasing 
trend in predictions but persistently higher than in the 
rest of Somalia, taking values below 1% only in Galgadud, 
Banaadir, Shabeellaha Hoose and Dhexe between 2008 
and 2011. In the central and northern part of Somalia, 
the regional predictions show more variation over time, 
with values above 10% reached only in Togdheer in 2005 
and between 5 and 10% in Awdal in 2005 and in Bari in 
2008. All of the regions from 2011 onwards show predic-
tions below 5%. In Fig. 2, the spatio-temporal variation in 
standard errors among the regions largely reflects that in 
the mean predictions, showing large values in standard 
errors associated with larger prevalence predictions. This 
can be noticed by the fact that all regions, except for Bay 
in 2007, that have predictions above 10% prevalence also 
have the highest standard errors between 3 and 9%. Addi-
tionally, in 2014, with all regions below 5%, the standard 

errors are between 2 and 3% in Bakool and below 2% in 
every other region. However, although the standard error 
maps can allow us to quantify the overall precision in 
regional estimates of prevalence, they do not provide any 
information in relation to the uncertainty of exceeding or 
not specific prevalence thresholds.

Non‑exceedance probability mapping to detect regions < 1 
and < 5% PfPR2–10
The maps of NEPs the regional population-weighted 
average PfPR2–10 show an overall increase between 2005 
and 2014 in the probability that prevalence is below both 
1 and 5% (Fig. 3). By 2010, all 18 regions in Somalia were 
confidently (> 70% likely) below 5% PfPR2–10 and by 2014, 
there was a greater than 90% probability that 17 regions 
were below 5% PfPR2–10 (Fig. 3) and between 80 and 90% 
probability in Bakool. The modelled data suggest that, 
by 2011, only two regions were more than 90% likely of 
being < 1% PfPR2–10 and three different regions by 2014 
but with most regions of Somaliland and Puntland being 
more than 70% likely of being  <  1% PfPR2–10. In 2014, 
Bakool, Bay, Hiiran and Shabeellaha Hoose, in the south, 
were more than 90% likely to be above a 1% threshold, 
whilst Awdal, Togdheer and Woqooyi Galbeed, in the 
north, were more than 90% likely to lie below 1%. For the 
remaining regions NEPs are between 20 and 90%. For any 
given year, comparison between the two NEPs maps, < 1 
and  <  5%, highlights that uncertainty with a respect to 
a threshold is not necessarily reflected in the other. For 
example, in 2005, Mugug and Nugal, in the central part 
of Somalia, had a probability between 40 and 60% of lying 
below 1%, but this becomes at least 90% if the threshold 
is 5%.

Finally, for 2014, the standard approach was used to 
classify regions as < 1 or > 1% purely based on the mean 
predictions of prevalence (Fig.  3) and was compared 
with two other approaches that use NEPs (Fig. 4). In the 
first approach (Fig. 4a), a region was classified as < 1% if 
PfPR2–10 is at least 75% likely to be below 1% or as > 1% 
if no more than 25% likely to be below 1%. A region was 
not classified if, instead, NEP is between 25 and 75%. In 
the second NEP approach (Fig.  4b), the rules for clas-
sification were made more stringent, defining a region 
as < 1% if NEP > 90%, as > 1% if NEP < 10% and as unclas-
sified if 10% < NEP < 90%. The standard method which 
ignores the uncertainty in prevalence estimates classified 
all the central and northern regions, including Jubbasa 
Hoose in the south, as < 1% and all the remaining regions 
as > 1%. The first NEP approach based on the 25%/75% 
rule, instead, provided the same classification results for 
14 regions but signalled that there was weak evidence 
(25% < NEP < 75%) to classify Jubbada Dhexe, Shabeel-
laha Dhexe and Galgadud, in the south, and Sool and 
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Fig. 2  Mean predictions and standard errors for the regional population-weighted average PfPR2–10 in the years 2005, 2007–2011 and 2014. The 
mean predictions are grouped into four classes: < 1, 1–5%, 5–10% and > 10%. The standard errors are grouped into six classes: 0.1–0.5%, 0.1–0.5%, 
0.5–1%, 1–2%, 2–3% and 3–9%
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Fig. 3  Maps of the non-exceedance probabilities for the regional population-weighted average PfPR2–10 in the years 2005, 2007–2011 and 2014, 
with thresholds l = 1% and l = 5%. In the maps, the values are grouped into ten different classes, as indicated by the legend, from 0 to 10% of to 
90–100%
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Bari, in the north. As expected, the second NEP approach 
which requires even stronger evidence from the mod-
elled data leaves more regions as unclassified, adding to 
the previous list two regions in the south and three in the 
north of Somalia.

Discussion
Geostatistical methods provide a feasible and statistically 
principled approach to model spatio-temporally refer-
enced survey data from low-resource settings [36]. One 
of the main advantages of these methods is that they also 
allow the estimation of risk at health decision making 
units and properties of uncertainty. To pursue this objec-
tive, the use of non-exceedance probabilities (NEPs) was 
proposed to quantify uncertainty in regional estimates 
of PfPR2–10 with respect to policy relevant thresholds. 
Exceedance probabilities have been previously used to 
map malaria hotspots over continuous regions [37] but 
this is the first study that uses NEPs to reliably identify 
health decision making units with low levels of malaria 
transmission.

The spatio-temporal geostatistical analysis for Somalia 
suggested an overall decrease in PfPR2–10 from 2005 to 

2014, with all regions, except Bakool, showing more than 
90% probability of PfPR2–10 being < 5% by 2014. However, 
for 2014, the data provided weaker evidence in relation 
to a 1% threshold. Only the northern regions of Awdal, 
Woqooyi Galbeed and Togdheer showed a NEP no less 
than 90%. In the south, Shabeellaha Hoose, Bay, Bakool 
and Hiiran, instead, had a NEP  <  10%, suggesting that 
these regions are most likely to have a PfPR2–10 between 
1 and 5%. However, in all remaining regions where NEPs 
were between 10 and 90%, inferences on PfPR2–10 cannot 
be drawn with the same level of precision and, therefore, 
additional sampling effort would be required in these 
areas. All these aspects could not be discerned by the use 
of mean predictions and standard error maps.

The use of NEPS overcomes the limits of standard 
approaches that either are unsuitable to address policy 
questions based on thresholds interventions or incor-
rectly ignore the uncertainty in prevalence estimates. 
Standard error and quantile maps are an example of sum-
maries of uncertainty that fail to address the specific pub-
lic health issue: a large standard error or 95% prediction 
interval for prevalence do not provide any information 
on the uncertainty of exceeding or not a policy threshold. 

Fig. 4  Maps of the non-exceedance probabilities for the regional population-weighted average PfPR2–10 in 2014, using a l = 1% threshold. Each 
region is classified as < 25, 25–75% and > 75% in a, and as < 10, 10–90% and > 90% in b 
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As a result, one of the most common, but incorrect, 
approaches is to use maps of prevalence predictions as 
a stand-alone tool to inform decision making, which can 
lead to the potential misclassification of health units as a 
consequence of ignoring uncertainty in prevalence esti-
mates. The proposed approach instead can be used to 
plan future sampling efforts through the identification of 
regions where the mapped NEP does not reach accepta-
ble levels (in the analysis two examples were given, where 
acceptable levels were set to 75 and 90% NEP) in order to 
make the best use of the available resources. This is par-
ticularly important in settings of low prevalence where 
sampling is often underpowered.

Other approaches that have been used to identify 
areas where prevalence exceeds a predefined threshold 
are based on excursion sets [38]. However, these are not 
defined when the target for prediction is an aerial aver-
age and have two main drawbacks with respect to NEPs: 
their definition is mathematically more complex and, 
therefore, more difficult to understand for policy-makers; 
they are exceedingly more conservatives than NEPs [36], 
i.e. areas with values of NEPs close to 100% might still be 
excluded from the resulting excursion set.

As malaria transmission in some countries declines, 
several have identified sub-national areas for malaria 
elimination, for example Djibouti, Sudan, Yemen, Paki-
stan and Afghanistan. In many settings, routine health 
information on fever malaria test positivity rates remains 
incomplete and rarely validated. Consequently, decisions 
are currently made on periodic national household sam-
ple survey data of infection prevalence. These surveys are 
often inadequately powered to detect very low levels of 
heterogeneous transmission. Nevertheless, model based 
geostatistical methods allows an interpolation of imper-
fect data in space and in time to provide properties of 
risk at administrative units required to make policy rel-
evant decisions. However, this is only useful when deci-
sion makers can reliably interpret the level of uncertainty 
that underlies the predictions. The approach presented 
here provides a means to judge the probability of a health 
region falling in a category of risk that might define 
a transition from one strategic approach to another. 
This application of statistical modelling of uncertainty 
by exceedance probability has a wider value for other 
rare infections for which decisions between sustaining 
mass control and focused elimination are required sub-
nationally. Additionally, the use of NEPs is not restricted 
to prevalence but can be extended to any disease risk 
metric that is estimated using a model-based approach. 
Neglected tropical diseases provide many examples 
where current intervention policies are defined in terms 
of exceedance of infection thresholds [39–41] and where 

the proposed approach in this paper would find a natural 
application.
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