
Scott et al. Malar J  (2018) 17:279  
https://doi.org/10.1186/s12936-018-2418-y

RESEARCH

Implications of population‑level immunity 
for the emergence of artemisinin‑resistant 
malaria: a mathematical model
Nick Scott1,2  , Ricardo Ataide1, David P. Wilson1,2, Margaret Hellard1,2,3, Ric N. Price4,5, Julie A. Simpson6 
and Freya J. I. Fowkes1,2,6,7*

Abstract 

Background:  Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong Subregion, an area of 
relatively low transmission, but has yet to be reported in Africa. A population-based mathematical model was used to 
investigate the relationship between P. falciparum prevalence, exposure-acquired immunity and time-to-emergence 
of artemisinin resistance. The possible implication for the emergence of resistance across Africa was assessed.

Methods:  The model included human and mosquito populations, two strains of malaria (“wild-type”, “mutant”), three 
levels of human exposure-acquired immunity (none, low, high) with two types of immunity for each level (sporozo-
ite/liver stage immunity and blood-stage/gametocyte immunity) and drug pressure based on per-capita treatment 
numbers.

Results:  The model predicted that artemisinin-resistant strains may circulate up to 10 years longer in high compared 
to low P. falciparum prevalence areas before resistance is confirmed. Decreased time-to-resistance in low prevalence 
areas was explained by low genetic diversity and immunity, which resulted in increased probability of selection and 
spread of artemisinin-resistant strains. Artemisinin resistance was estimated to be established by 2020 in areas of 
Africa with low (< 10%) P. falciparum prevalence, but not for 5 or 10 years later in moderate (10–25%) or high (> 25%) 
prevalence areas, respectively.

Conclusions:  Areas of low transmission and low immunity give rise to a more rapid expansion of artemisinin-resist-
ant parasites, corroborating historical observations of anti-malarial resistance emergence. Populations where control 
strategies are in place that reduce malaria transmission, and hence immunity, may be prone to a rapid emergence 
and spread of artemisinin-resistant strains and thus should be carefully monitored.
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Background
Artemisinin-based combination therapy (ACT) has 
been recommended by the World Health Organization 
(WHO) as the first-line treatment for Plasmodium falci-
parum malaria since 2006 [1], and over the last decade 
has contributed significantly to the major reductions 
(~ 40%) in the global burden of falciparum malaria [2]. 

The appearance of artemisinin-resistant falciparum 
malaria in the Greater Mekong Subregion from 2009 
poses a significant public health threat [3–11] and raises 
concerns that resistance may emerge and become wide-
spread in high-burden settings, such as Africa. Over 
400 million doses of artemisinin are procured annually 
worldwide [2] and resistance to this crucial drug may 
reverse recent gains in the global burden of disease and 
ultimately lead to a rise in epidemics and malaria-attrib-
utable mortality.

Artemisinin-resistant P. falciparum malaria is primarily 
determined by single nucleotide polymorphisms in the 
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kelch13 (k13) gene [12, 13], which are associated with a 
suboptimal clinical response including parasite recrudes-
cence and delayed parasite clearance. Parasite clearance 
can be quantified either by the detection of parasites in 
patients on day 3 of follow-up or by calculating the par-
asite clearance half-lives (PCt½) ≥ 5  h after a full course 
of artemisinin treatment [14]. The WHO defines areas 
to have ‘confirmed partial artemisinin resistance’ if ≥ 5% 
of patients carry k13 mutations plus a slow clearing phe-
notype [15]. Whilst mutations in the k13 gene have been 
reported in African isolates, they do not appear to be 
under strong selection [16] and clinically relevant arte-
misinin-resistant falciparum malaria is yet to be observed 
in Africa [17].

The situation is different in the Greater Mekong Sub-
region. Historically this region has been the epicentre 
for the emergence of multidrug resistant parasites, with 
resistance to chloroquine, sulfadoxine–pyrimethamine 
and mefloquine first appearing there over 25  years ago 
[18, 19]. In Cambodia in particular, the wide-spread 
availability of substandard anti-malarials and use of arte-
misinin monotherapy has resulted in extensive expo-
sure to suboptimal doses of effective drug, enabling the 
selection of mutations conferring drug resistance [20, 
21]. Evidence also suggests that other factors, such as 
transmission intensity, genetic diversity and host immu-
nity, play important roles in reducing the emergence and 
spread of anti-malarial drug resistant parasites [22, 23]. 
Understanding the multifactorial nature of the drivers 
of drug resistance may help to explain why anti-malarial 
resistance has consistently arisen in the Greater Mekong 
Subregion and predict the potential emergence of resist-
ance in Africa, which harbours the largest burden of P. 
falciparum malaria [24, 25].

Various modelling studies have attempted to quantify 
the positive associations between immunity and P. fal-
ciparum prevalence [26, 27] and immunity and parasite 
diversity [22] in different endemic settings. However, 
these factors have not been considered together in the 
context of the spread of drug resistance. There is a need 
to understand these factors in combination in order to 
make informed decisions relating to malaria control and 
elimination in different prevalence settings.

Here a population-based mathematical model was 
used, calibrated to data from the Greater Mekong Sub-
region, to expand on previous modelling work and estab-
lish a quantitative relationship between P. falciparum 
prevalence and the time from the introduction of strains 
that confer artemisinin-resistance (k13 mutation plus a 
slow clearing phenotype, henceforth ‘mutants’) until the 
WHO criteria of confirmed partial artemisinin resist-
ance is met. The model was used to investigate how this 
relationship is mediated by the prevalence and strength 

of various types of immunity and by the degree of selfing 
in the population, as measured by within-host mutation 
rates. By combining this population-level relationship 
with data from the Malaria Atlas Project [28, 29] (coun-
try-level prevalence estimates), the Worldwide Antima-
larial Resistance Network [30] (resistance emergence 
calibration) and WHO World Malaria Reports [2] (treat-
ment data for drug pressure calibration), the implications 
of these relationships on the heterogeneity of artemisinin 
resistance appearance across Africa were assessed.

Methods
Model description
A population-based epidemiological mathematical model 
was developed to estimate the time taken for resistance 
to emerge in a malaria endemic population. The model 
simulated the transmission of two strains of malaria 
(“wild-type” or “mutant”—unless otherwise mentioned 
referring exclusively to k13 mutations conferring the 
slow clearing phenotypes structure) within a human and 
a mosquito population. For the human population, the 
model included three levels of exposure-acquired immu-
nity (none, low, high) and two types of immunity for each 
level (sporozoite/liver stage immunity and blood-stage/
gametocyte immunity). A detailed model description is 
provided in the Additional file 1 and a model schematic 
is shown in Fig. 1.

People in the model who become infected with either 
“wild-type” or “mutant” strains of malaria experience 
a latent period (where they cannot infect mosquitoes) 
before becoming infectious and eventually recover-
ing (either naturally clearing parasites or getting treated 
by drugs). After recovering, humans in the model gain 
exposure-acquired immunity, which lowers both their 
probability of developing infection following an infected 
mosquito bite (immunity at the sporozoite and liver 
stages) and the probability of a mosquito carrying an 
infection after biting an infectious human (blood-stage 
immunity).

People in the model who were susceptible could 
become infected with the mutant strain through direct 
transmission, while people who were already infected 
with wild-type strains could become classified as infected 
with the mutant strain through either direct transmission 
or to a lesser extent through a within-host “mutation” 
process. In both cases, the implication is that mutant 
parasites have appeared in the individual’s blood and 
multiplied to become a dominant strain of a co-infection. 
This is implicitly related to drug pressure as well as a 
relative fitness and recombination rate. Therefore, these 
processes were modelled to be constrained by a strain 
competition parameter (Fig. 1) and mutation rates were 
additionally modelled to be proportional to: the average 
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number of ACT medicines administered per person per 
year (i.e. setting dependent), a recombination rate, and 
the dynamic proportion of infections in the population 
that were mutants. The mutation rate was also modelled 
to decrease as a person’s immunity increased, based on 
recent empirical data suggesting that people with greater 
exposure-acquired immunity are more efficient at sup-
pressing the newly appearing strain [23]. Additional 
details, including model equations, are provided in the 
Additional file 1.

Outcome measure
The outcome measure was “time to confirmed partial 
resistance”, defined as the time from mutant strain intro-
duction (i.e. the time when the mutation feature in the 
model was turned on) until 5% of infectious humans 
were carrying k13 mutant strains that confer a slow 
clearing phenotype. A curve plotting the time to resist-
ance versus the prevalence of wild-type P. falciparum 

parasites (before the introduction of mutant strains) was 
developed by running the model independently for set-
tings with varying prevalence of wild-type P. falciparum 
parasites.

Calibration
A Particle Swarm Optimization Algorithm [31] was 
used in MATLAB to best fit the model’s mutation rates 
(human and mosquito populations), treatment param-
eters and strain competition parameters to observed data 
for settings in the Greater Mekong Subregion (Table 1). 
In each setting, the year that mutation started was 
approximated by the year that ACT was introduced.

Uncertainty analysis
A Monte Carlo uncertainty analysis was conducted to 
incorporate parameter uncertainties. The uncertainties 
of individual parameters were parametrized as independ-
ent probability distributions (Additional file 1: Tables S1, 

Fig. 1  Model schematic. Individuals are either susceptible; infected with disease in the latent stage (approximating liver-stage infection); or 
infectious to mosquitoes (approximating gametocyte/blood-stage). Infection can occur with wild-type or mutant strains, and people with wild-type 
infections can become classified as having mutant infections either by being bitten by mutant-carrying mosquitoes (limited by strain competition) 
or by undergoing a within-host mutation process (limited by strain competition and enhanced by drug pressure). Exposure and recovery increases 
immunity level—lowering the risk of transmission from mosquito to human and from human to mosquito—and in the absence of re-infection 
immunity level reduces over time. Recovery and immunity are not modelled for mosquitoes
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S2), and for settings with prevalence ranging from 0.1 to 
70% (in 0.1% intervals), 100 simulations were undertaken 
using random, independent parameter draws. For each 
simulation the time to resistance was calculated and a 
density scatter plot was produced.

One-way sensitivity analyses were also undertaken to 
test the impact when the effects of each type of immunity 
were varied relative to the others; and the relative fitness 
of the mutant strain and mutation rates were varied.

Estimating the time to resistance in Africa
To determine the implications of any relationships 
between prevalence, immunity and time-to-resistance, 
the model was used to estimate the percentage of people 
with P. falciparum infections who carried mutant strains 
across Africa in 2020, 2025 and 2030. Mutant strain 
introduction was estimated to occur in 2007 following 
the large scale-up of ACT across Africa [38, 39], and the 
modelled prevalence for each country was based on the 
prevalence of wild-type P. falciparum reported in the 
Malaria Atlas Project [28, 29] in 2007. Data on the preva-
lence of wild-type P. falciparum parasites was approxi-
mated as the prevalence among 2–10 year olds.

Within the host, the rate artemisinin resistant para-
sites emerge is expected to decrease linearly with the 
number of partner drugs co-administered [40]. Hence 
co-administration with a single partner drug would 
halve the rate at which artemisinin resistant parasites 
emerge relative to when artemisinin monotherapies are 
used. The model was calibrated to the Greater Mekong 
Subregion where the use of artemisinin monotherapies 
was common for many years prior to the WHO’s rec-
ommendation against their use in 2006 [41] and, there-
fore, when estimating the time-to-resistance in Africa 

(where the use of combination therapies has been more 
widespread) the rate of mutation in the model was 
divided by 1.5. Alternate scenarios where the rate of 
mutation in Africa was either the same or one half the 
rate calibrated to the Greater Mekong Subregion were 
used to derive plausible bounds for the estimates.

Results
The resulting best-fit time to confirmed partial resist-
ance versus P. falciparum prevalence curve is presented 
in Fig.  2. The model predicts that as P. falciparum 
prevalence increases, there will be a longer time inter-
val before detection and classification of areas as hav-
ing confirmed partial artemisinin resistance according 
to the WHO definition (Fig.  2, solid line). For exam-
ple, in areas with a P. falciparum prevalence of 60%, 
the model estimates that it would take approximately 
25  years from mutation appearance before the area 
is classified as having confirmed partial resistance, 
compared to only 10 years in an area with 10% preva-
lence. In particular, in some higher prevalence settings 
(> 30%) mutant strains may circulate for more than 
10 years longer than in low prevalence settings (< 10%) 
before the areas are classified as having confirmed par-
tial artemisinin resistance. The relationship between P. 
falciparum prevalence and time to confirmed partial 
resistance appears robust given parameter uncertain-
ties (Fig. 2, grey scatter plot); however with increasing 
prevalence there is increasing uncertainty as to how 
long resistance will take to emerge.

Mutation rates versus time to confirmed partial resistance
When the mutation rate was varied in a sensitivity analy-
sis, irrespective of its actual value, the time to resistance 

Table 1  For various P. falciparum prevalence settings in  the  Greater Mekong Subregion, estimates of  the  time 
between  artemisinin-based combination therapy (ACT) introduction and  the  setting being classified by  the  WHO 
as having confirmed partial resistance

Lao PDR Lao People’s Democratic Republic
a   The precise year that ACT was introduced at scale is unclear, and so a ±1 year margin was used to capture this uncertainty
b   Prevalence was estimated by calculating the average of the results of all studies from the Malaria Atlas Project in the relevant years, with 95% confidence intervals 
estimated as two standard errors of the mean. Details are provided in Additional file 1: Table S4
c   Calculated from World Malaria Reports (treatment numbers) and UN Population Division data (population sizes). Details in Additional file 1: Table S3
d   The year the World Health Organization recommended the use of ACT in these settings

Country Year ACT introduced 
(estimated uncertainty)a

P. falciparum prevalence 
in year ACT introduced 
(95% confidence 
interval)b

Year when classified 
as area of confirmed 
partial resistance

Observed time 
to confirmed partial 
resistance (estimated 
uncertainty)a

Average number of ACTs 
administered per person 
per yearc

Vietnam 1995 (1994–1996) [32, 33] 4% (3–5%) [29] 2009 [34] 14 years (13–15 years) 0.192

Thailand 1994 (1993–1995) [30, 32, 35] 7% (5–9%) [29] 2008 [34] 14 years (13–15 years) 0.031

Cambodia 2000 1999–2001) [30, 36] 6% (5–7%) [29] 2006 [34] 6 years (5–7 years) 0.996

Myanmar 2002 (2001–2003) [37]d 9% (8–10%) [29] 2008 [34] 6 years (5–7 years) 0.681

Lao PDR 2002 (2001–2003) [37]d 20% (17–22%) [29] 2013 [34] 11 years (10–12 years) 1.588
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was always longer in areas of higher malaria prevalence 
(Fig.  3); however, there was uncertainty in the actual 
time that resistance might take to emerge. As might be 
expected, decreasing the relative fitness of the mutant 
strain or decreasing the mutation rate within mosquitoes 
delayed the time to resistance for a given initial preva-
lence. This indicates that determining the relative fitness 
and mutation rate will be crucial for accurate estimation 
of the emergence of resistance in particular settings.

Immunity versus time to confirmed partial resistance
In the base scenario, immunity at the sporozoite and liver 
stages was assumed to reduce the probability of a human 
developing an infection following an infected mosquito 
bite by 25% [42] and 50% [42, 43] for individuals with low 
and high levels of immunity, respectively, while immu-
nity at the blood-stage/gametocyte stage was assumed to 
lower the probability of a mosquito carrying an infection 
after biting an infectious human by 40% [44] and 80% 
[44] for individuals with low and high levels of immunity, 
respectively. In the absence of data to suggest otherwise, 
the base scenario assumed that the effects of immunity 
were equal for both wild-type and mutant strains.

When the effects of sporozoite and blood-stage immu-
nity were varied in a sensitivity analysis, irrespective of 
their actual effect sizes, the time to resistance was always 
longer in areas of higher malaria prevalence (Fig.  4); 

Fig. 2  Time to confirmed partial artemisinin resistance (as measured 
by the time from mutant strain introduction until ≥ 5% of individuals 
carry parasites with K13 mutations and a slow clearing phenotype) in 
different P. falciparum prevalence settings, defined by the prevalence 
of wild-type P. falciparum infections in the human population in the 
year ACT was introduced. Using mean parameter estimates, the 
model predicts a longer time to detect drug resistant strains in areas 
with higher prevalence (solid black line). The results of the Monte 
Carlo uncertainty analysis are consistent with this finding (each 
dot represents a simulation using randomly drawn parameters). 
Calibration data points and their uncertainties (95% CIs) for 
Cambodia, Lao PDR, Myanmar, Thailand and Vietnam were obtained 
from the literature (MAP [29], WHO [34])

Fig. 3  The effects of varying the relative fitness of the mutant strain and the mutation rate in the mosquito population on the time to confirmed 
partial resistance (as measured by the time from mutant strain introduction until ≥ 5% of patients carry parasites with K13 mutation and a 
slow-clearing phenotype). The relationship between prevalence and time to resistance classification as the relative fitness of the mutant strain is 
varied in 5% relative increments (left), and as the mutation rate is varied among the mosquito population in 5% relative increments (right)
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however, for a given prevalence the time to confirmed 
partial resistance was sensitive to changes in the effect 
size of immunity on wild-type strains relative to mutant 
strains. For example, immunity was assumed to have an 
equal effect on all strains; however, for a given preva-
lence, decreasing the effect of immunity on wild-type 
transmission from mosquitoes to humans by 4%—for 
fixed mutant immunity effects—could extend the time 
to resistance by more than 25% (Fig. 4, top-left). This is 
due to competitive advantage, since in this scenario wild-
type strains were fitter and able to circulate more easily 
than mutant strains, which are inhibited by immunity 
relative to wild-type strains. Conversely, decreasing the 
effect of immunity on mutant transmission from mosqui-
toes to humans—for fixed wild-type immunity effects—
gave mutants the competitive advantage, and decreased 
the time to resistance (Fig.  4, top-right). These effects 

were even more pronounced for immunity at the blood-
stage (transmission from humans to mosquitoes; Fig.  4, 
bottom).

Time to confirmed partial resistance in Africa
The model suggests that if a similar relationship between 
prevalence, immunity and time-to-resistance were to hold 
in African settings, there would be considerable hetero-
geneity in the emergence of artemisinin resistance in the 
region. When the relationship derived from the Greater 
Mekong Subregion was applied to Africa, even by 2020 
many countries with a lower prevalence (< 10%) at the time 
of ACT introduction, (Botswana, Eritrea, Ethiopia, Gabon, 
Gambia, Guinea-Bissau, Kenya, Mauritania, Namibia, 
Rwanda, Senegal, Somalia, South Africa, South Sudan, 
Sudan and Zimbabwe) were estimated to have enough P. 
falciparum parasites with k13 mutations in circulation to 

Fig. 4  The effects of differing immunity on time to confirmed partial resistance (as measured by the time from mutant strain introduction until 
≥ 5% of patients carry parasites with K13 mutation and a slow-clearing phenotype). The relationship between prevalence and time to confirmed 
partial resistance classification as the effects of immunity are increased/decreased in 1% relative increments for: wild-type transmission from 
mosquitoes to humans (top-left, from base values of 25%/50% for individuals with low/high immunity [42, 43]); mutant transmission from 
mosquitoes to humans (top-right, from base values of 25%/50% for individuals with low/high immunity [42, 43]); wild-type transmission from 
humans to mosquitoes (bottom-left, from base values of 40%/80% for individuals with low/high immunity [44]); and mutant transmission from 
humans to mosquitoes (bottom-right, from base values of 40%/80% for individuals with low/high immunity [44])
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meet the WHO classification of confirmed partial arte-
misinin resistance (Fig.  5). For areas with a prevalence 
between 10 and 25% at the time of ACT introduction 
(Burundi, Chad, Congo, Madagascar, Niger, United Repub-
lic of Tanzania and Zambia), artemisinin resistance was 
estimated to have emerged by 2025, and for areas with a 
prevalence between 25 and 37% at the time of ACT intro-
duction (Angola, Benin, Malawi and Mozambique) arte-
misinin resistance was estimated to have emerged by 2030. 

For areas of higher prevalence at the time of ACT intro-
duction (> 38%), such as Burkina Faso, Cameroon, Cen-
tral African Republic, Côte d’Ivoire, Democratic Republic 
of the Congo, Equatorial Guinea, Ghana, Guinea, Liberia, 
Mali, Nigeria, Sierra Leone, Togo and Uganda, artemisinin 
resistance was estimated to take longer to emerge, with 
the model predicting that these areas are likely to meet the 
WHO resistance classification criteria by approximately 
2040.

Fig. 5  Projected emergence of artemisinin resistance in Africa. The estimated percentage of P. falciparum infections in African countries that 
contain ‘mutants’ (K13 mutations conferring the slow clearing phenotypes) as the most prevalent within-host strain; 2020, 2025 and 2030. Estimates 
are based on the prevalence of malaria reported in the Malaria Atlas Project [28, 29] in 2007 before the large scale-up of artemisinin-based 
combination therapy across Africa [38, 39]
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Discussion
Understanding how and when anti-malarial resistant par-
asites emerge in a population is critical for prioritizing 
malaria control and elimination policies and optimizing 
treatment guidelines. Using a population-based math-
ematical model, this study demonstrated that in high 
prevalence settings, P. falciparum artemisinin-resistant 
strains may circulate for more than 10 years longer than 
in low prevalence settings before the areas are classi-
fied as having confirmed partial artemisinin resistance 
according to WHO criteria [15]. The derived relation-
ships were robust to parameter uncertainties, in particu-
lar the relative magnitude of various types of immunity 
and within-host mutation rates (influenced by drug 
pressure and the relative fitness of the mutant strain). 
Furthermore, the relationships between prevalence and 
time-to-resistance predicted by the model imply con-
siderable heterogeneity in the emergence of artemisinin-
resistance across Africa, an important consideration as 
endemic countries move towards malaria elimination. 
These predictions presents a similar pattern and timeline 
to what was observed with the emergence of chloroquine 
resistance, which was introduced on large-scale in the 
early 1950s and led to confirmed chloroquine resistance 
in 1960 in the Cambodia–Thailand area but took almost 
20 years longer to be confirmed in Africa [45].

The estimated decreased time to confirmed resistance 
in areas of low P. falciparum prevalence can be explained 
by low genetic diversity and low naturally acquired 
immunity. In areas of low P. falciparum prevalence, 
fewer individuals are co-infected with genetically differ-
ent parasite strains, leading to a greater degree of selfing 
(the recombination of two genetically-identical gametes) 
and a lower degree of wild-type diversity [46–48]. As P. 
falciparum prevalence and immunity increases, clini-
cally immune individuals can also act as an ecological 
reservoir for P. falciparum parasites (including infec-
tious gametocytes), supporting onward transmission and 
parasite diversity. Within the model, settings with lower 
prevalence also had lower levels of immunity. This led to 
a greater overall within-host mutation rate, which facili-
tated the faster appearance of mutant strains that could 
spread more easily due to the lack of population-level 
immunity. These findings are consistent with observa-
tions that k13 mutants are detected earlier in areas of 
the Greater Mekong Subregion with lower compared to 
higher P. falciparum prevalence, as well as global obser-
vations of anti-malarial resistance repeatedly emerging in 
the Greater Mekong Subregion, an area of relatively low 
malaria prevalence [10, 17, 49].

The model predicted that despite the slower spread of 
resistant parasites in areas of high prevalence, many areas 
of Africa may still reach the WHO confirmed partial 

resistance classification criteria by 2030. Moreover, these 
predictions may be overestimated, since they are based 
on the P. falciparum prevalence in African countries 
when artemisinin was introduced in 2007. Since 2007, 
successful malaria control programmes in many of these 
countries have reduced the prevalence, which the model 
suggests would also reduce the time to reach the WHO 
confirmed partial resistance classification criteria.

The findings of this study have significant implications 
for policy makers. Firstly, malaria control programmes 
typically focus on transmission reduction activities in 
areas with the highest prevalence, but results presented 
here suggest that elimination activities in areas of very 
low prevalence will be critical for containing the emer-
gence of resistant parasites; a strategy now being pursued 
by WHO and National Malaria Control Programmes in 
the Greater Mekong Subregion [50]. These areas of low 
prevalence will need to be prioritized for programmes to 
delay the emergence of artemisinin drug resistance [51, 
52], for example the strategic choice of partner drugs as 
part of ACT [53]. Modelling by others has found that 
strategies such as introducing multiple first-line thera-
pies or cycling therapies could have substantial benefits 
in delaying the emergence of resistance [54]. Second, if 
mutant parasites were allowed to spread to high-burden 
areas such as Africa, this will shift elimination from an 
achievable goal to a considerably harder and more costly 
goal. Lubell et al. [55] have estimated that the spread of 
artemisinin resistance to sub-Saharan Africa could lead 
to an additional 125,000 deaths per year and US$1.5 
billion in productivity losses, and Slater et  al. [56] esti-
mated that resistance in Africa at similar levels to those 
observed in Cambodia could result in an additional 78 
million cases over a 5-year period. Third, in areas of high 
prevalence, the current WHO classification may be insuf-
ficient to identify the presence of artemisinin-resistant 
mutant strains, which in some cases may have been cir-
culating for up to 10  years without detection. This has 
implications for migrants and travellers who may be 
exposed to artemisinin resistant mutant strains and risk 
carrying them to areas of low prevalence where they can 
spread more easily facilitating the global spread of arte-
misinin resistance.

This modelling study has a number of limitations. First, 
the year that resistance was predicted to emerge in Africa 
was found to depend on within-host mutation rates; how-
ever these are largely unknown at a population level and 
are influenced by genetic factors [57]. Therefore, applica-
tion of the model to Africa was performed to highlight 
the possible heterogeneity across the region, and esti-
mates for the actual year of emergence should be taken as 
approximate particularly due to within country transmis-
sion heterogeneity and uncertainty around P. falciparum 
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prevalence estimates. Second, a compartmental model 
was used, which is limited by assumptions of homo-
geneity at both population and individual levels. More 
complex and computationally intensive models, such as 
agent-based models, could be used to address variations 
in individuals’ risk of infection and infectivity, as well as 
capturing in greater detail within-host parasite densities, 
mutation processes and drug-pressure. Third, the model 
assumed constant mosquito population densities and no 
differences in vectorial capacity (according to species) or 
seasonal changes in population size and prevalence. This 
means that in areas of seasonal transmission the time to 
resistance will have been overestimated. Fourth, immu-
nity was approximated using discrete categories (none, 
low, high), when it is likely to be a continuum. Whilst 
inclusion of partial immunity is an advance on previ-
ous models that have used a dichotomous immune sta-
tus, subtle changes in age-related transmission dynamics 
will have been missed [58–63]. Fifth, drug-pressure was 
modelled to be proportional to the per-capita number of 
treatments administered rather than the doses taken and 
drug concentrations achieved at the individual level. This 
approach is different to models that explicitly include 
within-host dynamics (for example Nguygen et al. [54]); 
however it was used as a method of including an aver-
age drug pressure at a population-level only and does not 
explicitly capture drug coverage or background partner 
drug resistance. These averaged effects of drug pressure 
were approximated to be weaker in African settings than 
in the Greater Mekong Subregion where lower quality 
artemisinin-based combinations have historically been 
used, but it is unclear how different these effects should 
be. When the sizes of these effects were tested in the 
sensitivity analysis, it was found that as treatment qual-
ity increased (a decrease in drug pressure, Fig.  3), the 
relationship between time to resistance and initial P. 
falciparum prevalence became even more distinct, with 
artemisinin-resistant strains circulating for even longer 
before areas were classified as having confirmed partial 
artemisinin resistance.

Conclusions
The time from the emergence of artemisinin resistant 
malaria falciparum strains to the detection of confirmed 
partial artemisinin resistance is multifactorial and inde-
pendently related to malaria prevalence, immunity and 
drug pressure/relative strain fitness within hosts. The 
model suggests that a more rapid expansion of arte-
misinin resistant parasites is likely in areas of low trans-
mission and low immunity, which may explain why drug 
resistant malaria repeatedly arises in the Greater Mekong 
Subregion. These findings also suggest that in popula-
tions where control strategies are in place that reduce 

malaria transmission and hence immunity, artemisinin 
resistant strains may emerge and spread rapidly. Future 
models incorporating human within-host heterogene-
ity (including different mutation mechanisms) and het-
erogeneity in malaria transmission would allow fine-scale 
predictions of time to confirmed artemisinin resistance. 
However, these broad-scale conservative predictions are 
critical for strategic timelines of malaria control policies 
in areas where artemisinin resistance is yet to emerge.
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