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Abstract 

Background:  The transmission of malaria is highly variable and depends on a range of climatic and anthropogenic 
factors. In addition, the dispersal of Anopheles mosquitoes is a key determinant that affects the persistence and 
dynamics of malaria. Simple, lumped-population models of malaria prevalence have been insufficient for predicting 
the complex responses of malaria to environmental changes.

Methods and results:  A stochastic lattice-based model that couples a mosquito dispersal and a susceptible-
exposed-infected-recovered epidemics model was developed for predicting the dynamics of malaria in heterogene-
ous environments. The Itô approximation of stochastic integrals with respect to Brownian motion was used to derive a 
model of stochastic differential equations. The results show that stochastic equations that capture uncertainties in the 
life cycle of mosquitoes and interactions among vectors, parasites, and hosts provide a mechanism for the disruptions 
of malaria. Finally, model simulations for a case study in the rural area of Kilifi county, Kenya are presented.

Conclusions:  A stochastic lattice-based integrated malaria model has been developed. The applicability of the 
model for capturing the climate-driven hydrologic factors and demographic variability on malaria transmission has 
been demonstrated.
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Background
Malaria is a vector-borne disease with complex nonlinear 
dynamics  [1, 2]. The disease, caused by protozoan para-
sites of the genus Plasmodium, is transmitted between 
humans by female Anopheles mosquitoes. Many fac-
tors are determinants for the transmission of malaria, 
including climate suitability, life cycles of pathogens and 
vectors, and the local capacity to control the mosquito 
population [3–6]. The fundamental basis for malaria risk 
prediction and early warning lies in the ability to estimate 
the effects of weather, to identify vector habitat, and to 
model the population dynamics of Anopheles mosqui-
toes and the transmission of the pathogens in the human 
population.

Mathematical models have been used to provide 
an explicit framework for understanding malaria 

transmission dynamics for over 100 years, starting with 
the pioneering work of Ross [7]. In a simple form, he used 
a few ordinary differential equations (ODEs) to describe 
quantitative changes in densities of infected human and 
mosquitoes. Since then, more sophisticated models have 
been developed that include factors such as latent peri-
ods  [4, 8], vector density and human age structure  [4], 
varying human population size and migration  [9, 10], 
socio-economic developments  [11], temporary immu-
nity  [12], and weather effects  [13]. In addition, agent-
based and meta-population based models have been 
used to allow simulations of heterogeneous communi-
ties subject to realistic transmission scenarios  [14–18]. 
Over the last 60 years, much scientific research was 
undertaken and progress made in understanding the 
biology of malaria vectors and host-parasite-vector inter-
actions. Systematic reviews of mathematical modelling of 
malaria [19] and other mosquito-borne diseases [20, 21] 
indicate the need for models to address the complexities 
is the host-vector-parasite interactions and to incorpo-
rate heterogeneous environments.
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Deterministic models with susceptible-exposed-infected-
recovered (SEIRS) patterns, often based on nonlinear 
ODEs, are among the standard approaches for estimating 
the transmission potential for a wide range of infectious 
diseases, including malaria  [22]. These models are use-
ful in understanding the temporal dynamics of infection 
cycles and in coping with different epidemiological situa-
tions including both epidemicity and endemicity. However, 
SEIRS models ignore the aquatic stage of the mosquito life 
cycle and the spatial dynamics of mosquitoes when habi-
tats are heterogeneously available, thus limiting the ability 
to couple and accurately predict the link between the life 
cycle of Anopheles mosquitoes and malaria transmission. 
Furthermore, deterministic models cannot capture fluc-
tuations dominated by the random nature of population 
events, environmental conditions, and variability in the 
controlling parameters, which inevitably occur in a real 
system  [23]. To that end, stochastic models have proved 
valuable in estimating asymptotic expressions for the prob-
ability of occurrence of major outbreaks as well as sto-
chastic extinctions  [24, 25]. Nevertheless, there still exists 
a lack of complete predictive capability which may allow a 
mechanism to efficiently capture uncertainty in the tempo-
ral and spatial dynamics of malaria. This shortcoming has 
been attributed to the differences in stochastic modelling 
approaches, as agent-based models  [15, 17, 18] are inef-
ficient for large-scale simulations with very large number 
of vector individuals involved, while lumped-population 
models [26, 27] bypass the spatial dynamics of the diseases.

In this paper, a stochastic lattice-based integrated 
malaria (SLIM) model for investigating the dynamics 
of mosquitoes and transmission of malaria in time and 
space is developed. More precisely, an entomological 
mosquito dispersal formulation is coupled with a clas-
sic SEIRS-type model to capture the interaction between 
malaria dynamics and the life cycle of Anopheles vec-
tors. The model is linked to a sophisticated ecohydro-
logic model to incorporate climate-driven hydrologic and 
ecologic processes as factors that determine mosquito 
population and malaria transmission dynamics. A meta-
population approach is incorporated to describe the 
movements of vectors among discrete geographic sub-
domains. The Itô approximation of stochastic integrals is 
used to derive governing stochastic differential equations 
(SDEs) of the model. Then, the derived SDEs are rep-
licated across lattice grid cells in the domain to capture 
temporal and spatial dynamics of malaria.

The rest of this paper is organized as follows. In the 
next section, the mathematical formulations of the sto-
chastic malaria model is described. Then, numerical sim-
ulations of this model using topographic and reanalysis 
data for a case study in Kenya are presented. Finally, the 
paper closes with discussion of the key points.

Methods: model description
SLIM consists of two stochastic time-continuous, space-
discrete models: one for vector dispersal that represents 
the entomological life cycles of female Anopheles, and 
a second for SEIRS malaria dynamics that simulates 
the circulation of the pathogen between host and vec-
tor populations  (see Fig.  1). The model is driven by the 
distribution of human population (density, locations), 
atmospheric forcing (air temperature, precipitation), and 
hydrological conditions (soil moisture distribution and 
ponding persistence in topographic depressions). The 
spread of malaria in time and space is modelled as fol-
lows. Let D be a bounded domain in R2 and let m, n ≥ 1 
be integers. D is partitioned into uniform and rectangu-
lar lattice grid indexed as {ζ := (i, j) ∈ Z

2
+ : i ≤ n, j ≤ m} . 

In each grid cell ζ , a vector dispersal model for mosquito 
population dynamics is coupled with a SEIRS formula-
tion for malaria transmission. It is assumed that mosqui-
toes in aquatic stages are immobile, but adult mosquitoes 
can move between adjacent grid cells, spreading the 
pathogen.

Vector dispersal model
The deterministic vector dispersal model of Lutambi 
et  al.  [28] that serves as the basis for constructing the 
stochastic formulation is described first. The life cycle 
of the female mosquito has six distinct phases, includ-
ing three aquatic stages: egg (E), larval (L), pupal (P); and 
three adult stages: host-seeking ( Ah ), resting  (Ar ), and 
oviposition site searching ( Ao ). Each phase of this model, 
hereafter referred to as ELPAs, is subject to fluctuations 
due to recruitment, mortality, and progression of survi-
vors into the next states. Ah and Ao are further affected 
by the movement of mosquitoes in space. For t > t0 and 
∀ζ ∈ D , ELPAs is given as a set of dynamical equations 
as described below. The summary of key parameters pre-
sented in ELPAs and their ranges of values are given in 
Table 1.

• • The rate of change in egg population ( Eζ ) as a func-
tion of oviposition, egg mortality and hatching: 

where b is the average number of eggs laid during an 
oviposition with 1:1 sex ratio; ρAo is the rate at which 
eggs are oviposited by gravid mosquitoes; µE is egg 
mortality rate; and ρE is the hatching rate into larvae. 
The term ψW

ζ  on the right hand side represents water 
availability in a particular cell ζ and is discussed later.

(1a)
dEζ

dt
= bψW

ζ ρAoAo,ζ − (µE + ρE)Eζ
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• • The rate of change in larvae population ( Lζ ) as a 
function of egg population, larval mortality and 
maturation into pupae: 

where ρL is the progression rate from larvae to pupae; 
µL1 and µL2 represent natural and density-dependent 
death rates of larvae, respectively.

• • The rate of change in pupae population ( Pζ ) as a 
function of larval maturation, pupal mortality, and 
emergence into adults: 

(1b)
dLζ

dt
= ρEEζ −

(

µL1 + µL2Lζ + ρL
)

Lζ

(1c)
dPζ

dt
= ρLLζ − (µP + ρP)Pζ

where µP is the mortality rate of pupae, and ρP rep-
resent the rate of emergence from pupae into adults.

• • The rate of change in population of host-seeking 
adults ( Ah,ζ ) as a function of pupal emergence, ovi-
position, mortality, and blood feeding rates: 

where µAh
 is the death rate of host-seeking adults; 

and ρAh
 is the rate at which they enter a resting state 

after blood feeding. Host-seeking adults can spread 
to adjacent cells for searching human host in which 
ωH
ζ1:ζ2 represents their movement rate from cell ζ1 

(1d)

dAh,ζ

dt
= ρPPζ + ψW

ζ ρAoAoζ −
(

µAh
+ ψH

ζ ρAh

)

Ah,ζ

+
(

∑

ζ ′∈N
ωH
ζ ′:ζ

)

Ah,ζ ′ −
(

∑

ζ ′∈N
ωH
ζ :ζ ′ × Ah,ζ

)

a b

c

Fig. 1  Schematic of the SLIM model that couples a vector dispersal model with a malaria dynamics formulation. a Ponding and moisture index 
obtained from an ecohydrologic model (Dhara) provide the habitat for gravid female Anopheles to deposit eggs. The dispersal of host-seeking 
mosquitoes is based on a host searching index calculated as a function of human density in each grid cell. The rates of movement of mosquitoes 
among adjacent grid cells are diffusive. In each cell, the changes of sub-populations (x-axes) in vector dispersal and malaria dynamics models 
over time period �t are described by transition probabilities. b Sub-population of compartmental malaria dynamics model in each grid cell. c 
Sub-population of vector dynamics model in each grid cell. The vector dispersal and malaria dynamics models share the adult vector population 
which affects both the aquatic density and malaria transmission in human hosts
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to ζ2 modelled as a decreasing exponential function 
of human population and average area of cell ζ1 and 
ζ2  (see [28]); N  denotes the neighbors of the cell 
under consideration. The last two terms in (1d) rep-
resent the movements of vectors from all neighbors 
ζ ′ into cell ζ and vice versa, respectively. After laying 
eggs, gravid mosquitoes return to the host-seeking 
state for subsequent blood feeding.

• • The rate of change in population of resting adults 
( Ar,ζ ) as a function of blood feeding, mortality, and 
protein digestion rates: 

where µAr is the death rate of resting adults; and ρAr 
is the progression rate at which the survivors enter 
the oviposition site searching phase. In the rest-
ing state, female mosquitoes are usually dormant to 
digest protein.

• • The rate of change in population of oviposition site 
searching adults ( Ao,ζ ) as a function of emergence, 
oviposition, mortality, and digestion rates: 

where µAo is the death rate of gravid female mosqui-
toes. Vectors in ovipositing state also spread in space 

(1e)
dAr,ζ

dt
= ψH

ζ ρAh
Ah,ζ −

(

µAr + ρAr

)

Ar,ζ

(1f )

dAo,ζ

dt
= ρrAr,ζ − (µAo + ψW

ζ ρAo)Ao,ζ

+





�

ζ ′∈N
ωW

ζ ′:ζ



Ao,ζ ′ −





�

ζ ′∈N
ωW

ζ :ζ ′ × Ao,ζ





to find water for oviposition in which ωW
ζ1:ζ2 repre-

sents their movement rate from cell ζ1 to ζ2 modelled 
as a decreasing exponential function of surface soil 
moisture and average area of cell ζ1 and ζ2 [28].

The above model (1) is well-posed in a positively invari-
ant domain:

Unlike the original model  [28], environmental vari-
ability is further incorporated to the developmen-
tal rates of aquatic mosquitoes using the temperature 
relationships [29]:

for k = {E, L,P} , where Ta is the mean air temperature 
(K) over the time interval �t ; and rk(Ta) : R �→ R is the 
development rate per unit time at Ta . Details for the tem-
perature dependencies of egg, larval, and pupal popula-
tions are presented in Depinay et al. [29].

Although the ELPAs model offers a simple approach to 
incorporate the effects of vector mobility on spatial popu-
lation dynamics of vectors in heterogeneous environments, 
it does not account for fluctuations dominated by random-
ness in population events and environmental conditions. 
In some cases, such fluctuations may result in critical state 
transitions of vector population dynamics. This fact high-
lights the need to develop stochastic tools to address the 
complexities arising from vector population dynamics.

A continuous SDE model for the dynamical system (1) 
is developed in the following way (see Chapter 5, ref [30] 

� = {Eζ , Lζ ,Pζ ,Ah,ζ ,Ar,ζ ,Ao,ζ } ⊆ R
6×m×n
≥0

, ζ ∈ D

(2)ρk = rk(Ta)�t

Table 1  Description and values of parameters of the ELPAs model. Modified from [28]

Name Description Unit Range

b Integer number of female eggs laid per oviposition − 50–300

ψW
ζ

50% of the eggs are assumed to hatch into female mosquitoes parameter repre-
sent water availability in cell ζ

− 0.0–1.0

ψH
ζ

Binary parameter represent human presence in cell ζ − 0–1

ρE Egg hatching rate into larvae day−1 0.33–1.0

ρL Rate at which larvae develop into pupae day−1 0.08–0.17

ρP Rate at which pupae develop into adult/emergence rate day−1 0.33–1.0

µE Egg mortality rate day−1 0.32–0.80

µL1
Natural mortality rate of larvae day−1 0.30–0.58

µL2
Density-dependent mortality rate of larvae day−1mosq−1 0.0–1.0

µP Pupae mortality rate day−1 0.22–0.52

ρAh Rate at which host-seeking mosquitoes enter the resting state day−1 0.322–0.598

ρAr Rate at which resting mosquitoes enter oviposition searching state day−1 0.30–0.56

ρAo Oviposition rate day−1 3.0–4.0

µAh
Mortality rate of mosquitoes of searching for hosts day−1 0.125–0.233

µAr Mortality rate of resting mosquitoes day−1 0.0034–0.01

µAo Mortality rate of mosquitoes searching for oviposition sites day−1 0.41–0.56
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for more details about the approach to stochastic mod-
elling applied herein). First, it is assumed that there 
is demographic variability due to births, deaths, and 
transitions between the states in (1). Second, a discrete 
(Markov chain) stochastic model for (1) is constructed. 
For small interval �t , we then identify all possible 
changes and their corresponding transition probabili-
ties for the discrete stochastic processes. Third, the 
expected changes and the covariance matrix of changes 
of these processes are determined. Finally, the continu-
ous SDE model for (1), hereafter referred to as S-ELPAs, 
is inferred by similarities in the forward Kolmogorov 
equations between the discrete and continuous stochas-
tic processes [30, 31]. Note that solutions of the discrete 
Markov chain and continuous S-ELPAs models approxi-
mately have the same probability distribution.

Let Eζ (t) , Lζ (t) , Pζ (t) , Ah,ζ (t) , Ar,ζ (t) , Ao,ζ (t) ∈ R≥0 
denote continuous random variables for the density of 
eggs, larvae, pupae, host-seeking adults, resting adults, 

and oviposition site searching adults in a grid cell ζ , 
respectively (see Fig. 2). The S-ELPAs model depends on 
the state variables:

where Xk(t) = {Xk ,ζ (t) ∈ R : ζ ∈ D} ⊆ R
m×n
≥0

 for 
k = 1, . . . , 6 in which Xk(t) has an associated probability 
density function pk(x, t):

Let �X(t) = X(t +�t)− X(t) . For small �t , there are 13 
possible unit changes in �Xk ,ζ (t) of the discrete stochas-
tic model associated with different probabilities in each 
cell ζ (see Table  2). The Itô stochastic differential equa-
tions for the S-ELPAs model are given as follow [30]:

(3)
X(t) =

{

E(t),L(t),P(t),Ah(t),Ar(t),Ao(t)
}T ⊆ R

6×m×n
≥0

,

(4)P{a ≤ Xk(t) ≤ b} =
∫ b

a
pk(x, t)dx,

Fig. 2  Schematic representation of Anopheles life and feeding cycles. The first three stages are aquatic. The last three stages are adult, which are 
able to carry the pathogens (Modified from Lutambi et al. [28])

Table 2  Probabilities associated with changes in ELPAs model

l Change, �Xl
k,ζ

(t) Probability, pl
k,ζ

(t) Description

1 [1, 0, 0, 0, 0, 0]T bψW
ζ ρAoAo,ζ�t A new egg E is deposited by Ao

2 [−1, 0, 0, 0, 0, 0]T µEEζ�t An egg E dies

3 [−1, 1, 0, 0, 0, 0]T ρEEζ�t An egg E hatches into a larva L

4 [0,−1, 0, 0, 0, 0]T (µL1
+ µL2

Lζ )Lζ�t A larva L dies

5 [0,−1, 1, 0, 0, 0]T ρLLζ�t A larva L develops into a pupa P

6 [0, 0,−1, 0, 0, 0]T µPPζ�t A pupa P dies

7 [0, 0,−1, 1, 0, 0]T ρPPζ�t A pupa P develops into a host-seeking adult Ah

8 [0, 0, 0, 1, 0,−1]T ψW
ζ ρAoAo,ζ�t An oviposition adult Ao enters host-seeking state

9 [0, 0, 0,−1, 0, 0]T µAh
Ah,ζ�t A host-seeking adult Ah dies

10 [0, 0, 0,−1, 1, 0]T ψH
ζ ρAhAh,ζ�t A host-seeking adult Ah enters resting state

11 [0, 0, 0, 0,−1, 0]T µArAr ,ζ�t A resting adult Ar dies

12 [0, 0, 0, 0,−1, 1]T ρArAr ,ζ�t A resting adult Ar enters oviposition searching state

13 [0, 0, 0, 0, 0,−1]T µAoAo,ζ�t An oviposition searching adult Ao dies
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where Fx : R6×m×n → R
6×m×n ; G

x : R6×13×m×n

→ R
6×13×m×n ; W(t) ⊂ R

13×m×n is the matrix of inde-
pendent Wiener processes; and px ⊆ R

m×n is the matrix 
of parameters that are functions of time t and climatic, 
anthropogenic, and entomological factors Cx(t) ⊆ R

m×n.
The drift term Fx in (5), to order �t , is the expectation 

of all possible changes in the discrete stochastic model 
computed as:

(5)

dX(t) = Fx
(

t,X(t),px(t,Cx(t))
)

dt

+Gx
(

t,X(t),px(t,Cx(t))
)

· dW(t)

(6)

F x =��X(t)� ≡
13
�

l=1

pk ,l,ζ (t)�Xk ,l,ζ (t)

=

















bψWρAoAo − (µE + ρE)E
ρEE − (µL1 + µL2L+ ρL)L

ρLL− (µP + ρP)P

ρPP + ψWρAoAo − (µAh
+ ψHρAh

)Ah

ψHρAh
Ah − (µAr + ρAr )Ar

ρrAr, − (µAo + ψWρAo)Ao

















�t

for k = 1, . . . , 6 and ∀ζ ∈ D.
Additional Wiener processes are included into the 

stochastic systems to simplify the derivation of the dif-
fusion term Gx [30, 31], written as follows:

in which the covariance matrix associated with the tran-
sition probabilities to form the diffusion term is com-
puted as:

The diffusion term Gx
ζ in the S-ELPAs model is obtained 

as:

(7)Gx = {Gx
k ,l,ζ : ζ ∈ D, 1 ≤ k ≤ 6, 1 ≤ l ≤ 13}

(8)Gx
k ,l,ζ = �Xk ,l,ζ (t)

√

pk ,l,ζ (t), ∀ζ ∈ D

(9)

G
x,T

ζ =



















































�

bψW
ζ ρAo

Ao,ζ�t
�

µEEζ�t
�

ρEEζ�t
�

(µL1
+ µL2

Lζ )Lζ�t
�

ρLLζ�t
�

µPPζ�t
�

ρPPζ�t
�

ψW
ζ ρAo

Ao,ζ�t
�

µAh
Ah,ζ�t

�

ψH
ζ ρAh

Ah,ζ�t
�

µAr
Ar,ζ�t

�

ρAr
Ar,ζ�t

�

µAo
Ao,ζ�t



















































× I13 ×











































1 0 0 0 0 0

−1 0 0 0 0 0

−1 1 0 0 0 0

0 − 1 0 0 0 0

0 − 1 1 0 0 0

0 0 − 1 0 0 0

0 0 − 1 1 0 0

0 0 0 1 0 − 1

0 0 0 − 1 0 0

0 0 0 − 1 1 0

0 0 0 0 − 1 0

0 0 0 0 − 1 1

0 0 0 0 0 − 1











































=





















































�

bψWρAo
Ao,ζ 0 0 0 0 0

−
�

µEEζ 0 0 0 0 0

−
�

ρEEζ
�

ρEEζ 0 0 0 0

0 −
�

µL1
Lζ+µL2

L2
ζ 0 0 0 0

0 −
�

ρLLζ

�

ρLLζ 0 0 0

0 0 −
�

µPPζ 0 0 0

0 0 −
�

ρPPζ

�

ρPPζ 0 0

0 0 0

�

ψWρAo
Ao,ζ 0 −

�

ψWρAo
Ao,ζ

0 0 0 −
�

µAh
Ah,ζ 0 0

0 0 0 −
�

ψHρAh
Ah,ζ

�

ψHρAh
Ah,ζ 0

0 0 0 0 −
�

µAr
Ar,ζ 0

0 0 0 0 −
�

ρAr
Ar,ζ

�

ρAr
Ar,ζ

0 0 0 0 0 −
�

µAo
Ao,ζ





















































√
�t
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where I13 is the 13 ×13 identity.
The S-ELPAs model provides the basis to capture spa-

tial variation of mosquito population dynamics. It incor-
porates random processes and heterogeneity in both 
densities of human hosts and breeding sites for the feed-
ing and life cycles of the vectors. S-ELPAs is coupled 
with a stochastic SEIRS formulation presented below for 
malaria transmission dynamics.

Malaria transmission model
The S-ELPAs model described above extends the deter-
ministic ELPAs model to incorporate stochastic vari-
ability associated with population and spatial dynamics 
of the mosquitoes. Similarly, a stochastic version of 
SEIRS formulations is developed to capture the vari-
ability associated with the circulations of malaria par-
asites between human and vector populations. The 
aim is then to combine and link them to an ecohydro-
logical model that explicitly considers climate-driven 
hydrologic factors for simulating mosquito population 
dynamics and malaria transmission.

The lumped, deterministic SEIRS formulations  [9, 
10] shown below is extended to develop a stochastic 
malaria model. The human host population is divided 
into four distinct classes: susceptible ( Sh ), exposed 
( Eh ), infectious ( Ih ), and recovered ( Rh ). The adult vec-
tor population is divided into three classes: susceptible 
( Sv ), exposed ( Ev ), and infectious ( Iv ). Here, the aquatic 
stages of vectors are not considered in SEIRS models. 
For t > t0 and ∀ζ ∈ D , the deterministic SEIRS model is 
given by another set of ODEs that characterize:

• • The rate of change in susceptible host ( Sh,ζ ) as a 
function of immigration, birth, human infection, 
recovery from infection, and human mortality: 

where �h is immigration rate; and ψh is per cap-
ita birth rate of humans; ρh is per capita rate of 
losing acquired temporary immunity. Acquired 
temporary immunity represents the enhance-
ment of the defense mechanism of the human 
host as a result of a previous encounter with the 
pathogen  [32]. Nh,ζ = Sh,ζ + Eh,ζ + Ih,ζ + Rh,ζ 
is total population size for humans in each cell ζ ; 
fh(Nh,ζ ) = µ1h + µ2hNh,ζ is the human per capita 
death rate; and �h,ζ is the infection rate from mosqui-
toes to humans defined as: 

(10a)
dSh,ζ

dt
=�h + ψhNh,ζ + ρhRh,ζ

− �h,ζ (t)Sh,ζ − fh(Nh,ζ )Sh,ζ

in which Nv,ζ = Sv,ζ + Ev,ζ + Iv,ζ is total population 
of mosquitoes in cell ζ ; σv represents the number of 
times one mosquito attempt to bite humans per unit 
time; σh is the maximum number of mosquito bites 
a human can have per unit time; and βhv is the prob-
ability of infection transmission from an infectious 
mosquito to a susceptible human, given that a con-
tact between the two occurs.

• • The rate of change in exposed host ( Eh,ζ ) as a func-
tion of new host infections, latent period, and 
human mortality: 

where νh is per capita rate of progression of humans 
from exposed to infectious state.

• • The rate of change in infected host ( Ih,ζ ) as a func-
tion of latent period, recovery and human mortality 
rates: 

where γh represents per capita recovery rate for 
humans from infectious to recovered states; and δh 
represents per capita disease-induced death rate for 
humans.

• • The rate of change in recovered host ( Rh,ζ ) as a 
function of recovery, immunity loss, and human 
mortality: 

• • The rate of change in susceptible vector ( Sv,ζ ) as a 
function of reproduction, vector infection, and vec-
tor mortality: 

where ψv represents per capita birth rate of the vec-
tors; fv(Nv,ζ ) = µ1v + µ2vNv,ζ is the per capita death 
rate for vectors in each cell ζ ; and �v,ζ is the infection 
rate from humans to mosquitoes defined as: 

�h,ζ = σvσh

σvNv,ζ + σhNh,ζ
× βhvIv,ζ

(10b)

dEh,ζ

dt
= �h,ζ (t)Sh,ζ − νhEh,ζ − fh(Nh,ζ )Eh,ζ

(10c)

dIh,ζ

dt
= νhEh,ζ − γhIh,ζ − fh(Nh,ζ )Ih,ζ − δhIh,ζ

(10d)
dRh,ζ

dt
= γhIh,ζ − ρhRh,ζ − fh(Nh,ζ )Rh,ζ

(10e)
dSv,ζ

dt
= ψvNv,ζ − �v,ζ (t)Sv,ζ − fv(Nv,ζ )Sv,ζ

�v,ζ = σvσh

σvNv,ζ + σhNh,ζ
×

(

βvhIh,ζ + ˜βvhRh,ζ

)
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where βvh and β̃hv represent the transmission prob-
ability of infection from an infectious and a recovered 
human, respectively, to a susceptible mosquito, given 
that a contact between them occurs.

• • The rate of change in exposed vector ( Ev,ζ ) as a 
function of new vector infection, vector latent 
period, and vector mortality: 

where νv is per capita rate of progression of mosqui-
toes from the exposed state to the infectious state.

• • The rate of change in infected vector ( Iv,ζ ) as a 
function of latent period and mortality: 

A summary of parameters associated with  (10) are 
shown in Table  3. All parameters described are strictly 
positive with the exception of the disease-induced death 

(10f )
dEv,ζ

dt
= �v,ζ (t)Sv,ζ − νvEv,ζ − fv(Nv,ζ )Ev,ζ

(10g)
dIv,ζ

dt
= νvEv,ζ − fv(Nv,ζ )Iv,ζ

rate, δh , which is non-negative  [10]. The model is well-
posed in a positively invariant domain:

The development rate of Plasmodium parasites within 
humans νh , or the intrinsic incubation period, is assumed 
to be temperature independent.

However, the development rate of Plasmodium within 
mosquitoes νv , or extrinsic incubation period, is highly 
dependent on air temperature. Unlike the original mod-
els  [9, 10], the fitted temperature-development function 
for the development rate of parasites within the vec-
tor [33–35] is also incorporated to the extended model:

where νv(Ta) : R �→ R is the progression rate of mosqui-
toes from exposed to infectious state and Ta ≤ 35.

Next, the SDE model from the ODE systems described 
above is derived to incorporate random fluctuations of 
malaria transmission. It is again assumed that there is 
variability described by random noise in the transitions 
between states in (10). Similarly, a discrete (Markov 

� = {Sh,ζ ,Eh,ζ , Ih,ζ ,Rh,ζ , Sv,ζ ,Ev,ζ , Iv,ζ } ⊆ R
7×m×n
≥0

, ζ ∈ D

(11)
νv(Ta) = 0.000112× Ta × (Ta − 15.384)

√

35− Ta

Table 3  The parameters for SEIRS malaria model. From [10]

a  In the Unit, H represents humans, M represents mosquitoes, and T represents time

Name Description Unita

�h Immigration rate of humans H × T −1

ψh Per capita birth rate of humans T−1

ψv Per capita birth rate of mosquitoes T−1

σv Number of times one mosquito would want to bite humans per unit time, if humans were freely available. This is a function of the 
mosquito’s gonotrophic cycle (the amount of time a mosquito requires to produce eggs) and its anthropophilic rate (its preference 
for human blood)

T−1

σh The maximum number of mosquito bites a human can have per unit time. This is a function of the human’s exposed surface area T−1

βhv Probability of transmission of infection from an infectious mosquito to a susceptible human, given that a contact between the two 
occurs

−

βvh Probability of transmission of infection from an infectious human to a susceptible mosquito, given that a contact between the two 
occurs

−

β̃hv Probability of transmission of infection from a recovered (asymptomatic carrier) human to a susceptible mosquito, given that a con-
tact between the two occurs

−

νh Per capita rate of progression of humans from the exposed state to the infectious state. 1/νh is the average duration of the latent 
period

T−1

νv Per capita rate of progression of mosquitoes from the exposed state to the infectious state. 1/νv is the average duration of the latent 
period

T−1

γh Per capita recovery rate for humans from the infectious state to the recovered state. 1/γh is the average duration of the infectious 
period

T−1

δh Per capita disease-induced death rate for humans T−1

ρh Per capita rate of loss of acquired temporary immunity for humans. 1/ρh is the average duration of the immune period T−1

µ1h Density-independent part of the death (and emigration) rate for humans T−1

µ2h Density-dependent part of the death (and emigration) rate for humans H × T −1

µ1h Density-independent part of the death (and emigration) rate for mosquitoes T−1

µ2h Density-dependent part of the death (and emigration) rate for mosquitoes M × T −1
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chain) stochastic model is first developed and the 
expected changes and covariance matrix of changes of 
the discrete stochastic processes are identified. Then, the 
continuous stochastic SEIRS model, hereafter referred to 
as S-SEIRS, is derived. Solutions of the discrete Markov 
chain and continuous S-SEIRS models approximately 
have the same probability distribution as well.

Let Si,ζ (t) , Ei,ζ (t) , Ii,ζ (t) , and Rh,ζ (t) denote con-
tinuous random variables for the density of susceptible, 
exposed, infectious for human ( i = h ) and vector ( i = v ), 
and recovered human, respectively (Fig. 3). The S-SEIRS 
model depends on the state variables:

(12)

Y (t) = {Sh(t),Eh(t),Ih(t),Rh(t),Sv(t),Ev(t),Iv(t)}
⊆ R

7×m×n

≥0
,

where Y k(t) = {Yk ,ζ (t) ∈ R : ζ ∈ D} ⊆ R
m×n
≥0

 for 
k = 1, . . . , 7 in which Y k(t) has an associated probability 
density function pk(y, t):

Let �Y (t) = Y (t +�t)− Y (t) . For small �t , there are 
15 possible unit changes in �Yk ,ζ (t) of the discrete sto-
chastic processes associated with different probabilities 
in each grid cell ζ (Table 4). The Itô stochastic differential 
equations for the S-SEIRS model are given as:

in which F y : R7×m×n → R
7×m×n , Gy : R7×15×m×n →

R
7×15×m×n , W (t) ⊂ R

15×m×n is matrix of independ-
ent Wiener processes, and py ⊆ R

m×n is the matrix of 
parameters which are functions of time t and climatic 
and socio-economic factors Cy(t) ⊆ R

m×n . The drift 
term F y is calculated as:

(13)P{a ≤ Y k(t) ≤ b} =
∫ b

a
pk(y, t)dy,

(14)
dY (t) = F y

(

t,Y (t),py(t,Cy(t))
)

dt

+ Gy
(

t,Y (t),py(t,Cy(t))
)

dW (t)

(15)

F y =��Y (t)� ≡
15
�

l=1

pk ,l,ζ (t)×�Y k ,l,ζ (t)

=



















�h + ψhN h + ρhRh − (�h + µ1h + µ2hN h)Sh

�hSh − (νh + µ1h + µ2hN h)Eh

νhEh − (γh + µ1h + µ2hN h + δh)Ih

γhIh − (ρh + µ1h + µ2hN h)Rh

ψvN v − (�v + µ1v + µ2vN v)Sv

�vSv − (νv + µ1v + µ2vN v)Ev

νvEv − (µ1v + µ2vN v)Iv



















�t

Fig. 3  Schematic representation of malaria transmission. The 
model divides the human population into four classes: susceptible, 
Sh ; exposed, Eh ; infectious, Ih ; and recovered (immune), Rh . Vector 
population is divided into three classes: susceptible, Sv ; exposed, Ev ; 
and infectious, Iv . Both species follow a logistic population model, 
with humans having additional immigration and disease-induced 
death. Birth, death, and migration into and out of the population are 
not shown in the figure (Adapted from Chitnis et al. [10])

Table 4  Probabilities associated with changes in SEIRS model

l Change, �Yl
k,ζ

(t) Probability, pl
k,ζ

(t) Description

1 [1, 0, 0, 0, 0, 0, 0]T (�h + ψhNh,ζ )�t A new host enters the human susceptible class

2 [1, 0, 0,−1, 0, 0, 0]T ρhRh,ζ�t A recovered host becomes susceptible again

3 [−1, 1, 0, 0, 0, 0, 0]T σvσhβhv Iv ,ζ Sh,ζ
σvNv ,ζ+σhNh,ζ

�t A susceptible host enters exposed state

4 [−1, 0, 0, 0, 0, 0, 0]T (µ1h + µ2hNh,ζ )Sh,ζ�t A susceptible host dies

5 [0,−1, 1, 0, 0, 0, 0]T νhEh,ζ�t An exposed host enters infectious state

6 [0,−1, 0, 0, 0, 0, 0]T (µ1h + µ2hNh,ζ )Eh,ζ�t An exposed host dies

7 [0, 0,−1, 1, 0, 0, 0]T γhIh,ζ�t An infectious host enters recovered state

8 [0, 0,−1, 0, 0, 0, 0]T (µ1h + µ2hNh,ζ + δh)Ih,ζ�t An infectious host dies

9 [0, 0, 0,−1, 0, 0, 0]T (µ1h + µ2hNh,ζ )Rh,ζ�t A recovered host dies

10 [0, 0, 0, 0, 1, 0, 0]T ψvNv ,ζ�t A new mosquito enters the vector susceptible class

11 [0, 0, 0, 0,−1, 1, 0]T σvσhβhv Iv ,ζ Sh,ζ

βvhIh,ζ+β̃vhRh,ζ
�t A susceptible vector enters exposed state

12 [0, 0, 0, 0,−1, 0, 0]T (µ1v + µ2vNv ,ζ )Sv ,ζ�t A susceptible vector dies

13 [0, 0, 0, 0, 0,−1, 1]T νvEv ,ζ�t An exposed vector enters infectious state

14 [0, 0, 0, 0, 0,−1, 0]T (µ1v + µ2vNv ,ζ )Ev ,ζ�t An exposed vector dies

15 [0, 0, 0, 0, 0, 0,−1]T (µ1v + µ2vNv ,ζ )Iv ,ζ�t An infectious vector dies
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for k = 1, . . . , 7 and ζ ∈ D . Using a similar approach for 
derivation of the diffusion term in S-ELPAs model, the 
form of diffusion term Gy in S-SEIRS is written as:

in which:

Thus, the diffusion term in the S-SEIRS model is obtained 
as follows:

(16)Gy = {Gy
k ,l,ζ : ζ ∈ D, 1 ≤ k ≤ 7, 1 ≤ l ≤ 15}

(17)G
y
k ,l,ζ = �Yk ,l,ζ (t)

√

pk ,l,ζ (t)

where I15 is the 15 ×15 identity.
The S-SEIRS model incorporates environmental per-

turbation and stochastic interactions among sub-popu-
lations of human hosts and vectors in different states. It 
provides a stochastic framework to study uncertainty and 
dynamics of malaria transmission as well as other mos-
quito-borne diseases.

Model couplings
S-SEIRS model is coupled with the S-ELPAs formulation 
through the equality constraint of adult vector popu-
lation. In essence, S-SEIRS represents different states 
(i.e. susceptible, exposed, infected) of adult vectors in 
S-ELPAs. Therefore, the total populations of adult mos-
quitoes in the two model are the same. The equality con-
straints are given as: 

(18)

G
y,T
ζ =































































�

(�h + ψhNh,ζ )�t
�

ρhRh,ζ�t
�

σvσhβhvIv,ζ Sh,ζ
σvNv,ζ+σhNh,ζ

�t
�

(µ1h + µ2hNh,ζ )Sh,ζ�t
�

νhEh,ζ�t
�

(µ1h + µ2hNh,ζ )Eh,ζ�t
�

γhIh,ζ�t
�

(µ1h + µ2hNh,ζ + δh)Ih,ζ�t
�

(µ1h + µ2hNh,ζ )Rh,ζ�t
�

ψvNv,ζ�t
�

σvσhβhvIv,ζ Sh,ζ

βvhIh,ζ+β̃vhRh,ζ
�t

�

(µ1v + µ2vNv,ζ )Sv,ζ�t
�

νvEv,ζ�t
�

(µ1v + µ2vNv,ζ )Ev,ζ�t
�

(µ1v + µ2vNv,ζ )Iv,ζ�t































































× I15 ×

















































1 0 0 0 0 0 0

1 0 0 − 1 0 0 0

−1 1 0 0 0 0 0

−1 0 0 0 0 0 0

0 − 1 1 0 0 0 0

0 − 1 0 0 0 0 0

0 0 − 1 1 0 0 0

0 0 − 1 0 0 0 0

0 0 0 − 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 − 1 1 0

0 0 0 0 − 1 0 0

0 0 0 0 0 − 1 1

0 0 0 0 0 − 1 0

0 0 0 0 0 0 − 1

















































=























































�

�h+ψhNh,ζ 0 0 0 0 0 0
�

ρhRh,ζ 0 0 −
�

ρhRh,ζ 0 0 0

−
�

�h,ζSh,ζ

�

�h,ζSh,ζ 0 0 0 0 0

−
�

fhNh,ζSh,ζ 0 0 0 0 0 0

0 −
�

νhEh,ζ
�

νhEh,ζ 0 0 0 0

0 −
�

fhEh,ζ 0 0 0 0 0

0 0 −
�

γhIh,ζ
�

γhIh,ζ 0 0 0

0 0 −
�

(fh+δh)Ih,ζ 0 0 0 0

0 0 0 −
�

fhRh,ζ 0 0 0

0 0 0 0
�

ψvNv,ζ 0 0

0 0 0 0 −
�

�v,ζSv,ζ

�

�v,ζSv,ζ 0

0 0 0 0 −
�

fvSv,ζ 0 0

0 0 0 0 0 −
�

νvEv,ζ
�

νvEv,ζ

0 0 0 0 0 −
�

fvEv,ζ 0

0 0 0 0 0 0 −
�

fvIv,ζ























































√
�t
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∀ζ ∈ D and t > t0 . For spatial movement of adult vectors 
among adjacent cells, it is assumed that vector popula-
tions are well-mixed or the fraction of malaria classes in 
the adult vector population remain unchanged during 
movements: 

where tb and ta represent time before and after vector 
movement in every modelled time step �t , respectively. 
Furthermore, birth and mortality rates of vectors in 
the S-SEIRS model are excluded as these processes are 
already represented in S-ELPAs model. The proposed 
coupling approach between S-ELPAs and S-SEIRS mod-
els presented allows to simulate stochastically the spatial 
dynamics of both vector population and malaria trans-
mission over time. Finally, the coupled stochastic lattice-
based vector dispersal and malaria model (SLIM) can be 
written as: 

in which X(t) and Y (t) are random variables described 
in (3) and (12). Solutions for equations (21) are obtained 
numerically.

Estimating moisture index
The moisture index ψW

ζ  shown in (1a) represents water 
availability in a particular cell ζ and is estimated using 
a sophisticated ecohydrologic modelling framework 
(Dhara, see [36]). The Dhara framework includes a collec-
tion of canopy process models (MLCan, see [37–39]) and 
a physically-based surface-subsurface flow model cou-
pler (GCS-flow, see [40]) designed for capturing moisture 
transport on the land surface and in the below-ground 

(19a)Ah,ζ (t)+Ar,ζ (t)+Ao,ζ (t) = Nv,ζ (t)

(19b)Sv,ζ (t)+ Ev,ζ (t)+ Iv,ζ (t) = Nv,ζ (t)

(20a)
Sv,ζ (tb)

Nv,ζ (tb)
≈ Sv,ζ (ta)

Nv,ζ (ta)

(20b)
Ev,ζ (tb)

Nv,ζ (tb)
≈ Ev,ζ (ta)

Nv,ζ (ta)

(21a)
dX(t) =F x

(

t,X(t),px(t,Cx(t)
)

dt

+ Gx
(

t,X(t),px(t,Cx(t)
)

dW (t)

(21b)

dY (t) =F y
(

t,Y (t),py(t,Cy(t)
)

dt

+ Gy
(

t,Y (t),py(t,Cy(t)
)

dW (t)

(21c)

6
∑

k=4

Xk ,ζ (t) =
7

∑

k=5

Y k ,ζ (t), ζ ∈ D

systems. It incorporates vegetation acclimation to ele-
vated CO2 and the retention of moisture flow dynamics 
associated with topographic variability. This integration 
provides predictive capability to capture the impacts of 
environmental changes on the formation and persistence 
of breeding habitat. The SLIM (coupled S-ELPAs and 
S-SEIRS) model is linked with Dhara for incorporating 
climate-driven hydrologic factors to vector population 
and malaria transmission dynamics.

Female mosquitoes deposit eggs in breeding habitat 
of various sizes. However, a large fraction of the breed-
ing habitat is at scales that are not detectable by currently 
available topographic data. As a result, there is always a 
probability that ponding exists in small-scale topographic 
depressions inside a particular non-saturated cell ζ that 
hydrologic modelling cannot capture. To address this 
scale mismatch issue, we incorporate the fractal struc-
ture found in topographic depressions to the estimation 
of ψW

ζ  . Specifically, the hypothesis is that topographic 
depressions exist at all sizes on the landscape following 
the power scaling law  [41]. Available topographic data 
is used to find the scaling relationship of topographic 
depressions in bounded domain D and assume that this 
relationship remains unchanged at smaller scales for esti-
mation of ψW

ζ  as below:

in which �ζ ∈ [�min, 1] is the degree of saturation of 
the soil surface in cell ζ obtained from the Dhara model, 
�min is the minimum degree of saturation that is a func-
tion of soil properties, and α is the negative slope of the 
power-law scaling relationship for the exceedance proba-
bility of the area of topographic depressions found in the 
domain under consideration. In this work, α is identified 
separately using a topographic depression identification 
(TDI) algorithm [41].

Model performance
In order to evaluate the performance of SLIM, each of 
its components (S-ELPAs and S-SEIRS) is first analysed 
independently. Then simulations of the fully coupled 
SLIM model using observed meteorological and topo-
graphic data for a case study in the rural area in Kilifi 
county, Kenya are presented.

S‑ELPAs model
S-ELPAs model simulations are implemented using 
similar parameter sets shown in a previous study  [28] 
(Table  2). The model is tested in a simple rectangu-
lar domain D1 partitioned into uniform and lattice grid 

(22)ψW
ζ = 10

α(1−�ζ )
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{ζ := (i, j) ∈ Z
2
+ : i ≤ 5, j ≤ 5} . The size of each grid 

cell is 100m× 100m . In addition, periodic boundary 
conditions are applied. The model is run with four dif-
ferent initial conditions and sizes of vector population 
uniformly distributed over D1 to analyse the effects of 

random processes on mosquito population dynamics. 
As S-ELPAs is run independently, homogeneous mois-
ture index and human distribution in D1 are assumed 
for simplicity. In addition, to isolate the effects of sto-
chastic noise on the dynamics of vector population, all 

a

b

Fig. 4  The dynamics of S-ELPAs and S-SEIRS models with white noise. a Simulation of total adult mosquitoes at different sizes of initial population. 
The graph shows how the oscillatory behavior becomes disrupted by noise in smaller populations, whereas large populations conform close to 
the equilibria. b Comparison of the malaria infected cases in humans between deterministic and stochastic simulations. The red curve shows the 
mean, and the gray shaded region shows the range for simulations of stochastic SEIRS model. The blue curve is from the original deterministic 
SEIRS model. While deterministic simulation tends to an endemic equilibrium, stochastic simulations show possible extinctions of the disease, as 
expected. The agreement between deterministic and mean stochastic simulations implies that a small fraction of the stochastic trajectory go to 
extinction in the simulations
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parameters in S-ELPAs are assumed to be constants over 
time. In other words, model parameters’ dependences on 
hydro-climatic factors are excluded in the simulations. 
S-ELPAs simulations are conducted in 800 days using 
daily time step.

Figure 4a shows the variations in log-scale of adult mos-
quito density averaged over D1 under the effects of ran-
dom processes. It can be seen that S-ELPAs simulations 
with larger populations are affected slightly by stochas-
tic noises, and the dynamics tend to be close to equilib-
ria predicted by the deterministic systems. In contrast, 
smaller population sizes experience proportionally more 
noise and their behaviors tend to be further from the 
deterministic systems, highlighting the different dynam-
ics of vector population at different sizes. The variations 
of small vector population can also be disrupted signifi-
cantly by sudden changes induced by stochastic noises 
in the system. Linking these similarities and differences 
between stochastic and deterministic systems in meta-
population and lattice-based models is thus important to 
study the dynamics of vector density in large areas, where 
populations at various sizes are interconnected.

S‑SEIRS model
A large number ( ∼100) of independent S-SEIRS simula-
tions are conducted and compared with the determinis-
tic SEIRS model to investigate the modelled dynamics of 
malaria transmission in noise-dominated systems. All the 
stochastic and deterministic simulations have the same 
initial conditions chosen randomly. Moreover, periodic 

boundary conditions are applied for all simulations. 
Parameters for the two models are the same and selected 
from a previous published study [10]. Further, to separate 
the effects of stochastic noise on the dynamics of malaria, 
the dependences of parameters on hydro-climatic factors 
are also excluded in both S-SEIRS and SEIRS simulations. 
As the spatial movement of mosquitoes is not considered 
in S-SEIRS model, only simulations for a single grid cell 
are implemented. These simulations are conducted in 800 
days with daily time step as well.

The variation of infected human malaria cases ( Ih ) 
obtained from stochastic S-SEIRS (shaded area) and 
deterministic SEIRS (blue solid line) models are shown 
in Fig.  4b. Unlike the deterministic approach, S-SEIRS 
simulations provide a range of possibilities for malaria 
transmission given the same initial conditions and model 
parameters. S-SEIRS simulations shown in Fig. 4b high-
light the random nature of malaria transmission that 
inevitably occur in real systems. Although the mean val-
ues of stochastic simulations (red solid line) are found 
to be close to those in the deterministic simulation, 
variability obtained from S-SEIRS implies that there are 
probabilities that (i) local outbreaks can be disrupted by 
random noises or stochastic extinctions may occur and 
(ii) the intensity of the outbreaks can be larger than the 
theoretical endemic equilibrium point shown in deter-
ministic models. Note that periodic boundary condi-
tions applied in the simulations imply isolated systems. 
This may allow shorter persistence time to extinction of 
malaria than in non-isolated systems. In our simple tests, 

Topographic D
epressions

a b

Fig. 5  Domain of simulations in the case study at Kilifi county, Kenya. a Variation in topographic elevation. b Map of topographic depression (red 
polygons) identified from ASTER digital elevation model. The gray background represents hillshaded topography
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the extinction of malaria in a specific region (i.e. entire 
domain) is defined as events in which the number of 
infected human population in this region is smaller than 
0.5. Moreover, the probability of resurgence of the dis-
eases in isolated systems is low. Capturing the range of 
variability and possible stochastic extinctions plays a fun-
damental role in understanding and breaking the circu-
lation of the pathogen. This information, usually ignored 
in deterministic approaches, is important for preparing 
malaria control in reality.

Case study
Next, the applicability of the SLIM model for large-scale 
simulations of malaria is demonstrated in a rural area in 
Kilifi county, Kenya. This region has high levels of malnu-
trition as well as a high incidence rate of Plasmodium fal-
ciparum parasites for which the Anopheles gambiae is the 
main vector [42]. Indeed, the intensity of malaria parasite 
transmission in Kilifi county is complex, subject to long- 
and short-term cycles of variation driven by climate, 
changes in human land use and the efficacy and coverage 
of interventions that target the parasite and vector  [43]. 
Previous studies showed a decline in malaria transmis-
sion during the 1998–2009 period. However, there was a 
steady and marked increase of malaria transmission from 
2009 to 2014  [43, 44]. Here, the primary objective is to 
present the capabilities and advantages of SLIM model 
for capturing the spatial and temporal variations of fac-
tors that drive malaria transmission. Therefore, the model 
is not validated for the case study. Model validation using 
observed malaria prevalence data and the impacts of cli-
mate change on malaria in coastal Kenya is presented in 
another work [45].

The domain of simulation is approximately 440 km2 
(22 km north to south and 20 km east to west) with 
medium to high percentage cover of vegetation (Fig. 5). 
It is assumed that natural water on the ground surface 
is the main habitat of Anopheles mosquitoes. Topo-
graphic data at 30 m × 30 m resolution from Advanced 
Spaceborne Thermal Emission and Reflection radiom-
eter (ASTER) global digital elevation model is used 
for modelling surface runoff and belowground soil 
moisture dynamics (Fig.   5a). Global reanalysis mete-
orological data at 3 h interval by European Centre for 
Medium-range Weather Forecasts (ECMWF) from 
2005 to 2014 is used to drive both Dhara and SLIM 
models. Human population census data at 100  m spa-
tial resolution is obtained from the population maps 
for low income nations  [46]. Topographic depressions 
in the study area are found using TDI algorithm for 
estimating a moisture index as presented in "Estimat-
ing moisture index" (see  [41]). The distributions of 

topographic depressions in the study domain are shown 
in Fig.  5b. The spatial heterogeneities of vector habi-
tat and human hosts are the main drivers for mosqui-
toes movement and spread of malaria parasites. Model 
parameter sets similar to those used in previous stud-
ies [10, 28] are used for model simulations.

Figure   6a–d presents the variation of total aquatic 
and adult phases of mosquito populations obtained 
from the S-ELPA component in SLIM. The results reveal 
that the variation of the mosquito population in both 
aquatic and adult stages are highly dependent on cli-
matic factors. Specifically, positive correlations are found 
between monthly averaged mosquito populations mod-
elled in S-ELPAs with observed monthly air tempera-
ture ( R2 = 0.75− 0.86 ) and rainfall ( R2 = 0.69− 0.77 ), 
respectively. The largest and smallest total mosquito 
population during the years are found correspondingly 
with the highest and lowest air temperature and rainy 
seasons with several days of time lag (10 and 18 days, 
respectively). In aquatic stages, the sensitivity of lar-
vae development to air temperature change is found to 
be much lower than of eggs and pupae which was also 
shown in previous studies  [29]. The population of adult 
Anopheles mosquitoes is also sensitive to climatic condi-
tions (see Fig. 6d). The result shows that the fraction of 
host-seeking mosquitoes ( Ah ) in adult stage is high, con-
sisting of ∼ 70− 80% of the total adult population. The 
sub-population of oviposition site searching mosquitoes 
( Ao ) are usually 2− 3 times larger than the resting mos-
quitoes ( Ar ). The high number of egg deposited by female 
Anopheles during reproduction is likely a key factor that 
explains the high density of vectors in aquatic environ-
ment, thus mosquito population. The total number of 
adult mosquitoes is equal to the number of adults in the 
SEIRS model and plays a key role in malaria transmission.

The dynamics of malaria in human hosts and mosquito 
populations in the study area are presented in Fig.  6e–f. 
Positive correlations are also found between the monthly 
average malaria incidence ( Eh , Ih ) with air tempera-
ture ( R2 = 0.58− 0.69 ) and rainfall ( R2 = 0.53− 0.67 ), 
respectively. The results show that, similarly to the vector 
population, the variation of malaria incidences, including 
both exposed and infected cases, in the region is sensi-
tive to climatic factors as it is directly dependent on vec-
tor density. The largest values of exposed human cases 
( Eh ) are usually found after the rainy seasons start and air 
temperature was high. The peaks of Eh are also followed 
by the largest values of infected human cases ( Ih ) in sev-
eral days (Fig.  6e). During the peaks and troughs of the 
season, the rates of infected cases are about 2.5 and 1.0% 
of total population, respectively.
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S-ELPAs: Aquatic Populations

S-ELPAs: Adult Populations

S-SEIR: Host Populations

S-SEIR: Aquatic Populations

e

d

f

c

a

b

Fig. 6  Illustration of variation of mosquitoes in different phases of their life cycle and malaria as predicted by SLIM model in response to 
meteorological driver for the study domain shown in Fig.  5. a Daily precipitation. b Mean daily air temperature. c Population dynamics of 
mosquitoes in aquatic phase; E represents egg population, L represents larvae population, and P represents pupae population, respectively. d 
Population dynamics of mosquitoes in adult phase; Ah represents host-seeking mosquitoes, Ar represents resting mosquitoes, and Ao represents 
oviposition searching mosquitoes, respectively. e Dynamics of malaria within human hosts; Eh represents exposed cases and Ih represents infected 
cases, respectively. f Dynamics of malaria within human hosts; Sv is susceptible vector, and Ev represents exposed vector, Iv is infected vector, and Nv 
is the total vector, respectively.
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Conclusions
In summary, we have presented a stochastic lattice-based 
integrated malaria (SLIM) model that consists of a vector 
dispersal (S-ELPAs) and a malaria dynamics (S-SEIRS) 
component. SLIM is developed to predict mosquito pop-
ulation dynamics and malaria transmission in response 
to heterogeneity and variability in the environment. It 
is well known that climatic and hydrological conditions 
strongly control Anopheles mosquito populations and 
thus influence malaria incidence, and indeed the asso-
ciations have been demonstrated repeatedly. The details 
of malaria-environment interactions are highly nonlin-
ear and uncertain both in time and space, thus the opti-
mal predictive ability arises from complex models that 
involve processes from hydroclimatology, ecology, and 
entomology.

The stochastic coupled model is constructed based on 
deterministic systems  [9, 10, 28]. The model is also link 
with a an ecohydrologic model (Dhara) used to capture 
soil moisture dynamics on the ground. This integration 
provides the capability to incorporate climate-driven 
hydrologic and ecologic processes with the dynamics of 
vector population and malaria transmission. In this man-
ner, the presented SLIM model augments existing models 
by explicitly simulating all of the aforementioned com-
plexities and incorporating a range of possible outcomes 
to the dynamics of vector population and transmission.
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