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Abstract 

Background:  Although the recent decline of malaria burden in some African countries has been attributed to a 
scale-up of interventions, such as bed nets (insecticide-treated bed nets, ITNs/long-lasting insecticidal nets, LLINs), 
the contribution of other factors to these changes has not been rigorously assessed. This study assessed the trends 
of Plasmodium falciparum prevalence in Magoda (1992–2017) and Mpapayu (1998–2017) villages of Muheza district, 
North-eastern Tanzania, in relation to changes in the levels of different interventions and rainfall patterns.

Methods:  Individuals aged 0–19 years were recruited in cross-sectional surveys to determine the prevalence of P. 
falciparum infections in relation to different malaria interventions deployed, particularly bed nets and anti-malarial 
drugs. Trends and patterns of rainfall in Muheza for 35 years (from 1981 to 2016) were assessed to determine changes 
in the amount and pattern of rainfall and their possible impacts on P. falciparum prevalence besides of those ascribed 
to interventions.

Results:  High prevalence (84–54%) was reported between 1992 and 2000 in Magoda, and 1998 and 2000 in Mpa-
payu, but it declined sharply from 2001 to 2004 (from 52.0 to 25.0%), followed by a progressive decline between 
2008 and 2012 (to ≤ 7% in both villages). However, the prevalence increased significantly from 2013 to 2016 reach-
ing ≥ 20.0% in 2016 (both villages), but declined in the two villages to ≤ 13% in 2017. Overall and age specific P. 
falciparum prevalence decreased in both villages over the years but with a peak prevalence shifting from children 
aged 5–9 years to those aged 10–19 years from 2008 onwards. Bed net coverage increased from < 4% in 1998 to 
> 98% in 2001 and was ≥ 85.0% in 2004 in both villages; followed by fluctuations with coverage ranging from 35.0 to 
≤ 98% between 2008 and 2017. The 12-month weighted anomaly standardized precipitation index showed a marked 
rainfall deficit in 1990–1996 and 1999–2010 coinciding with declining prevalence and despite relatively high bed net 
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Background
Sub-Saharan Africa has witnessed an epidemiological 
transition in the distribution and intensity of malaria 
transmission since 2000, with a remarkable decline of 
malaria burden up to 2015 and a resurgence reported 
in 2016 [1, 2]. The declining burden of malaria has often 
been directly attributed to scale-up of interventions 
including vector control and changing anti-malarial 
treatment policies [1–4]. However, malaria is influenced 
by a complex array of environmental, ecological and 
climate factors and a desire to attribute the changes to 
intervention may mask this complex interplay of biotic 
and abiotic factors [2]. A detailed analysis of factors 
affecting malaria transmission requires congruent tem-
poral data over long periods [2]. However, such long-
term data which would support stratification of disease 
burden and setting up targeted control strategies with 
most impact is commonly lacking and decisions are often 
made based on limited updated evidence and high lev-
els of uncertainty. Thus, malaria control strategies and 
interventions have frequently been implemented with-
out proper stratification of current malaria transmission 
which would have presented a more balanced picture of 
malaria transmission intensity and disease burden in spe-
cific areas, and provide better evidence for more targeted 
interventions with higher impacts [5]. Malaria control in 
Tanzania is of no exception: a paper examining the dis-
tribution of insecticide-treated nets (ITNs) showed clus-
tering of ITNs which generally did not reflect patterns of 
transmission and in some places even an inverse distribu-
tion vs. intensity of transmission [6].

Longitudinal studies in Kenya [7, 8], Senegal [9] and 
Guinea Bissau [10] have all demonstrated that the chang-
ing epidemiology of infection and disease cannot be eas-
ily explained by changing coverage of interventions such 
as vector control alone. While these studies all demon-
strate an overall decline in malaria, in Kenya and Guinea 
Bissau, resurgent risks were documented after 2012 and 
this was consistent with resurgent risks during the same 
period in Zimbabwe [11] and Mozambique [12, 13]. 
Furthermore, recent reports have also showed a resur-
gence of malaria in many countries particularly in 2016, 

whereby malaria cases increased by over 6 million com-
pared to 2015 [1, 2].

Despite scarcity of long-term data on malaria preva-
lence across Tanzania, the consensus that the burden 
of malaria has declined significantly since 2000 is most 
likely valid [14, 15]. However, the decline has been less 
dramatic in some of the historically high burden north-
western and southern areas of Tanzania [14–16]. In the 
village of Nyamisati, in the Rufiji River Delta, Pwani 
region malaria prevalence was > 70% in 1985 and had 
declined to 5% in 2010 [17]. In Korogwe district, Tanga 
region, the prevalence of Plasmodium falciparum 
declined from 78% in 2003 to 13% in 2008 in the lowland 
village and from 25 to 3% in the highland village [18]. 
Finally, a study conducted in the two villages of Magoda 
and Mpapayu in Muheza district, also of Tanga region 
showed high malaria prevalence (> 68%) from 1992 to 
1999 which was followed by a moderate decline from 
2000 to 2004 and then, a significant decline from 2008 to 
2012 [19]. The present study is an extension of the latter 
study where the aims were to describe the most recent 
trends of P. falciparum prevalence in the two villages 
and examine plausible factors that may have contributed 
to the changing transmission intensity of P. falciparum 
between 1992 and 2017.

Methods
Study sites
The data used in this analysis was obtained from stud-
ies conducted in two villages of Magoda and Mpapayu in 
Muheza district. It is an extension of the analysis which 
covered studies implemented from 1992 to 2004 where 
different types of studies were undertaken in these vil-
lages including drug efficacy trials, bed net effectiveness 
trials and parasitological surveillance through cross-
sectional surveys (CSS) [20–22]. With dramatic changes 
of malaria epidemiology observed in mid 2000s, a series 
of CSS were initiated from 2008 to 2017 to document 
changes in malaria transmission and trends of malaria 
burden and identify possible factors associated with and 
possibly driving the current epidemiological changes. 
Data from studies conducted between 1992 and 2004, 

coverage from 2000. From 1992, the risk of infection decreased steadily up to 2013 when the lowest risk was observed 
(RR = 0.07; 95% CI 0.06–0.08, P < 0.001), but it was significantly higher during periods with positive rainfall anomalies 
(RR = 2.79; 95% CI 2.23–3.50, P < 0.001). The risk was lower among individuals not owning bed nets compared to those 
with nets (RR = 1.35; 95% CI 1.22–1.49, P < 0.001).

Conclusions:  A decline in prevalence up to 2012 and resurgence thereafter was likely associated with changes in 
monthly rainfall, offset against changing malaria interventions. A sustained surveillance covering multiple factors 
needs to be undertaken and climate must be taken into consideration when relating control interventions to malaria 
prevalence.
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and CSS done between 2008 and 2012 have been pub-
lished earlier [19]. In the present study, these data have 
been extended to include data from CSS performed 
between 2013 and 2017 and as well combined with rain-
fall data spanning the years 1981–2016.

Recruitment of participants and data collection
Although the CSS conducted before 2008 involved indi-
viduals of all age groups, for comparison reasons the cur-
rent analysis focused only on those aged 0–19 years. For 
the CSS conducted from 2008 onwards, 250 individuals 
were randomly selected in each study village as previ-
ously described [23]. From 1992 to 2004, the CSS were 
conducted either before/during short (August–Decem-
ber) or long (April/June) rainy seasons while the CSS 
undertaken from 2008 were done during or after the long 
rains between May and June. Recruitment, examination 
and enrolment of study participants involved obtaining 
demographic details, physical examination and assess-
ment of splenomegaly [19]. Blood samples were collected 
from each of the study participants by venous bleeding 
or finger prick for parasitological examination and other 
laboratory analyses. Thick and thin blood smears were 
prepared and dried in the field, and later brought to the 
laboratory for further processing.

Laboratory analysis
Blood smears were stained using 3% Giemsa solution 
for 45 min and examined at a magnification of 1000× to 
detect parasite species and to determine parasitaemia. 
Reporting, quantification and quality control of micro-
scopic examination of blood smears were performed as 
described elsewhere [23, 24].

Control interventions against malaria
Between 1992 and 2001, chloroquine was used for the 
treatment of uncomplicated malaria while sulfadoxine/
pyrimethamine (SP) and amodiaquine (AQ) were also 
used before and after policy changes in 2001 and until 
2006 when they were withdrawn. In November 2006, 
artemether–lumefantrine (AL) replaced SP and has been 
the first-line drug for the treatment of uncomplicated 
falciparum malaria without parasitological confirmation 
(from January 2007) or with confirmed parasitological 
test by malaria rapid diagnostic tests (RDTs) from 2012. 
A weekly mobile clinic was introduced in Magoda in 1994 
and Mpapayu in 1997; whereby during each visit, febrile 
individuals were tested for malaria by microscopy and 
treated with either AQ or SP. In 2004, the mobile clinic 
was replaced with a dispensary which was constructed 
by the project [19]. From 2008, a new surveillance was 

initiated whereby all participants (6  months to 19  years 
old) were tested with RDTs and in the CSS conducted in 
2008 and 2009, only those with positive test results and 
other symptoms of uncomplicated malaria were treated 
with AL as described by Ishengoma et al. [19, 23]. From 
2010, in accordance with the national guidelines [25], 
both symptomatic and asymptomatic individuals with 
positive RDT results, seen during the CSS were treated 
with AL.

Bed‑coverage and variation in malaria vectors
In December 1998, each sleeping bed in Magoda received 
a permethrin insecticide-treated net (ITN), while in 
Mpapayu, deltamethrin-treated nets were distributed in 
March 2001; all ITNs were re-impregnated with the same 
insecticides twice a year until 2003 [20]. From 2004, long-
lasting insecticidal nets (LLINs) replaced conventional 
ITNs and were distributed free of charge to all household 
members through the National Universal Bed net Cover-
age Campaign and other national programmes including 
the discounted voucher scheme for pregnant women and 
infants, and school nets malaria programme (R. Mandike 
and S. Mkude, personal communication). There have 
been no attempts to use indoor residual house-spraying 
and larviciding in either village.

Few studies were conducted between 1992 and 2004 
to monitor mosquito vectors in the study villages and 
showed that Anopheles gambiae was the main malaria 
vector in the community, together with Anopheles funes-
tus and a low proportion of Anopheles arabiensis (Amani 
Centre, unpublished reports). It was also shown that An. 
gambiae sensu stricto was the main malaria vector in 
Muheza and other parts of north-eastern Tanzania fol-
lowed by An. funestus until midi 2000’s when An. arabi-
ensis started to become prominent [26]. Other studies 
have shown an increase in vector resistance to commonly 
used pyrethroids insecticides (permethrin, deltamethrin 
and lamda cyhalothrin) in Muheza as well as DDT in 
other parts of Tanzania in 2011 compared to 2004 and 
2010 [27, 28]. However, no vector surveillance has been 
undertaken in the study villages in recent years.

Rainfall data
Rainfall data for Muheza district spanning a period of 
35 years (from 1981 to 2016) was obtained from the Tan-
zania Meteorological Agency (TMA), covering weather 
stations around Muheza town (situated about 10  km 
from Magoda and Mpapayu villages). Monthly total rain-
fall data was used in the analysis and for months with 
missing data, the gaps were filled with satellite-generated 
data.
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Ethical considerations
The studies which provided parasitological and clini-
cal data for this paper were approved by the Medi-
cal Research Coordinating Committee (MRCC) of the 
National Institute for Medical Research (NIMR). Permis-
sion to conduct the study was sought from the regional 
and district medical officers of Tanga and Muheza, 
respectively; and from leaders of the two villages. Meet-
ings were held with all community members to obtain 
their acceptance before the project started. Verbal and 
written informed consent was sought from patients or 
parents/guardians in case of children. Further meet-
ings were held in each village to give feedback including 
results of previous surveys and discuss the study plans 
with community members. A written report of the previ-
ous survey was also given at each meeting.

Data analysis
Data collected in previous studies were managed as 
described earlier [19], while the data collected from 
2008 were double entered in Microsoft Access data-
base followed by validation, cleaning and analysis using 
STATA version 13 (STATA Corp Inc., TX, USA). Rain-
fall data covering a period of 1981–2016 was managed 
with Microsoft Excel, and later transferred to STATA 
and R Statistical software [29] for analysis. The analysis 
involved comparison of parasite prevalence in order to 
test for the differences across years and between the two 
villages. The analysis was also conducted for different age 
groups of under-fives, individuals aged 5–10  years old 
and those aged ≥ 10  years as previously described [19]. 
The mean monthly rainfall was calculated from data col-
lected by weather stations around Muheza town. Rainfall 
data derived from Rain-Gauge observations merged with 
satellites rainfall estimates (for months with missing rain-
fall data) were used to generate a complete dataset, and 
the results were summarized in tabular and line plots. 
Rainfall estimates derived from satellite data have been 
shown to have better quality and cover up or improve 
rainfall data availability over areas with sparse network 
of rainfall observations [30–32]. To determine the effect 
of rainfall on the risk of malaria infection, the 12-month 
weighted anomaly standardized precipitation (WASP) 
index  (baseline = January 1981) was estimated as previ-
ously described [33, 34]. Modelling of number of malaria 
positive cases against the total number of surveyed indi-
viduals (as offset) was done using Poisson model, with 
bed net (ITNs/LLINs) ownership/coverage and rainfall 
anomaly, year of survey and study village as covariates. 
Robust standard errors for the parameter estimates were 
used to control for possible violation of the distribution 
with an assumption that the variance equals the mean 
and heteroskedasticity.

Results
Prevalence of Plasmodium falciparum infections 
in individuals aged 0–19 years in Magoda (1992–2017) 
and Mpapayu village (1998–2017)
For parasite prevalence data between 1992 and 1997 in 
Magoda village, only summaries obtained from previous 
reports were available while for both villages between 
1998 and 2017, a total of 9841 individuals aged 0–19 years 
were sampled in the 15 CSS (details shown in Additional 
file 1). Between 1992 and 1999, the prevalence of P. fal-
ciparum infections in Magoda village showed a moder-
ate decline, except for a marked drop to 62.2% in 1996 
(Fig.  1). In 1999, the prevalence was 67.7% in Magoda 
village while it was 81.5% in Mpapayu, and declined to 
53.7 and 66.8% in 2000 in the two villages, respectively. 
From 2000 to 2004, a sharp decline occurred (to 34.4 and 
24.9%, in Magoda and Mpapayu villages, respectively), 
followed by a slight increase in 2008 to 44.1% in Magoda 
and 29.5% in Mpapayu. Between 2009 and 2012, there 
was a sharp and progressive decline to a prevalence of 
only 7.2 and 4.7% in 2012 in Magoda and Mpapayu vil-
lages, respectively. Finally, the following years (from 2013 
to 2015) had a significant increase of parasite prevalence 
(reaching 31.4 and 23.1% in 2015 in Magoda and Mpa-
payu villages, respectively) while in the survey of 2016, P. 
falciparum prevalence was at a similar plateau as in 2015 
but thereafter declined to 13.3% in Magoda and 11.1% in 
Mpapayu in 2017 (Fig. 1).

Age‑specific prevalence of P. falciparum infections 
in Magoda (1992–2017) and Mpapayu village (1999–2017)
Among under-fives in Magoda village, the highest preva-
lence of P. falciparum infections (86.0%) was reported 
in 1995 and it declined to 48.1% in 2000. Thereafter, 
the prevalence among under-fives continued to decline 
reaching approximately 26% in 2004 and 2008, and then 
declined to the lowest level of 3.3% in 2012 (Fig. 2). From 
2013, parasite prevalence among under-fives in Magoda 
increased to 6.8% and reached the highest level (23.4%) 
in 2014 and started to decline with a prevalence of 6.6% 
in 2017. In Mpapayu village, the highest parasite preva-
lence among under-fives was 80.2% in 1999 with a slight 
decline to 77.2% in 2000 and a further drop to approxi-
mately 17–19% in 2004 and 2008. In 2012, no child aged 
less than 5  years from Mpapayu had malaria parasites. 
This was followed by an increase in prevalence reaching 
the highest of 14.8% in 2015 and then declined to 7.0% in 
2017 (Fig. 2).

Children aged 5–9  years in Magoda (from 1992) and 
Mpapayu (from 1999) had the highest prevalence of P. 
falciparum infections compared to other age groups up 
to 2004 in Magoda and 2008 in Mpapayu; with the high-
est prevalence of 98.7 and 89.4% in Magoda in 1995 and 
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in Mpapayu in 1999, respectively. A similar decline (as 
in under-fives) was also observed in this age group with 
the lowest prevalence in 2012 (6.7% in Magoda and 3.2% 
in Mpapayu); but with an increase in the prevalence in 
both villages reaching the highest prevalence of 32.3% 
in 2015 in Magoda and 26.9% in Mpapayu in 2014. A 
decline in prevalence occurred (among children aged 
5–9  years) in 2016 and 2017 in Magoda and from 2015 
in Mpapayu with the lowest of approximately 15.0% in 
2017 in the two villages (Fig.  2). Among children aged 
10–19  years, a declining but generally lower prevalence 

was observed compared to other groups between 1992 
and 2000 in Magoda, and 1999–2000 in Mpapayu. Para-
site prevalence was 43.9 and 46.8% in 2000, with a further 
decline to 32.8 and 27.5% in 2004 in Magoda and Mpa-
payu, respectively. Generally, this age group had lower P. 
falciparum prevalence compared to those aged 5–9 years 
in the first years of the study, however, from 2008 to 2009 
onwards (in both villages), the opposite situation was 
observed whereby the highest prevalence shifted to this 
age group except in Mpapayu in 2017 (Fig. 2 and Addi-
tional file 2).
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two villages of Muheza district from 1992 to 2017 in Magoda and 1998 to 2017 in Mpapayu. Pf: P. falciparum 
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Bed net coverage in Magoda and Mpapayu villages 
between 1999 and 2017
In Magoda village, coverage (ownership) of bed nets 
(ITNs/LLINs) increased from less than 4% in 1998 to 
92.7% in 1999 and reached the highest level of 95.2% in 
2001 (Fig. 1). In Mpapayu village however, bed net cover-
age was less than 4% up to 2000 but increased to 98.5% in 
2001. The coverage of ITNs/LLINs was at the lowest level 
(40.5%) in Magoda village in 2008, but increased to 60.7% 
in 2009 and then declined to 40.7% in 2011, followed by 
an increase to 82.2% in 2012 (Fig.  1). A similar pattern 
was observed in Mpapayu between 2008 and 2012. The 
coverage decreased from 63.3 to 54.0% and 61.0 to 49.0% 
between 2013 and 2015 in Magoda and Mpapayu, respec-
tively; while very high coverage of bed nets (> 92.0%) was 
reported in both villages in 2016 and 2017 (Fig. 1).

Rainfall pattern in Muheza town from 1981 to 2016
The monthly rainfall data was available for the period 
of January 1981 to December 2016; and here, summa-
rized as mean monthly rainfall for periods of 10  years 
(Fig. 3). The periods between 1991–2000 and 2001–2010 
reported lower mean monthly rainfall for both the long 
(in April–May–June, AMJ) and short rainy seasons (in 
October–November–December, OND) compared to 
other periods (1981–1990 and 2011–2016), regardless of 
the El-Nino rains of 1997 and 1998. For all periods during 
the long rains (AMJ), similar levels were observed, except 
in 1981–1990 and the peak of the rain season occurred 

during April except in 2011–2016 which had the peak 
in May. For the short rains (OND), the peak of the sea-
son occurred during the month of November (except in 
1991–2000). Despite the differences observed over the 
study period, there was no shift in terms of the start and 
end of the long and the short rain seasons.

Association between rainfall, bed nets and prevalence 
of malaria in Magoda and Mpapayu villages
The 12-month weighted anomaly standardization precip-
itation (WASP) index (baseline = January 1981) showed a 
marked rainfall deficit in the periods between 1991–2000 
and 2001 and 2010 (except in 1997–1999, 2001/02 and 
2005/2006) and this seems to coincide with a significant 
decrease of malaria prevalence (Fig.  4). When explored 
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Fig. 2  Age specific prevalence of Plasmodium falciparum detected by microscopy in the two villages of Magoda (a) and Mpapayu (b) in Muheza 
district from 1992 to 2017
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by Poisson regression model (with robust standard 
errors) with the number of individuals who were posi-
tive for malaria parasites against bed net ownership, 
village, year of survey, rainfall anomaly and number of 
individuals surveyed as offset; the risk of being positive 
was decreasing across the years (Table 1). From 1992, the 
risk ratio slightly increased between 1999 and 2001, and 
thereafter decreased with the lowest risk ratio observed 
in 2013. Conversely, the risk of malaria parasite infec-
tions was significantly higher during the periods with 
positive rainfall anomalies; whereby a unit increase in 
rainfall anomaly had a corresponding increase of the risk 
of infection by a similar magnitude (RR = 2.79; 95% CI 
2.32–3.51, P < 0.001). The risk of infections was higher 
among individuals who reported not to own bed nets 

compared to those who had bed nets (RR = 1.35, 95% CI 
1.22–1.49, P < 0.001). For the two villages, the risk was 
lower in Mpapayu village (RR = 0.85, 95% CI 0.78–0.94, 
P = 0 0.001) compared to Magoda.

Discussion
Previously, in the villages of Magoda and Mpapayu, Tanga 
region, Tanzania, a significant decline in the prevalence 
of P. falciparum infections was observed between 2000 
and 2012 [19]. Parasite prevalence as low as < 10% was 
recorded in 2011 and 2012, and there were no individu-
als among under-fives from Mpapayu who had malaria 
parasites during the cross sectional survey performed in 
2012. The villages had many interventions deployed dur-
ing the period of 1998–2004 where the prevalence of P. 
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falciparum declined, which would easily be ascribed to 
the interventions.

After the end of major research projects in the two vil-
lages in 2004, ITNs and LLINs were distributed to the 
study communities through different national initiatives 
including nets for pregnant women between 2006 and 
2014, and mass distribution in 2011 and 2016 (NMCP, 
unpublished data). Moreover, the mobile clinic operating 
in the villages since the mid-1990s was in 2004 replaced 
with a dispensary, which offered medical services to all 
members of the community. Thus, the observed decline 
in malaria prevalence may be attributed to high cover-
age of ITNs/LLINs and improved case management at 
the dispensary, including deployment of effective anti-
malarials (artemisinin-based combination therapy from 
2007), as also described in the previous study [19]. It is, 
therefore, tempting to assume that the decline in malaria 
burden is closely related to the interventions as has been 
suggested for Zanzibar as well [35].

A large epidemiological malaria study conducted in 
Kenya suggests that the main factor responsible for the 
decline of malaria was the considerable use of SP in the 
management of uncomplicated malaria, when it replaced 
chloroquine as standard treatment in the early 2000’s 
[8]. Whether SP has caused a similar impact in the study 
area remains doubtful, as the decline began 1 year before 
the introduction of SP (in 2001) and high levels of SP 
resistance was already reported in these villages before 
SP was introduced, possibly related to previous mass 
drug administration of the antifolate drug combination, 

dapsone–pyrimethamine (Maloprim) in Magoda village 
in 1993–1994 [22, 36].

Alternatively, an entomological study performed in 
two villages of the same Tanga region located about 
20 km from the present study observed a drastic decline 
in abundance of An. gambiae and An. funestus; from a 
sampling of 5382 Anopheles sp. in 2004 to merely a total 
of 14 mosquitoes in 2009 [37]. The cause of the almost 
complete disappearance of these mosquitoes is largely 
unknown as no major interventions in that study areas 
was done (coverage with bed nets did not exceed 27%). 
The study does suggest however, that part of the decline 
was associated with changes in patterns of monthly rain-
fall [37]. Whether the decline in P. falciparum preva-
lence observed between 2000 and 2012 in the present 
study sites was affected by lack of malaria vectors dur-
ing this period is likely, and could possibly be related to 
the abnormalities in rainfall (amount and patterns), but 
unfortunately, no entomological surveys were performed 
during that study period.

From 2013 onwards, there has been a sustained re-
emergence of malaria in the study area with an increase in 
parasite prevalence reaching 25% in 2014 and remaining 
relatively higher up to 2016 and a remarkable decline in 
2017. Re-emergence of malaria in the study area occurred 
during a period where ITNs/LLINs are expected to work 
and a lack of protective effect of ITNs/LLINs somewhat 
reflects similar observations from a Kenyan study, where 
an increase in malaria prevalence was reported despite 
recent mass ITNs/LLINs distribution [8]. Although use 
of ITNs/LLINs among under-fives in Tanzania declined 
between 2012 and 2015 (from 72.7 to 54.5%), the level 
reported during this period was still high enough com-
pared to the relatively low ITNs/LLINs coverage in 2004 
(19.5%) and 2008 (32.7%) but with the highest decline 
in malaria burden (NMCP, unpublished data). Another 
potential contributing factor to resurgence of malaria 
might be development of resistance to insecticides used 
to impregnate the bed nets (even with LLINs), which has 
been reported in different parts of Tanzania including 
Muheza district [38–40].

The declining prevalence up to 2012 occurred in the 
period with overall negative rainfall anomaly suggesting 
that the decline in parasite prevalence and malaria bur-
den reported in this area (and other parts of the country) 
was also possibly affected by the variability in the amount 
and pattern of rainfall directly affecting the Anoph-
eles mosquitoes. These changes in prevalence occurred 
simultaneously with the interventions (high bed net cov-
erage from 1998 in Magoda and 2001 in Mpapayu, and 
anti-malarial drugs) applied during the study period, 
indicating that multiple factors could be responsible for 
the observed trends. Conversely, the lack of changes in 

Table 1  Results from a Poisson regression model showing 
association between  the risk of  Plasmodium falciparum 
infections and rainfall anomaly adjusted for other factors

Variable Risk ratio 95% CI P > z

Rainfall anomaly: positive anomaly 2.793 (2.227–3.504) < 0.001

Year of survey

 1999 1

 2000 1.208 (1.070–1.365) 0.002

 2001 1.003 (0.858–1.173) 0.970

 2004 0.626 (0.544–0.720) < 0.001

 2008 0.707 (0.595–0.841) < 0.001

 2009 0.549 (0.443–0.681) < 0.001

 2010 0.240 (0.177–0.327) < 0.001

 2011 0.096 (0.068–0.135) < 0.001

 2012 0.099 (0.082–0.121) < 0.001

 2013 0.072 (0.063–0.083) < 0.001

 2014 0.211 (0.167–0.266) < 0.001

 2015 0.233 (0.195–0.278) < 0.001

Bed net ownership: no bed nets 1.350 (1.221–1.493) < 0.001

Village: Mpapayu 0.849 (0.771– 0.936) 0.001
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2016 and a decline in prevalence in 2017 could possibly 
be attributed to the negative anomaly in 2016 and high 
bed net coverage (> 92%).

Thus, the decline in the prevalence of P. falciparum 
infections (and current resurgence) is most likely due to 
multiple factors including anti-malarial control inter-
ventions, but the exact contribution of the interventions 
is uncertain and possibly varies through time [2]. Addi-
tionally, factors such as climate, physical environment 
and socio-economic development are crucial and should 
be assessed in order to fully comprehend the changes in 
malaria epidemiology occurring in recent years. Further 
integrated surveillance is required to provide additional 
details which could be responsible for the decline as well 
as resurging transmission of malaria in North-eastern 
Tanzania as well as in other parts of Tanzania and sub-
Saharan Africa [1], where malaria transmission patterns, 
socio-economic conditions; and climate are changing 
fast.

Conclusions
A significant decline in the prevalence of P. falciparum 
infections observed up to 2012 was followed by a sus-
tained resurgence of malaria, which is possibly associ-
ated with changes in the amount and pattern of rainfall 
in Muheza, apart from intensified malaria control. Thus, 
climate variability must be taken into consideration when 
relating control interventions to malaria prevalence. A 
sustained multi-factorial surveillance needs to be under-
taken to monitor changes in malaria transmission and 
determine other factors which could be associated with 
continued transmission and resurgence of malaria in this 
and other area with a similar malaria epidemiological 
transition.
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