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Abstract 

Background:  Viet Nam has made tremendous progress towards reducing mortality and morbidity associated with 
malaria in recent years. Despite the success in malaria control, there has been a recent increase in cases in some prov-
inces. In order to understand the changing malaria dynamics in Viet Nam and measure progress towards elimination, 
the aim of this study was to describe and quantify spatial and temporal trends of malaria by species at district level 
across the country.

Methods:  Malaria case reports at the Viet Nam National Institute of Malariology, Parasitology, and Entomology were 
reviewed for the period of January 2009 to December 2015. The population of each district was obtained from the 
Population and Housing Census-2009. A multivariate (insecticide-treated mosquito nets [ITN], indoor residual spraying 
[IRS], maximum temperature), zero-inflated, Poisson regression model was developed with spatial and spatiotemporal 
random effects modelled using a conditional autoregressive prior structure, and with posterior parameters estimated 
using Bayesian Markov chain Monte Carlo simulation with Gibbs sampling. Covariates included in the models were 
coverage of intervention (ITN and IRS) and maximum temperature.

Results:  There was a total of 57,713 Plasmodium falciparum and 32,386 Plasmodium vivax cases during the study 
period. The ratio of P. falciparum to P. vivax decreased from 4.3 (81.0% P. falciparum; 11,121 cases) in 2009 to 0.8 (45.0% 
P. falciparum; 3325 cases) in 2015. Coverage of ITN was associated with decreased P. falciparum incidence, with a 1.1% 
(95% credible interval [CrI] 0.009%, 1.2%) decrease in incidence for 1% increase in the ITN coverage, but this was 
not the case for P. vivax, nor was it the case for IRS coverage. Maximum temperature was associated with increased 
incidence of both species, with a 4% (95% CrI 3.5%, 4.3%) and 1.6% (95% CrI 0.9%, 2.0%) increase in P. falciparum and P. 
vivax incidence for a temperature increase of 1 °C, respectively. Temporal trends of P. falciparum and P. vivax incidence 
were significantly higher than the national average in Central and Central-Southern districts.

Conclusion:  Interventions (ITN distribution) and environmental factors (increased temperature) were associated with 
incidence of P. falciparum and P. vivax during the study period. The factors reviewed were not exhaustive, however the 
data suggest distribution of resources can be targeted to areas and times of increased malaria transmission. Addition-
ally, changing distribution of the two predominant malaria species in Viet Nam will require different programmatic 
approaches for control and elimination.
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Background
Despite the success in malaria control across the Greater 
Mekong Subregion (GMS), including Cambodia, China 
(Yunnan Province and Guangxi Zhuang Autonomous 
Region), Lao People’s Democratic Republic, Myan-
mar, Thailand and Viet Nam, a significant proportion of 
the region’s population live in malaria endemic areas, 
with approximately 70% of the local population at risk 
of contracting malaria, including 26% [1, 2] at high risk 
(> 1 cases per 1000 population) [3]. Some of the drivers 
of malaria in the GMS include favourable environmen-
tal conditions for mosquitoes competent of transmitting 
malaria [4, 5], frequent unchecked cross-border move-
ment of people [6–9], movement of workers into forested 
border regions [6, 10, 11] and socioeconomic inequal-
ity [7, 9, 12]. In addition, the emergence of Plasmodium 
falciparum resistant to some or all anti-malarial drugs 
in the region has been extremely concerning [13–17]. 
However, over the last 15 years, malaria cases and deaths 
across the region have declined and all countries in the 
region are pursuing the goal of malaria elimination, with 
the last countries (including Viet Nam) aiming for elimi-
nation by 2030 [18].

Since the 1990s, Viet Nam has made tremendous pro-
gress in reducing mortality and morbidity associated 
with malaria [19–22]. Following a successful reduction 
of malaria case numbers by 97% and deaths by 99.8% 
between 1991 and 2014, the Viet Nam National Institute 
of Malariology, Parasitology, and Entomology (NIMPE) 
are pursuing an agenda of progressive elimination [27–
30]. In 2015, a total of 68 million people were living in 
areas with malaria transmission [3]. In the same year, 
there were 15,752 confirmed malaria cases [with a near-
equal proportion being caused by P. falciparum (54%) 
and Plasmodium vivax (46%)], and six reported deaths 
[3]. The decline in cases has been attributed to strength-
ening of the malaria control programme, increased access 
to health care and socio-economic improvements [20, 23, 
24]. Malaria control and preventive activities that have 
been scaled up include early diagnosis, free treatment 
with artemisinin-based combination therapy (ACT), and 
free distribution of insecticide-treated mosquito nets 
(ITN) [25]. Indoor residual spraying (IRS) is carried out 
both as a routine preventive measure in some areas, in 
areas of low coverage of ITN, and also in response to out-
breaks [21, 26].

Despite the success in malaria control in Viet Nam, 
reports in 2015 have flagged an increase in cases in some 
of the provinces located in Central and Central-Southern 
Viet Nam [27]. A number of factors are believed to be 
responsible for this resurgence, including: remoteness, 
with increasing malaria occurring in mountainous and 
forested areas, making control activities difficult [20], 

presence of the endophagic and anthropophilic vector 
Anopheles dirus [28, 29], forest-related activities [30–32], 
and poverty [23, 30].

Malaria transmission throughout the world is charac-
terized by clustering of cases in transmission “hotspots”, 
driven by climatic, ecological and human factors. Malaria 
has the potential to spread from clusters into neighbour-
ing regions and countries if interventions in the hotspot 
areas are not sustained. Focused interventions in areas 
with higher incidence of malaria are likely to have a 
greater impact than uniform resource allocation [33]. The 
recent increase in malaria cases in some areas poses a 
significant threat of reintroduction into areas where con-
trol has been successful, potentially derailing the NIM-
PE’s national goal of malaria elimination in Viet Nam.

Spatial epidemiological tools (including Geographical 
Information Systems [GIS] and spatial analytic methods) 
can be used to estimate and quantify patterns of malaria 
risk as well as identify environmental correlates of risk 
[8, 34–39]. Identification of clusters of malaria cases can 
help in the delineation of problem areas, which can lead 
to further investigation to identify possible causes of 
higher incidence of malaria in particular areas [40].

The objectives of this study were to identify malaria 
clusters in the country at the district level by species, 
assess correlations between environmental conditions 
and preventive measures including ITN and IRS coverage 
at the district with malaria cases, and to identify areas of 
the country with significantly higher trends in malaria 
incidence than the country as a whole, thereby identify-
ing areas for further investigation and focussed interven-
tions to prevent malaria resurgence.

Methods
Study site
Viet Nam is located in the GMS, bordering China in the 
north, Cambodia and Laos to the west and the South 
China Sea to the East and South. It is elongated in a 
north–south direction and has wide variability in eleva-
tion from sea level (coastal areas) to > 3000 m near Sa Pa 
(Fanispan at 3142  m) in the central and northern high-
land areas (Fig.  1). The country is divided administra-
tively into eight regions, 64 provinces, 702 districts and 
11,100 communes.

Data source
Reported malaria cases stratified by species and district 
were obtained from the NIMPE from January 2009 to 
December 2015. Population estimates for each year were 
extrapolated from the Population and Housing Census 
2009 by applying an annual population growth rate of 
1.06% [41].
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Long-term average annual and seasonal temperature 
and altitude variables were created using data retrieved 
from WorldClim at 1  km spatial resolution [42]. These 
layers were produced by using a thin-plate smoothing 

spline algorithm to interpolate data collected from global 
weather station sources between 1950 and 2000. Spatial 
units for this analysis were districts. An electronic map 
of district boundaries in shapefile format was obtained 

Fig. 1  Map of Vietnam with administrative divisions and neighbouring countries
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from the Global Administrative Areas database (http://
www.gadm.org/count​ry). Administrative boundaries in 
Viet Nam have changed over time and in order to match 
the downloaded district boundary map from the Global 
Administrative Areas website, malaria data were recon-
ciled into 678 districts.

Crude standardized morbidity ratios
An initial descriptive analysis of malaria incidence was 
conducted. Crude standardized morbidity ratios (SMRs) 
for each district were calculated using the following 
formula:

 where Y is the overall SMR in district i, O is the total 
number of observed malaria cases in the district and E 
is the expected number of malaria cases in the district 
across the study period. The expected number was calcu-
lated by multiplying the national incidence by the average 
population for each district over the study period.

Independent variable selection
A preliminary Poisson regression was undertaken to 
select covariates, with the dependent variable being 
number of malaria cases and independent variables being 
control measure and climatic variables. Climatic vari-
ables (maximum, minimum and mean temperature, pre-
cipitation, and altitude) without a lag, and with 1, 2 and 
3-month lag times, and control variables were entered 
into univariate models. Maximum temperature without 
a lag and altitude had the lowest values of the Akaike’s 
information criterion (AIC) and Bayesian information 
criterion (BIC) (Additional file  1: Appendices S1, S2, 
S3 and S4). Maximum temperature and altitude were 
highly co-linear when tested for co-linearity. The model 
improved significantly when altitude was dropped from 
the model, therefore, in the final model the independent 
variables were control measures (ITN and IRS) and maxi-
mum temperature.

Exploration of seasonal patterns and temporal trends
The average monthly numbers of malaria cases by Plas-
modium species were calculated for the full time-series 
(January 2009–December 2015). These were plotted 
to show temporal patterns in malaria and climate vari-
ables. The time series of malaria incidence was decom-
posed using seasonal-trend decomposition based on 
locally weighted regression to show: the seasonal pattern, 
the temporal trend and the residual variability. The time 

Yi =
Oi

Ei

series data, the seasonal component, the trend compo-
nent and the remainder component are denoted by Yt, St, 
Tt, Rt respectively, for month t = 1 to N, and:

The parameter setting “periodic” was used for the 
seasonal extraction, and all other parameters were by 
default. In the study, logarithmic transformations were 
used for the time series data [34, 43].

Spatio‑temporal model
The spatio-temporal models were developed using data 
from 2009 to 2014 due to difference in the number of 
districts between 2009 and 2014 (578) and 2015 (678). 
In this study, Zero-inflated Poisson (ZIP) regression was 
selected due to the large number of zero cases in the 
study. Of the 41,616 observations in the data sets, there 
were 29,915 (71.9%) zero counts for P. falciparum and 
34,139 (82.0%) zero counts for P. vivax. ZIP models were 
developed in the Bayesian statistical software WinBUGS 
version 1.4 (Medical Research Council, Cambridge, UK 
and Imperial College London, UK) for P. falciparum and 
P. vivax. Alternative models were tested for each species, 
including models that include climatic variables (tem-
perature), IRS, and ITN coverage as explanatory vari-
ables, and spatially structured and unstructured random 
effects. Models also included a spatiotemporal random 
effect that estimated spatial variability in district tem-
poral trends. The best model based on the lowest devia-
tion information criterion (DIC) was selected as the final 
explanatory model for each species.

The most comprehensive model, which had as an out-
come the observed counts of malaria, Y, for ith district 
(i = 1…578) in the jth month (January 2005–December 
2014) was structured as follows:

where Eij is the expected number of cases (acting as an 
offset to control for population size) in district i, month 
j, and θij is the mean log relative risk (RR); α is the inter-
cept, and β1, β2, β3, and β4 the coefficients for propor-
tion of population covered by ITNs and IRS, maximum 
temperature, and overall temporal trend of malaria 

Yt = St + Tt + Rt

P(Yij = yij) =

{

ω + 1(1− ω)e−µ, yij = 0

(1− ω)e−µµ
yij
ij /yij , yij > 0;

Yij ∼ Poisson
(

µij

)

log
(

µij

)

= log
(

Eij
)

+ θij

θij = α + β1 × ITNij + β2 × IRSij + β3 × Tmaxij

+ β4 × trendj + ui + si + wij

http://www.gadm.org/country
http://www.gadm.org/country
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risk respectively; ui is the unstructured random effect 
(assumed to have a mean of zero and variance σu

2); si is 
the spatially structured random effect (assumed to have 
a mean of zero and variance σs

2); and wij is the spatiotem-
poral random effect (assumed to have a mean of zero and 
variance of σw

2).
A conditional autoregressive (CAR) prior structure was 

used to model the spatially structured random effect and 
the spatiotemporal random effect (permitting smooth-
ing of the district-level temporal trends). Spatial relation-
ships between the districts were determined using an 
adjacency weights matrix, whereby if two districts shared 
a border, a weight of 1 was assigned, while if they did not, 
a weight of 0 was assigned. A flat prior distribution was 
specified for the intercept, whereas a normal prior dis-
tribution was used for the coefficients. The priors for the 
precision of unstructured and spatially structured ran-
dom effects and the spatiotemporal random effects, were 
specified using non-informative gamma distributions 
with shape and scale parameters equal to 0.01.

An initial burn-in of 10,000 iterations was run and 
these iterations were discarded. Subsequent blocks of 
20,000 iterations were run and examined for conver-
gence. Convergence was assessed by visual inspection 
of posterior density and history plots and occurred at 
approximately 100,000 iterations for each model. Ten 
thousand values from the posterior distributions of each 
model parameter were stored and summarized for the 
analysis (posterior mean and 95% credible intervals).

In all analyses, an α-level of 0.05 was adopted to indi-
cate statistical significance (as indicated by 95% credible 
intervals (95% CrI) for relative risks (RR) that excluded 
1). ArcMap software (ESRI, Redlands, CA) was used to 
generate maps of the posterior means of the unstructured 
and structured random effects and the spatiotemporal 
random effects obtained from the three models.

Results
Descriptive analysis
There was a total of 57,713 P. falciparum and 32,386 P. 
vivax cases during the study period. The ratio of P. falci-
parum to P. vivax decreased from 4.3 (81.0% P. falcipa-
rum; 11,121 cases) in 2009 to 0.8 (45.0% P. falciparum; 
3325 cases) in 2015. The incidence rate of P. falcipa-
rum declined from 1.29 per 10,000 in 2009 to 0.34 per 
10,000 in 2015, while the incidence rate of P. vivax varied 
throughout the same time with 0.30 and 0.41 per 10,000 
(range 0.30 to 0.64 per 10,000) in 2009 and 2015, respec-
tively (Table 1). The proportion of the population covered 
by ITNs and IRS declined slightly from a high in 2010 
(14% ITNs and 3% IRS coverage at the national level) 
through the study period (Figs. 2, 3 and 4). However, cov-
erage of ITNs ranged from 22.6% to 67.6% after stratifica-
tion of districts that received ITNs as opposed to all the 
districts (Additional file 1: Appendices S5 and S6).

A general pattern observed in the map of SMR of P. 
falciparum was high risk in the Southeast, Central High-
lands and South Central Coast regions of the country and 
low risk in the northern parts of Viet Nam. The distribu-
tion of P. vivax SMRs was similar to P. falciparum, but 
with further extension of high-risk areas to the North-
west (Fig. 5).

Time‑series decompositions
The time-series decompositions over the study period 
showed a similar seasonal patterns for P. falciparum 
and P. vivax. However, only one peak was seen for P. 
falciparum, whereas for P. vivax there were two sea-
sonal peaks: a smaller peak in the middle of the year, fol-
lowed by a larger one towards the end of the year, with 
the smaller peak occurring on the shoulder of the larger 
one. The inter-annual pattern showed a general decline in 

Table 1  Malaria incidence during the study period (2009–2015)

Year Plasmodium falciparum Plasmodium vivax

Cases Proportion by year Incidence per 10,000 Cases Proportion by year Incidence 
per 10,000

2009 11,121 0.81 1.29 2536 0.19 0.30

2010 10,745 0.75 1.16 3551 0.25 0.38

2011 8093 0.65 0.86 4319 0.35 0.46

2012 9628 0.62 1.00 5948 0.38 0.62

2013 7691 0.58 0.80 5601 0.42 0.58

2014 7110 0.53 0.72 6350 0.47 0.64

2015 3325 0.45 0.34 4081 0.55 0.41

Total 57,715 32,386
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Fig. 2  Malaria incidence with proportion of population covered by two different interventions, 2009–2015. ITN: insecticide-treated mosquito nets; 
IRS: insecticide residual spraying; PF: Plasmodium falciparum; PV: Plasmodium vivax 

Fig. 3  Maps showing the proportion of population protected by insecticide treated nets in districts of Viet Nam from 2009 to 2013
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Fig. 4  Maps showing the proportion of population protected by indoor residual spraying in districts of Viet Nam from 2009 to 2013

Fig. 5  Raw standardised morbidity ratios of a Plasmodium falciparum and b Plasmodium vivax by districts in Viet Nam from 2009 to 2014
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incidence of P. falciparum, but a general increase in inci-
dence of P. vivax until 2014 (with a drop in 2015) (Figs. 6, 
7).

Spatio‑temporal model
Table 2 describes the three models evaluated for spatio-
temporal modelling, Model III, containing the unstruc-
tured and the spatially structured random effect, and the 
spatiotemporal random effect had the best fit among all 
the models examined for both P. falciparum and P. vivax, 
as indicated by the lowest DIC (Table 2). For P. falcipa-
rum, there was an estimated decrease of 1.1% (95% CrI 
0.01%, 1.2%) in risk for each 1% increase in ITN cover-
age, while IRS did not have any protective effect with 
an increase in risk of 0.9% (95% CrI 0.7%, 1.0%) for a 1% 
increase in population IRS coverage. Risk increased by 
3.9% (95% CrI 3.5%, 4.3%) for each 1 °C increase of maxi-
mum temperature. For P. vivax, coverages of preventive 
measures (ITNs and IRS) were associated with increased 
risks of 1.0% (95% CrI 0.9%, 1.4%) and 0.5% (95% CrI 
0.3%, 0.7%) per 1% increase in coverage of ITN and IRS, 
respectively. For each 1  °C increase in maximum tem-
perature, P. vivax risk was found to increase by 1.6% (95% 
CrI 0.9%, 2.0%).

Estimation of the spatially auto-correlated random 
effect (vi) showed higher mean malaria risk of both spe-
cies in the central and eastern parts of Viet Nam, and 
lower risk in the southern and north-western areas. As 
expected, the map of the posterior means of unstruc-
tured random effects showed that they were randomly 
distributed (Figs. 8, 9).

Nationally, Model III showed a significant, posi-
tive temporal trend in counts of cases of both types of 
malaria over the study period. Note, this is after adjust-
ing for the intervention variables, both of which showed 
a declining trend in the raw data. There was > 95% prob-
ability of a higher than national average trend of P. falci-
parum in 134/578 districts, mostly located in the north 
and south-central coasts and central highlands. Simi-
larly, 127/578 districts had > 95% probability of a higher 
than national average increasing trend of P. vivax, also 
mostly located in the north and south central coasts 
and central highlands. For P. falciparum and P. vivax, 
96/578 and 45/578 districts respectively had > 95% 
probability of a less than national average trend, mostly 
located in the Red River and Mekong River deltas and 
the Southeast (Fig. 10).

Fig. 6  Decomposed monthly Plasmodium falciparum incidence per 10,000 population during the study period, 2009–2015. The top layer shows 
the original time series. The other layers show the decomposed components, denoting the seasonal component, long-term trend component and 
remainder component, respectively
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Discussion
A Bayesian statistical framework was deployed for dis-
ease mapping, with the advantages that both environ-
mental covariates and spatial autocorrelation could be 
estimated simultaneously and that full posterior distri-
butions are produced, which was used to quantify uncer-
tainties in parameters of interest [44].

Incidence of P. falciparum declined during the study 
period, while P. vivax increased from 2009 until 2014, 
with a slight reduction in incidence in 2015. The reports 
of resistance of P. vivax to chloroquine in Central Viet 
Nam could have contributed to this increasing trend [45]. 
Similar findings of increasing P. vivax incidence follow-
ing scale up of control and preventive measures, and a 
decreasing ratio of P. falciparum: P. vivax incidence, was 
reported in Cambodia [46]. Further, it is plausible that P. 
vivax might require different approaches for malaria con-
trol and elimination efforts in addition to the currently 
applied tools.

There was a differential effectiveness of ITN between 
the two species of Plasmodium. A plausible reason could 
be due to differences in the biting patterns for mosqui-
toes infected with either P. falciparum or P. vivax and 
that there may be greater or lesser vector competence for 
each species. A study in Papua New Guinea reported that 

the mosquitoes with P. vivax sporozoite showed prefer-
ential biting before people retired to beds [47]. The biting 
pattern, either due to mosquito species or behaviour of 
malaria-infected mosquitoes, can impact the effective-
ness of ITNs and IRS.

Studies have shown that IRS can be more effective 
in areas with high initial incidence, multiple rounds of 
spraying and in regions with a combination of P. fal-
ciparum and P. vivax [48]. However, in this study, IRS 
coverage was not associated with a reduction in malaria 
risk for either species. The most likely explanation for 
this is that IRS in Viet Nam has been preferentially 
targeted at high-risk communities [21, 26] resulting in 
two-way causation (a type of endogeneity); and sug-
gest that a lack of protection from IRS is a much less 
likely explanation. A similar result was found for ITN 
coverage for P. vivax. Again, this is likely to be due to 
the effect of heterogeneous delivery of interventions 
with preference being given to high-risk communities. 
Further, it is plausible that houses in Viet Nam, built 
on elevated columns or stilts with permeable walls, 
and the biting behaviour of An. dirus and Anopheles 
minimus, the primary malaria transmitting mosquitos 
in Viet Nam, could also play a role in the effectiveness 
of IRS. The fact that the modelled estimate of national 

Fig. 7  Decomposed monthly Plasmodium vivax incidence per 10,000 population during the study period, 2005–2015. The top layer shows the 
original time series. The other layers show the decomposed components, denoting the seasonal component, long-term trend component and 
remainder component, respectively
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trend in P. falciparum risk was positive, when the raw 
data clearly shows a negative trend, is likely to be due 
to the adjustment for intervention coverage in the 
model. Both IRS and ITN coverage at the national level 
declined during the study period, possibly in response 
to the declining rates of clinical P. falciparum malaria 
or distribution was focused to malaria transmitting dis-
tricts only. Further modelling using methods developed 

in econometrics for dealing with endogeneity should be 
considered.

The model outputs demonstrated that reported malaria 
cases predominantly occur in spatial clusters of neigh-
bouring districts. Where spatial clustering is an intrin-
sic feature of infectious disease data, it is critical to 
accommodate this phenomenon in statistical analyses 
to avoid violation of the assumption that observations 

Table 2  Regression coefficients and  95% CrI from  Bayesian spatial and  non-spatial models of  Plasmodium falciparum 
and P. vivax cases reported by month and district, Viet Nam, 2005–2014

CrI credible interval, ITN insecticide-treated mosquito net, IRS indoor residual spraying, DIC deviation information criteria
a   Co-efficient
b   Proportion of population by preventive measures
c   Best fit model

Plasmodium falciparum RR (95% CrI) Plasmodium vivax RR (95% CrI)

Model I

 Intercepta − 1.67 (− 1.94, − 1.35) − 1.93 (− 2.24, − 1.72)

 Treated net coverageb 0.99 (0.988, 0.99) 1.012 (1.01, 1.013)

 IRSb 1.009 (1.007, 1.11) 1.005 (1.004, 1.007)

 Temp max (degree celsius) 1.039 (1.035, 1.044) 1.01 (1.006, 1.014)

 Mean monthly trend 1.003 (1.000, 1.005) 0.99 (0.987, 0.992)

 Probability of extra zero 0.15 (0.15, 0.16) 0.20 (0.19, 0.21)

 Heterogeneitya

 Unstructured 0.13 (0.11, 0.14) 0.17 (0.14, 0.19)

 Structured (spatial)

 Structured (trend) 0.96 (0.80, 1.13) 1.14 (0.92, 1.39)

 DIC 118700 53474.2

Model II

 Intercepta − 1.69 (− 1.75, − 1.63) − 1.88 (− 1.97 − 1.80)

 ITN coverageb 0.99 (0.987, 0.992) 0.92 (0.91 0.92)

 IRSb 1.039 (1.035, 1.044) 1.04 (1.03 1.05)

 Temp max (degree celsius) 1.008 (1.005, 1.01) 1.009 (1.005 1.01)

 Mean monthly trend 1.003 (1.000, 1.005) 1.003 (1.002, 1.004)

 Probability of extra zero 0.16 (0.14, 0.17) 0.20 (0.18 0.22)

 Heterogeneitya

 Unstructured 0.19 (0.16 0.23)

 Structured (spatial) 0.93 (0.15, 0.20) 1.13 (0.91 1.39)

 Structured (trend) 0.18 (0.77, 1.10)

 DIC 119226 53527

Model IIIc

 Intercepta − 1.78 (− 1.90, − 1.64) − 1.88 (− 1.98, − 1.79)

 ITN coverageb 0.989 (0.988, 0.991) 1.01 (1.009, 1.014)

 IRSb 1.009 (1.007, 1.01) 1.005 (1.003, 1.007)

 Temp max (degree censuis) 1.04 (1.035, 1.043) 1.016 (1.009, 1.02)

 Mean monthly trend 1.003 (1.000, 1.005) 0.988 (0.985, 0.99)

 Probability of extra zero 0.15 (0.14, 0.16) 0.20 (0.18, 0.22)

 Heterogeneitya

 Unstructured 0.88 (0.62, 1.32) 2.52 (1.52, 4.32)

 Structured (spatial) 0.38 (0.26, 0.54) 0.29 (0.21, 0.38)

 Structured (trend) 0.94 (0.78, 1.12) 1.14 (0.91, 1.39)

 DIC 118695 53436.7
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are independent [8]. Furthermore, the identification of 
clusters can provide a public health tool to investigate 
reasons for spatial clustering [35] and to spatially tar-
get interventions to high-risk areas. The spatial distri-
bution of both species of malaria was concentrated in 
the districts in South Central Coasts and South Central 
Highlands. These were also areas where the temporal 
trend was significantly higher than the national average. 
Therefore, strategies should be developed that specifically 
target these areas to help Viet Nam achieve its malaria 
elimination goals [27].

High-risk areas included districts that are adjacent to 
the international borders, where cross-border migra-
tion of people from areas of higher malaria endemicity 
present further challenges to malaria elimination [27]. A 
study in Cambodia reported significant clusters of high 
malaria risk located along the Cambodian–Vietnamese 
border and the Sesan River [49]. Migrant workers, many 
who live in forested borer regions, have been reported 
to be at particularly high risk of malaria and may have 

poor knowledge of malaria and limited access to pre-
ventive and therapeutic services [6, 10, 11]. In addition, 
cross border malaria is likely to contribute to the spread 
of anti-malarial drug-resistance in Viet Nam [50, 51] 
through importation of multi-drug resistant malaria from 
Cambodia [52, 53].

Malaria incidence was strongly associated with maxi-
mum temperature. Temperature plays a crucial role in the 
transmission cycle of malaria parasite and mosquito sur-
vival [54]. Studies found that at the temperature of 22 °C, 
a life cycle of malaria parasite development in mosquito 
vector is completed at less than 3  weeks [55]. Higher 
temperatures in Asia have been attributed by strong El 
Niño cycles [56] and multiple studies have investigated 
the impact of temperature and other climate variables 
on inter-annual patterns in malaria risk, with potential 
application to enhanced malaria surveillance [57–59].

One of the major limitations of the study was the 
use of routine case reports, which suffer from a lack 
of completeness and representativeness. The passive, 

Fig. 8  Spatial distribution of the posterior means of structured and unstructured random effects for Plasmodium falciparum in Model III



Page 12 of 15Wangdi et al. Malar J  (2018) 17:332 

routine reporting of malaria cases through the health 
information system in Viet Nam may underestimate 
the true number of cases [60]. Whether these fac-
tors affect the validity of this analysis depends on the 
extent to which under-reporting systematically differs 
between districts. This is currently difficult to deter-
mine and should be a focus of future investigation. 
Secondly, the provinces aiming for malaria elimination 
are more likely to report every single case of malaria 
as opposed to those provinces with a large number of 
cases. Thirdly, the populations of districts were pro-
jected from census data and may have led to over or 
under estimation. Fourthly, unmeasured risk modifiers, 
such as socio-economic development, living standards, 
completeness of malaria treatment, localised behav-
ioural patterns and population mobility, and bed net 
use (as opposed to coverage) are unaccounted for in 
this study. These variables could also have an effect on 
the observed spatiotemporal patterns of malaria inci-
dence [61–63].

Conclusion
Interventions (ITNs distribution) protected the popu-
lation against P. falciparum, while environmental fac-
tors (increased temperature) were associated with 
increased incidence of P. falciparum and P. vivax 
during the study period. The factors reviewed were 
not exhaustive, however the data suggest distribu-
tion of resources can be targeted to areas and times 
of increased malaria transmission. High risk areas 
of malaria transmission with a high probability of 
greater than average temporal trends in comparison 
to the national trend were identified in the central and 
southern regions of Viet Nam. Targeted distribution 
of resources in these districts might achieve a greater 
impact on malaria reduction rather than uniform allo-
cation of resources across the country. The increasing 
trends of malaria in specific parts of country can also 
help programme managers in identifying the areas for 
additional resource allocation for preventive activi-
ties. Additionally, changing distribution of the two 

Fig. 9  Spatial distribution of the posterior means of structured and unstructured random effects for Plasmodium vivax in Model III
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predominant malaria species in Viet Nam will require 
different programmatic approaches for control and 
elimination.
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