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Abstract 

Background:  Determination of the genetic diversity of malaria parasites can inform the intensity of transmission and 
identify potential deficiencies in malaria control programmes. This study was conducted to characterize the genetic 
diversity and allele frequencies of Plasmodium falciparum in Northwest Ethiopia along the Eritrea and Sudan border.

Methods:  A total of 90 isolates from patients presenting to the local health centre with uncomplicated P. falciparum 
were collected from October 2014 to January 2015. DNA was extracted and the polymorphic regions of the msp-1, 
msp-2 and glurp loci were genotyped by nested polymerase chain reactions followed by gel electrophoresis for frag-
ment analysis.

Results:  Allelic variation in msp-1, msp-2 and glurp were identified in 90 blood samples. A total of 34 msp alleles (12 
for msp-1 and 22 for msp-2) were detected. For msp-1 97.8% (88/90), msp-2 82.2% (74/90) and glurp 46.7% (42/90) 
were detected. In msp-1, MAD20 was the predominant allelic family detected in 47.7% (42/88) of the isolates followed 
by RO33 and K1. For msp-2, the frequency of FC27 and IC/3D7 were 77% (57/74) and 76% (56/74), respectively. Nine 
glurp RII region genotypes were identified. Seventy percent of isolates had multiple genotypes and the overall mean 
multiplicity of infection was 2.6 (95% CI 2.25–2.97). The heterozygosity index was 0.82, 0.62 and 0.20 for msp-1, msp-2 
and glurp, respectively. There was no significant association between multiplicity of infection and age or parasite 
density.

Conclusions:  There was a high degree of genetic diversity with multiple clones in P. falciparum isolates from North-
west Ethiopia suggesting that there is a need for improved malaria control efforts in this region.
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Background
Over the last decade, the burden of malaria has declined 
considerably in Ethiopia, which could be the result of 
effective implementation of malaria control strategies at 
the lowest administrative levels [1]. Progress made in the 
reduction of this burden is attributed to implementation 
of effective prevention and treatment tools, such as long-
lasting insecticidal nets (LLINs), indoor residual spraying 

(IRS) and prompt treatment of cases using artemisinin-
based combination therapy (ACT) [2, 3]. However, 
malaria still remains one of the major health problems in 
the country. Approximately 60% of the population lives 
in malaria endemic areas [4] and malaria remains among 
the top ten causes of morbidity and mortality in children 
under 5 years [5].

The population genetic diversity of malaria var-
ies according to the transmission intensity in malaria 
endemic regions and is higher in hyperendemic areas 
compared to areas of low endemicity [6–9]. Parasite 
genetic characteristics may thus reflect the dynamics of 
parasite transmission. Furthermore, human migration 

Open Access

Malaria Journal

*Correspondence:  hussein_ehnri@yahoo.com 
1 Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, 
Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, 
Addis Ababa, Ethiopia
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-018-2540-x&domain=pdf


Page 2 of 8Mohammed et al. Malar J          (2018) 17:386 

events may play a role by enhancing change in parasite 
populations [6]. In addition, declining malaria trans-
mission as a result of scaling-up interventions has been 
shown to affect the parasite genetic diversity pattern and 
population structure of Plasmodium falciparum [7, 10], 
although this has not occurred in all settings. [7, 11].

Genetic diversity of P. falciparum is usually determined 
through genotyping of the polymorphic regions of the 
block 2 of merozoite surface protein-1 (msp-1), block 
3 of merozoite surface protein-2 (msp-2) and the RII 
repeated region of the glutamic rich protein (glurp) [12]. 
Three major allelic families have been identified in block 
2 of the msp-1 gene, K1, MAD20, and RO33 [13] and 
two allelic families in the msp-2 gene, IC/3D7 and FC27 
[15]. These markers are used to investigate the genetic 
diversity, multiplicity of infection, the level of malaria 

transmission, and to discriminate new from recrudescent 
infections in therapeutic efficacy monitoring studies [14].

To date, there has been limited assessment of genetic 
diversity of P. falciparum in Ethiopia [15, 16], despite 
scaling up of national malaria control interventions [17]. 
This study aimed to characterize the genetic diversity and 
allele frequencies of msp-1, msp-2 and glurp genes of P. 
falciparum isolates from uncomplicated malaria patients 
in Humera along the Ethiopian border.

Methods
Study site
Samples used for this study were collected from the town 
of Humera, a sentinel site for monitoring of therapeu-
tic efficacy to artemether-lumefantrine (Coartem®) in 
Northwest Ethiopia (Fig.  1). The town is situated in the 

Fig. 1  Map of the sample collection area, Humera, Northwest Ethiopia, orange colour indicated the sampling site
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Tekezze river basin and has a suitable habitat to support 
mosquitoes that transmit malaria. Malaria in this area is 
mesoendemic, with peak transmission between Septem-
ber and December following the rainy season [18, 19]. A 
migrant population flows into Humera during the har-
vest season (September–November), and this population 
bears the highest malaria burden. Sesame and barley are 
the main crops in the area. A detailed description of this 
site has been previously published [20].

Study population and blood sample collection
A total of 90 blood spot samples were collected from 
patients with uncomplicated P. falciparum enrolled 
during therapeutic efficacy monitoring of artemether-
lumefantrine between October 2014 and January 2015. 
Included patients were aged between two and 28  years, 
were residents within the Humera area, had presented 
to the local health centre with fever (axillary tempera-
ture ≥ 37.5 °C) and were found to be positive for asexual 
P. falciparum. After consent was obtained, dried blood 
spots were collected on day zero of enrollment through 
finger prick bleeding spotted onto Whatman 903® fil-
ter paper (Schleicher & Schuell Bio Science, Keene, NH 
03431, USA). These dried blood spots were transported 
and stored at − 20  °C at the Malaria Research Labora-
tory (Ethiopian Public Health Institute) in Addis Ababa, 
Ethiopia.

Parasite DNA extraction
Parasite genomic DNA was extracted from the blood 
spots collected on filter papers using Chelex-100® (Bio-
Rad Laboratories CA) method [21], with a final volume of 
200 µl for each sample and storage at − 20 °C until it was 
used for the amplification reaction.

Genotyping of the msp‑1, msp‑2 and glurp genes 
of Plasmodium falciparum
Nested PCR of the polymorphic regions of msp-1 
(block2), msp-2 (block 3), and glurp (RII repeat region) 
was performed using primers and methods as previ-
ously described [22, 23]. In brief, in the initial amplifica-
tion, primer pairs corresponding to conserved sequences 
within the polymorphic regions of each gene were 
included in separate reactions. The product generated 
in the initial amplification was used as a template in six 
separate nested PCR reactions. In the nested reaction, 
separate primer pairs targeted the respective allelic types 
of msp-1 (K1, MAD20 and RO33), msp-2 (IC3D7 and 
FC27), and the RII blocks of glurp with an amplification 
mixture containing 250 nM of each primer (except glurp 
nest 1 primers where 125  nM were used (Additional 
file  1: Table  S1), 2  mM of MgCl2 and 125  µM of each 
dNTPs and 0.4 units Taq DNA polymerase. The cyclic 

conditions in the thermocycler (MyCycler-BioRad, Her-
cules, USA), for initial msp-1 and msp-2 PCR and initial 
and nested glurp PCR were as follows: 5 min at 95 °C, fol-
lowed by 30 cycles for 1 min at 94 °C, 2 min at 58 °C and 
2 min at 72 °C and final extension of 10 min at 72 °C. For 
msp-1 and msp-2 nested PCR, conditions were as follows: 
5 min at 95 °C, followed by 30 cycles for 1 min at 95 °C, 
2 min at 61 °C and 2 min at 72 °C and final extension of 
5  min at 72  °C. The allelic specific positive control 3D7 
and DNA free negative controls were included in each set 
of reactions [24]. Fragment analysis of msp-1, msp-2 and 
glurp amplified products were then performed through 
electrophoresis on 2% agarose gels visualized under 
ultraviolet transillumination with light after staining with 
ethidium bromide. The size of DNA fragments were esti-
mated by visual inspection using a 100  bp DNA ladder 
marker (Invitogen, Kalsruhe, Germany). The detection 
of a single PCR fragment for each locus was classified 
as an infection with one parasite genotype (monoclonal 
infection). Isolates with more than one genotype were 
considered as polyclonal infection [25]. Alleles in each 
family were considered the same if fragment sizes were 
within 20  bp intervals for msp-1 and msp-2 genes [26], 
and 50 bp intervals for glurp gene [12].

Data analysis
The msp-1, msp-2 and glurp allele frequencies were 
expressed as the proportion of samples containing an 
allelic family compared to the total number of sam-
ples that gene was detected in. Multiplicity of infection 
(MOI) was defined as the number of parasite genotypes 
per infection. Estimation of mean MOI was calculated 
by dividing the total number of fragments detected in 
msp-1, msp-2, or glurp by the number of samples in the 
same marker. Spearman’s rank correlation coefficient 
was calculated to assess associations between MOI and 
parasite density and age. Statistical significance was set 
at P < 0.05. The heterozygosity index (He), which repre-
sents the probability of being infected by two parasites 
with different alleles at a given locus, was calculated 
using the formula: He = [n/(n − 1)] [(1 − Σpi2)], where 
n is the number of isolates sampled and pi is the allele 
frequency at a given locus [27]. All statistical analyses 
were performed using SPSS version 20.0 (SPSS Inc., 
Chicago, IL, USA).

Ethical clearance
Ethical approval for the study was given by the Scientific 
and Ethical Review Office (SERO) of the Ethiopian Public 
Health Institute (EPHI). Written informed consent was 
obtained from parents or guardian prior to recruitment.
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Results
Demographic and parasitological data
The characteristics of the study population are demon-
strated in Table 1. The 90 patients included 56 (62.2%) 
males and 34 (37.8%) females, with a mean age of 
15.1 ± 5.8  years. They had asexual parasitaemia rang-
ing from 1128 parasites to 199,346 parasites/µl and 
a geometric mean of 14,140.9 parasites/µl (95% CI 
11,047–18,078). Patients 5 to 15  years of age had the 
highest mean parasite density 30,429 parasites/µl (95% 
CI 16,104–50,159) compared to other age groups.

Allelic diversity of msp‑1, msp‑2 and glurp genes in P. 
falciparum
Alleles of msp-1, msp-2 and glurp were classified 
according to the size of their PCR amplified fragments 
(Additional file 2: Figure S1; Additional file 3: Figure S2; 
Additional file  4: Figure S3). Successful amplification 
occurred in 97.8% (88/90) of samples for msp-1, 82.2% 
(74/90) for msp-2 and 46.7% (42/90) for glurp.

Allele genotyping demonstrated the highly polymor-
phic nature of P. falciparum in Humera isolates with 
respect to msp-1and msp-2. Among msp-1 isolates, 
three K1 (150–200 bp), five MAD20 (150–250 bp) and 
four RO33 (120–230  bp) allelic families were noted. 
The frequency of samples with only K1, MAD20, and 
RO33 were 1.1, 10.2 and 5.7%, respectively. The remain-
ing 82.9% (73/88) were polyclonal infections. Among 
polyclonal infections carrying two allelic types, the 
frequency of samples with K1/MAD20, K1/RO33, and 
MAD20/RO33 was 21.6%, 18.2% and 25%, respectively. 
Infections with all three allelic types were detected in 
18.2% of cases (Table 2).

A total of 22 different alleles were identified for msp-
2, including ten alleles of FC27 and 12 alleles of IC/3D7. 
Allele sizes ranged from (250 to 700 bp) for FC27 and 
(280 to 780  bp) for IC/3D7 allelic families. The fre-
quency of FC27 and IC/3D7 were 77% (57/74) and 76% 
(56/74), respectively. The frequency of samples with 
only FC27 and IC/3D7 were 24.3% and 23.0%, respec-
tively. Thirty-nine of the isolates (52.7%) carried both 
msp-2 allelic families (Table 3).

Forty-two samples were successfully genotyped for 
the glurp RII repeat region ranging from 350 to 800 bp. 
A total of nine different alleles were detected and coded 
as genotypes I-IX. Genotype III was the most common 
(26%), followed by genotype I (21%) and genotype IV 
(19%) (Table 4).

Multiple infections of msp-1, msp-2 and glurp alleles 
were detected in 88.6% (78/88), 70.3% (52/74) and 7.1% 
(3/42), respectively. Sixty-three of 90 samples (70%) har-
boured multiple genotypes. The overall mean multiplicity 
of infection was 2.6 (95% CI 2.25–2.97). When consid-
ering msp-1, msp-2 and glurp separately, the multiplic-
ity of infection was 1.98 (95% CI 1.68–2.00), 1.89 (95% 
CI 1.68–2.28) and 1.07 (95% CI 0.99–1.15), respectively. 
No significant difference was observed between MOI 
and parasite density (Spearman rank correlation 0.198, 
p = 0.61; Fig. 2) or MOI and age (Spearman rank correla-
tion 0.019, p = 0.86). The heterozygosity index was 0.82 
for msp-1, 0.62 for msp-2 and 0.20 for glurp.

Discussion
Transmission intensity can affect the genetic diversity of 
the parasite population. Studies comparing areas of dif-
ferent transmission intensities of P. falciparum observe 
that genetic diversity is more diverse in areas of high 
transmission [28, 29]. Furthermore, studies in high 
transmission areas in Africa have shown that following 
enhanced malaria control interventions, genetic diver-
sity reduces as transmission declines [10]. Therefore, 

Table 1  Demographic, parasitological and  clinical 
features of the study subjects’ profiles from Humera area, 
Northwest Ethiopia

SD standard deviation, µl microliter

Characteristic Value

Sex ratio(M/F) 1.7 (56/34)

Age, years

Range 2 to 28

Mean ± SD 15.1 ± 5.8

Age group

 Children (2–5 years) 3 (3.3%)

 Children (5–15 years) 33 (36.7%)

 Adult(≥ 15 years) 54 (60%)

Geometric mean of parasitemia (parasites/µl) 14,141 (11,046.6–18,077.9)

Parasite density range 1128–199,346

Table 2  Genotyping of  P. falciparum msp-1 polymorphic 
region block 2 in Humera, Ethiopia

Bp base pairs, MOI multiplicity of infection

MSP-1 (n = 88) Frequency 
(%)

Allele size 
(bp)

No 
of alleles

MOI

K1 1 (1.1%) 150–200 3 2.0

MAD20 9 (10.2%) 150–250 5

RO33 5 (5.7%) 120–230 4

K1+MAD20 19 (21.6%)

K1+RO33 16 (18.2%)

MAD20+RO33 22 (25%)

K1+MAD20+RO33 16 (18.2%)
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understanding of the genetic structure of a parasite pop-
ulation can complement the implementation of malaria 
control interventions. No study has been conducted 
previously in Ethiopia using three polymorphic anti-
gen markers, and the present study provides the most 
detailed assessment of genetic diversity and multiplic-
ity of infection of P. falciparum isolates from Northwest 
Ethiopia. As Ethiopia moves towards malaria elimination, 
analysing the genotypes circulating along the border area 
is likely to be beneficial for ongoing evaluation of malaria 
control interventions and in understanding parasite 
dynamics related to imported cases.

Genotyping of msp-1 and msp-2 identified a higher 
diversity of alleles than glurp. This is in line with previ-
ous reports [30, 31]. Of the three allelic families of the 
msp-1 gene, MAD20 was the predominant allelic type, 
similar to reports from Indonesia [32], Malaysia [33] 
and Sudan [34]. In contrast, in isolates from Southwest 
Ethiopia [15], Côte d’Ivoire and Gabon [35], K1 was the 
most prevalent allelic family. Variations in the prevalence 
of block 2 alleles between different studies likely reflect 
differences in geographic locations and local transmis-
sion intensity [35, 36], in a gene that is highly polymor-
phic and has a dynamic genetic structure that can reflect 
transmission pressures [37]. Allele typing of msp-2 
showed that the frequency of FC27 and IC/3D7 allelic 
families was nearly identical among the isolates; similar 
to findings from a study in Cambodia [24]. In agreement 
with previous reports [12, 38], the RII region of the glurp 
gene was also polymorphic, with nine distinct allelic frag-
ment sizes detected.

Genetic diversity values were high according to the 
heterozygosity index for msp-1 and moderate for msp-2. 
Similar genetic diversity was identified for these genes in 
P. falciparum isolates in Southwest Ethiopia from 2008 
[15]. In Djibouti, a neighboring country to Ethiopia, an 
initially moderate level of genetic diversity declined over 
an 11-year period to the point that expected heterozygo-
sity reached zero in 2009 consistent with very low diver-
sity [39].

The present study found that nearly three-quarters of 
the isolates harboured multiple genotypes, with about 
one-quarter monoclonal. This is a similar finding to a 
previous study from Northwest Ethiopia that only ana-
lysed msp-2 [16]. However, it is a significantly higher pro-
portion with multiple clones than many of the locations 
sampled by the International Centers of Excellence for 
Malaria Research [9].

Population genetic studies have shown that MOI in the 
human population can be a proxy for transmission inten-
sity. However, transmission intensity can also be affected 
by other factors such as vector biting behaviour and 
endemicity [9]. Inferring high transmission intensity from 
the presence of multiclonal infections alone has addi-
tional limitations including estimates of MOI varying by 
genotyping method, potential impact from sampling fre-
quency and a non-linear relationship between MOI and 
transmission intensity [9]. Despite these limitations, the 
high levels of mixed infection in the present study, com-
bined with evidence of moderate to high genetic diversity 
would be consistent with high transmission intensity in 
the study area. This is further supported by the presence 
of a high prevalence of malaria in screened patients dur-
ing the study period (67%) consistent with malaria being 
highly endemic [20]. It is also compatible with reports 

Table 3  Genotyping of  P. falciparum msp-2 polymorphic 
region block 3 in Humera, Ethiopia

Bp base pairs, MOI multiplicity of infection

msp-2 (n = 74) Frequency (%) Allele size (bp) No of alleles MOI

FC27 18 (24.3%) 250–700 10 1.9

IC/3D7 17 (23.0%) 280–780 12

FC27+IC/3D7 39 (52.7%)

Table 4  Distribution of  allelic variants of  glurp RII repeat 
region of P. falciparum populations in Humera, Ethiopia

glurp glutamate rich protein, N number of sample

Genotypes Allelic size variants (50 bp bin) N (%)

I 301–350 9 (21)

II 351–400 4 (10)

III 401–450 11 (26)

IV 451–550 8 (19)

V 551–600 2 (5)

VI 601–650 1 (2)

VII 651–700 2 (5)

VIII 701–750 2 (5)

IX 751–800 3 (7)
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from studies of African countries with intense malaria 
transmission in Cameroon, and Tanzania [40, 41].

High genetic diversity and MOI are evident in the pre-
sent study despite the scale-up of malaria control efforts 
in Ethiopia. These findings are similar to reports from 
Sudan [11], western Kenya [42], northeastern Myanmar 
[43] and Nigeria [38]. Persistent genetic diversity likely 
reflects in part the ongoing high transmission intensity 
that exists in this region. While the results contrast with 
declining rates of genetic diversity and MOI in Djibouti 
and Thailand, these locations also had a reduction in 
malaria transmission [7, 39].

MOI has been correlated with parasite density in a 
number of studies, including in Congo, Brazzaville and 
West Uganda [26, 44]. However, similar to a study in 
south Benin, there was no association between MOI 
and parasite density in the present study [45]. This may 
have been due to the small number of isolates analysed. 
Similarly, the relationship between MOI and age remains 
unclear. The present study found no association between 
MOI and patients’ age, in agreement with studies con-
ducted in south Benin and Senegal [45, 46], but in con-
trast to Central Sudan [47]. This variation may relate to 
differences in endemicity and the development antipar-
asite specific immunity. For example, there may be no 
association with MOI and age in regions of mesoende-
micity such as the present study where immunity is simi-
lar across all ages, while there is an association in regions 
with intense transmission where immunity develops with 
age [46, 48, 49].

There is also the possibility that seasonal migration of 
individuals into and out of Humera contributed to the 
MOI and genetic diversity. Parasite gene flux mediated 
by human migration events is recognized to be a pos-
sible hindrance to malaria control interventions [50]. 
However, the current study was unable to investigate this 
in detail due to limits to the genotyping technique used 
in our study. To better understand the contribution of 
migration and malaria control interventions to malaria 
control in Ethiopia further studies on the genetic struc-
ture and diversity of P. falciparum in Ethiopia are needed, 
including across wider geographical area. In addition, 
use of microsatellite sequences, single nucleotide poly-
morphisms (SNPs) or whole-genome sequencing would 
provide improved insights into parasite transmission 
dynamics [8, 10].

Genotyping by size polymorphism is limited by pro-
cesses that may lead to an inability to differentiate unique 
allelic fragments. Fragment size polymorphism of msp-
1 is under positive natural selection and alleles may 
converge at the population level, with fragments of the 
same or similar size having different sequences [13, 14]. 
These events may lead to an underestimation of MOI and 

genetic diversity, and limit the generalizability of results 
to other settings. However, convergence at a population 
level does not prevent comparison within the same popu-
lation at an alternative time period, such as to assess the 
impact of interventions.

Conclusions
This study reveals high genetic diversity and multiple 
infections in P. falciparum isolates from Northwest Ethi-
opia and is comparable to similar reports from other high 
transmission areas. The human population events occur-
ring in this region may also contribute to this diversity 
and provide another challenge for malaria control efforts. 
These results suggest that additional strengthening of 
malaria control efforts is required. This information will 
serve as baseline data for future studies on dynamics of 
parasite transmission, and for evaluation of the effect of 
malaria control interventions along the Northwest bor-
der of Ethiopia.
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