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Abstract 

Background:  Anopheles mosquitoes impose an immense burden on the African population in terms of both human 
health and comfort. Uganda, in particular, boasts one of the highest malaria transmission rates in the world and its 
entire population is at risk for infection. Despite the immense burden these mosquitoes pose on the country, very few 
programmes exist that directly combat the issue at the vector control level and even fewer programmes focus on the 
vector in its most vulnerable juvenile stages. This study utilizes remote sensing techniques and spatial autocorrelation 
models to identify and prioritize the most prolific Anopheline larval habitats for control purposes in a rural community 
in Uganda.

Methods:  A community-based mosquito surveillance programme was developed and implemented in Papoli Par-
ish in Eastern Uganda over a 4-month period. Each day, a trained field team sampled the larval habitats of Anopheles 
mosquitoes within the population-dense areas of the community. Habitats and their productivity were identified and 
plotted spatially on a daily basis. Daily output was combined and displayed as a weekly habitat time-series. Addi-
tional spatial analysis was conducted using the Global and Anselin’s Local Moran’s I statistic to assess habitat spatial 
autocorrelation.

Results:  Spatial models were developed to identify highly significant habitats and dictated the priority of these habi-
tats for larval control purposes. Weekly time-series models identified the locations and productivity of each habitat, 
while Local Moran’s I cluster maps identified statistically significant clusters (Cluster: High) and outliers (High Outlier) 
that were then interpreted for control priority. Models were stitched together in a temporal format to visually demon-
strate the spatial shift of statically significant, high priority habitats over the entire study period.

Discussion:  The findings show that the spatial outcomes of productive habitats can be made starkly apparent 
through initial habitat modelling and resulting time-series output. However, mosquito control resources are often lim-
ited and it is at this point that the Local Moran’s I statistics demonstrates its value. Focusing on habitats identified as 
Cluster: High and High Outlier outputs allow for the identification of the most influential larval habitats. Utilizing this 
method for malaria control allows for the optimization of control resources in a real time, community driven, fashion, 
as well as providing a framework for future control practices.
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Background
Anopheles mosquitoes impose an immense burden on 
the African population in terms of both human health 
and comfort. Mosquitoes within this genus are responsi-
ble for the transmission of the malaria parasite, not only 
on this continent, but on a global scale. African malaria 
is driven by species located within the Anopheles gam-
biae complex. The namesake of this complex, An. gam-
biae, is an extremely anthropophilic species that feeds 
almost primarily on humans and serves as the conti-
nent’s primary malaria vector [1]. This tropical species’ 
range spans the majority of sub-Saharan Africa, as well 
as Madagascar, even making its way into the continent’s 
southern-most countries during the warmer summer 
months [2, 3]. This species is of the utmost concern and 
considered one of the most effective and efficient malaria 
vectors in the world [4, 5]. In addition to An. gambiae, 
several other Anopheline species/complexes contrib-
ute to the continent’s malaria burden. These include 
Anopheles arabiensis,  Anopheles funestus,  Anopheles 
melas, Anopheles merus, Anopheles moucheti and Anoph-
eles nili [2].

Within the African continent alone, these Anopheles 
vectors were responsible for 627,000 deaths in 2012. This 
accounted for approximately 80% of all malaria deaths for 
the year [6]. Three years later, in 2015, the region of sub-
Saharan Africa was home to 90% of all malaria cases, and 
contributed to 92% of the estimated 438,000 deaths [7, 8]. 
Uganda, in particular, shoulders a significant portion of 
this burden. This small East African nation boasts one of 
the highest malaria transmission rates in the world and 
its entire population is at risk for infection [9, 10]. How-
ever, despite the immense burden these mosquitoes pose 
on the country, very few programmes exist that directly 
combat the issue at the vector control level and even 
fewer programmes focus on the vector in its most vulner-
able juvenile stages.

The common approach to malaria control occurs with 
the domestic treatment of adult vectors and an empha-
sis on timely healthcare [11–14]. This approach is easily 
implemented and demonstrates quick results, though 
targets only a small portion of the mosquito population 
and only at a particular point in time. Malaria vector con-
trol is optimally done at the larval level where the Anoph-
eles mosquito is in its most concentrated, immobile, 
and accessible state (CIA approach) [15]. Control in this 
manner allows for often scarce resources to provide the 
highest possible impact. Habitats of significance are iden-
tified by trained field surveillance teams and then treated 
accordingly with the appropriate larvicide.

This approach for malaria reduction and eradication 
has long proven an effective measure against the patho-
gen. Prior to the introduction of the potent insecticide 

dichlorodiphenyltrichloroethane (DDT), and a shift to 
adult control strategies, this method was predominant in 
anti-malarial campaigns [16]. In fact, Fred Soper utilized 
similar techniques in eradicating Africa’s most potent 
vector, An. gambiae, after it gained a foothold in Brazil 
[17, 18]. Larval control should optimally be implemented 
in the same fashion as Dr. William Gorgas’ successful 
anti-malaria campaign that allowed for the construc-
tion of the Panama Canal. This approach assimilated 
larval control into an integrated approach with synergis-
tic interventions such as environmental modifications, 
screened housing, bed nets, drugs and quarantine [15]. 
The addition of current domestic adult treatment tech-
niques to this array of control practices will only optimize 
the desired results.

One of the biggest issues preventing the establish-
ment of such larval control operations is the inadequate 
resources often encountered in Uganda and other African 
countries [15]. The entire region of sub-Saharan Africa 
contains only a small number organized programmes for 
controlling mosquito populations, and these are often 
implemented only during epidemic periods [19]. It is 
safe to say that such programmes are overlooked or dis-
counted based on the costs that they incur both mone-
tarily and in time. This was very much the case in Papoli 
Parish, Uganda where this study took place.

An examination of economic costs for larval source 
management was conducted in Mbita, Kenya. This city 
lies just under 200 km from Papoli and embodies many of 
the same environmental characteristics. This study found 
the cost per person protected per year using such a pro-
gramme to range from $1.94 to $2.50 USD depending on 
the larvicide formulation [20]. This cost is certainly not 
the same cost that would be experienced within Papoli 
Parish, a significantly more condensed and less populated 
area; however, it does illustrate the financial burden that 
a larval control programme can place on a community.

In an effort to combat the high cost related to larval 
control a statistically significant approach was taken to 
spatially identify the habitats of most concern at a spe-
cific point in time, and prioritize these habitats for treat-
ment. The idea of randomly dispersed larval populations 
and homogenous habitat productivity and structure is 
not realistic when evaluating the larval composition of a 
community [21]. In contrast, habitat productivity is far 
from uniform, as certain habitats contribute largely to 
the overall mosquito population [21, 22]. Typically, mos-
quito larval dispersion is not evenly distributed or even 
random. It is instead considered contagious, as popula-
tions tend to aggregate in more favourable areas within 
the environment of the habitat [23]. This is especially true 
in respect to seasonal rain changes, which drive the crea-
tion and removal of habitats within a given area at a given 
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point in time [21]. As a consequence, the management 
of small proportions of these clustered aquatic mosquito 
habitats can result in large proportional reductions in 
total productivity, while at the same time allowing for the 
optimal utilization of scarce control resources. A theo-
retical model depicting this technique found that with 
coverage of only 30% of habitats, the total productivity of 
an area could be reduced by 70%, and the malaria inci-
dence in intermediate transmission areas could be simi-
larly impacted with a reduction of 66% [21]. Identifying 
and targeting these particularly productive habitats can 
result in effective larval interventions while utilizing the 
minimum amount of resources [21].

The statistically significant identification and prioritiza-
tion of such habitats can be completed in an easy to inter-
pret, spatial manner, using a Moran’s I and Local Moran’s 
I statistic to measure spatial autocorrelation. Spatial auto-
correlation refers to the correlation of the values of vari-
able with itself through space [24]. These spatial analysis 
tools can be utilized to generate positive autocorrelation, 
which indicates clustering of similar values of a variable 
in close geographical range, negative autocorrelation, 
which indicates dissimilar values geographically nearby 
in space, or randomness, which represents no autocorre-
lation whatsoever within a dataset [24].

In terms or larval productivity for control purposes, 
highly productive sites located in close spatial proximity 
to other highly productive habitat sites are considered 
positively autocorrelated, while these same high values 
spatially located among low values are negatively auto-
correlated. Though of less interest for malaria control, 
this same concept is true with habitats of low productiv-
ity in close spatial proximity to other low productivity 
sites, and low values spatially located among high val-
ues. Identification of such sites using this autocorrelation 
analysis becomes quite advantageous based on the conta-
gious nature of the mosquitoes themselves.

The Moran’s I statistic, as identified by Moran in 1950 
[25] measures the autocorrelation of a variable of inter-
est based on the location and values present to represent 
a pattern globally. Moran’s I analysis results in a score 
ranging from − 1 to 1. A score near 0 indicates random-
ness, a score near 1 indicates clustering, and a score near 
−  1 indicates dispersion [26]. This statistic serves as an 
average for the entire dataset and therefore cannot iden-
tify specific habitats or areas of significance. Utilizing this 
approach; however, is quite useful in providing evidence 
of clustering within a dataset. Once this is established, a 
more focused local form of this statistic can be utilized to 
identify specific areas for which priority should be given 
for control practices.

For mosquito surveillance purposes, a local indica-
tor of spatial association (LISA) should be used. A LISA 

is described by Anselin [27] to satisfy the following 
requirements:

1.	 The LISA for each observation gives an indication of 
the extent of significant spatial clustering of similar 
values around that observation.

2.	 The sum of LISAs for all observations is proportional 
to a global indicator of spatial association [27].

The preferred LISA for analysing habitat for mosquito 
control is the Anselin’s Local Moran’s I statistic. This 
Local Moran’s I statistic will generate visual representa-
tion of productive mosquito habitat clusters (positive 
autocorrelation). These clusters represent sets of adjoin-
ing locations for which the LISA is significant [27]. Addi-
tionally, this statistic identifies negative autocorrelation, 
or spatial outliers. The generation of these outliers allows 
for the identification of statistically significant dissimilar 
habitat productivity values in space. This is important, as 
it allows for highly productive habitats in close proximity 
to low or unproductive habitats to be spatially identified. 
These clusters and high outliers can then be prioritized 
for mosquito control practices.

This concept was demonstrated within the commu-
nity of Papoli Parish, Uganda. A surveillance programme 
was initiated within the community to illustrate the abil-
ity to identify high priority habitats and clusters within 
a community setting in a temporal fashion. The result-
ing output not only identified crucial habitats for malaria 
control, but it also visually depicted the spatial change of 
these habitats over time. The use of these models can be 
utilized short-term for real time control practices, and 
over the long term to predict similar habitat distributions 
when conditions and seasonality are similar.

Methods
Study area
The community of Papoli Parish served as the study site 
for this research (Fig. 1). Papoli Parish is a rural agricul-
tural community located in eastern Uganda. The parish is 
located within the Tororo district and lies within Iyolwa 
sub-county and west Budama County; approximately 
16 km from the city of Tororo.

Papoli consists of 11 zones (villages) well-suited for 
mosquito production. The southern boundary is com-
prised of a small river, the Malaba River, from which 
a large swamp is induced. This swamp spans the entire 
southern boundary. The southwestern-most bound-
ary of Papoli is an uninhabitable swamp, also a byprod-
uct of the Malaba River. The main highway between the 
cities of Jinja and Tororo runs east to west through the 
community and is lined on both sides by deep, water-
retaining ditches which are well documented to be 
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prolific mosquito larval habitats [4, 28, 29]. The com-
munity boundary extends slightly west beyond the main 
highway where the majority of land in is utilized for agri-
culture. Flooded rice fields of varying agricultural stages 
are intermittently distributed between both the northern 
and southern borders. Across the eastern border is an 
additional swamp and a small, often dry, tributary of the 
Malaba River.

Papoli’s interior is dominated by agriculture and fam-
ily dwellings. Livestock tracks, farmed fields in various 
stages, open water storage, and agriculturally created 
standing water pools all provide optimal breeding sites 
for the Anopheles mosquito in this region [28].

Surveillance area development
Papoli Parish is an expansive community with a mul-
titude of possible oviposition habitats for both vector 
and nuisance mosquito populations. The budget for 
this project allowed for four full time field surveillance 
team members. It was not feasible to expect these team 
members to cover the entirety of the community within 

a reasonable time period. As a result, the project aimed 
to protect the largest number of community members 
with the resources available.

A high-resolution multispectral QuickBird-2 satellite 
image was obtained from Digital Globe via the Digital 
Globe Imagery Grant. This image was edited from its 
full extent to depict Papoli, Parish and its closely sur-
rounding areas. A supervised Land Use Land Cover 
(LULC) was generated using this imagery within Arc-
GIS 10.3.1 software to identify key land cover features 
within the community (Fig.  2). The LULC output was 
utilized to pinpoint the areas of highest population 
density within the Parish. These highly populated areas 
would be further manipulated using ArcGIS software 
to develop our surveillance area.

A polygon was created within the ArcGIS software 
to encompass the densely populated region. A 0.5  km 
buffer polygon was then developed around the popu-
lation density polygon (Fig. 3). This distance of 0.5 km 
was strategically chosen based on the flight range of an 
unfed An. gambiae, which has been identified to be an 

Fig. 1  Map of Uganda with Papoli Parish, its 11 villages, and key community landmarks highlighted
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Fig. 2  Land Use Land Cover (LULC) Model of study area within Papoli Parish

Fig. 3  The study area within Papoli composed of the densely populated region and a 0.5 km Anopheles gambiae flight buffer
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extreme concern for malaria transmission within the 
region [30].

The area contained within the two newly created poly-
gons would serve as the surveillance area. Separation of 
the surveillance area into four separate surveillance zones 
was later determined based on environmental makeup 
and known local landmarks and paths (Fig.  4). These 
boundaries were determined with the help of the field 
team members who were to survey them, as well as with 
the knowledge of local leaders.

Larval surveillance
Surveillance took place over a 4-month period beginning 
in March and ending in July of 2016. Qualified members 
of the Papoli community were identified and trained to 
properly identify all potential mosquito larval habitats 
within the community. These trained personnel were 
each assigned a specific surveillance zone and together 
encompassed the larval surveillance field team.

Each day 1/5 of each team member’s surveillance 
zone was surveyed in respect to all possible mosquito 
larval habitats. Each identified site was marked using a 
GPS unit and given its own respective waypoint iden-
tifier prior to sampling. Sites eliciting positive larval 
results were highlighted, and the resulting larvae cap-
tured in Whirl–Pak bags labelled in respect to the site 
at which they were obtained.

At the conclusion of each day, all data was returned to 
the project manager for processing. Habitat waypoints 
from each were uploaded to the field computer and 
converted to .kml files before storage in a spatially ref-
erenced database. All positive Whirl–Paks were emp-
tied and the larval contents identified for specimens 
of the Anopheles genus. The resulting count data was 
stored by habitat in a .csv Excel database entitled Larval 
Surveillance Data. Each waypoint was given a unique 
habitat identification number (habitat ID) during its 

Fig. 4  Established surveillance zones within the study area of Papoli Parish
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initial sampling. If sampled on an additional occasion, 
its original habitat ID was utilized.

Rainfall monitoring
Surveillance was strategically initiated during the final 
weeks of Papoli’s dry season in an effort to map the spa-
tial change of larval habitats during the community’s 
dry, rainy, and transitional periods. Rainfall served as 
the main water source for agriculture within the com-
munity and any irrigation that occurred was driven by 
rainfall events.

Rainfall has long been associated with an increase 
in mosquito production [4, 23]. Rainfall results in an 
increase in near-surface humidity, which directly influ-
ences the mosquito life cycle by increasing mosquito 
flight activity, oviposition, and the resulting host-seek-
ing behaviour [31]. An increase in abundance and vari-
ety of aquatic habitats available for oviposition, and the 
subsequent larval progeny has also been demonstrated 
to result from rainfall [31–33].

This variable is not uniform in its impact for all mos-
quito species, however, strong correlations have been 
shown with the key malaria vectors [34]. For exam-
ple, due to the temporary nature of preferred habitats, 
increased rainfall is associated with an increase in An. 
gambiae [35–37]. This species serves as one of Papoli’s 
most potent vectors. Rainfall was monitored daily with 
a rain gauge placed centrally in the community.

Habitat modelling
In order to generate an idea of the Anopheles habitat 
distribution within Papoli, visually descriptive spatial 
maps were generated as daily data was obtained. These 
maps were combined into weekly maps that spatially 
depicted the entirety of each week’s surveillance data. 
Weekly maps were stitched together over time in a 
Time-Series fashion to visually depict the location and 
count of Anopheles larva throughout the entirety of the 
surveillance programme.

Each week, all daily .kml files were merged to a single 
weekly .kml using .kml merging software. The KML to 
Layer function within the ArcGIS software was then uti-
lized to convert the .kml file to a workable point shapefile, 
which was saved and labelled to its respective week. The 
Larval Surveillance Data Excel database was then joined 
to the spatially represented data within the ArcGIS soft-
ware. Once joined, graduated symbols and individual 
colors depicting larval count were created to represent 
habitats of varying productivity. Graduated symbols and 
individual colors were demarcated by a count of 5 Anoph-
eles mosquitoes, beginning at 0 and ending with a > 15 
category. Habitat productivity was ultimately categorized 

into 1 of 5 categories; 0, 1–5, 6–10, 11–15, > 15. As weekly 
models accumulated, the temporal change of habitats and 
their productivity becomes apparent. These time-series 
models are not statically significant, but do provide stark 
visuals from which the understanding of local mosquito 
distribution can begin.

Spatial autocorrelation analysis
In addition to weekly productivity maps, maps display-
ing statistically significant clustering and outliers were 
generated to identify areas of high concern for Anopheles 
production. These maps were produced within ArcGIS 
software using the same weekly joined shapefile and .csv 
file utilized to produce the weekly productivity map. Spa-
tial autocorrelation patterns were analysed and displayed 
using the Spatial Statistics Extension available in ArcGIS.

Moran’s I spatial autocorrelation
Spatial autocorrelation patterns of Anopheles larval 
counts were first analysed on a weekly basis using an 
inverse distance spatial relationship with a Euclidean dis-
tance calculation via the Moran’s I spatial autocorrelation 
tool. This global statistic analyses the locations and count 
values of each habitat simultaneously to measure auto-
correlation [25]. The strength of the correlation between 
the count values is estimated as a function of the distance 
between their respective habitats and calculated on aver-
age for the dataset [38]. The product of this analysis was 
used to determine clustering, randomness, or dispersion 
of the data.

A Moran’s I index output is generated and ranges 
from −  1 to 1. As the output approaches 1, the inten-
sity of clustering increases. A score of 0 indicates ran-
domness, while the closer to − 1 the index is, the more 
dispersed the data is it represents. In respect to habitat 
prioritization for malaria control, the interest is focused 
on clustering. This clustering indicates statically sig-
nificant groupings of habitats. Clustering is indicated 
by a Moran’s I index greater than 0, a significant p-value 
of ≤ 0.10 (90% Confidence) and a z-score ≥ 1.65.

Anselin’s Local Moran’s I
The global Moran’s I index output provides evidence 
of spatial autocorrelation within the dataset, but can-
not provide specific locations of autocorrelation, as it 
tends to average local variations [38]. To visually dis-
play and analyse the spatial autocorrelation of the 
data, a local indicator of spatial association (LISA) in 
the form of an Anselin’s Local Moran’s I was employed. 
An Anselin’s Local Moran’s I was analysed on a weekly 
basis for Anopheles larval counts. This was done using 
an inverse distance spatial relationship with a Euclid-
ean distance calculation via the Cluster and Outlier 
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Analysis (Anselin Local Morans I) tool within the Arc-
GIS software.

The LISA generated from each point displays an indi-
cation of statistically significant clustering of similar or 
dissimilar values around that point in space [27]. The 
use of this Local Moran’s I statistic spatially depicts hot 
spots, cold spots, and statistically significant spatial 
outliers in 1 of 4 forms: Cluster: High, Cluster: Low, 
High Outlier, and Low Outlier. Cluster: High outputs 
can be considered hot spots. These areas represent 
highly productive habitats within close proximity to 
each other. A High Outlier represents a habitat that is 
highly productive, but surrounded by unproductive or 
low productivity habitats, while Low Outlier displays a 
low productivity habitat surrounded by highly produc-
tive habitats. Cluster: Low indicates the inverse of Clus-
ter: High. For mosquito control purposes, the priority 
outputs are Cluster: High and High Outlier output, as 
these indicate areas of highest productivity relative to 
overall larval count and distance.

This identification of spatial outliers and significant hot 
spot clusters is the key indicator for determining habi-
tat priority for mosquito control purposes. All identified 
Anopheline spatial outliers and significant hot spot clus-
ters were modelled with a 0.5 km buffer. This buffer pro-
vides visual evidence of at risk areas from these potent 
malaria vectors.

Results
Rainfall
Rainfall was tracked and recorded daily from the week 
prior to arrival, through the training period, until the 
competition of the study (Fig.  5). Larval production 

generally mimicked rainfall patterns within the commu-
nity. An increase in rainfall resulted in a corresponding 
increase of overall larval habitat count and productivity.

After a prolonged dry period, consistent rainfall 
began during the second week of surveillance and mos-
quito productivity increased shortly thereafter. Weeks 
2 through 10 represented the rainy season for the com-
munity. Rainfall reduced in intensity around week 10 
and was fairly scarce during weeks 10 and 11. Rainfall 
resumed during weeks 12–14, before essentially stopping 
completely until the conclusion of surveillance.

Key rainfall intervals were identified at four points in 
the study period: a prolonged dry period, transition into 
a rainy period, prolonged rainy period, and a transition 
into a dry period. The first interval, the prolonged dry 
period, was represented by the weeks prior to the begin-
ning of the study period as well as the training and pre-
paratory periods of surveillance. Within this time, rainfall 
was scarce, occurring sporadically and for short periods, 
with no evident pooling of water.

The heaviest rains occurred within weeks 2 through 5 
of the study period. This time frame represents the tran-
sition into a prolonged rainy period and is representa-
tive of the second key interval. A slight dip in rainfall 
occurred for approximately 1 week around week 5, before 
consistent rainfall returned for weeks 6 through 10. This 
5-week period represents the prolonged rainy period 
and the third key rainfall interval. The final interval rep-
resents the transition into a dry period and occurs from 
weeks 11 through the conclusion of the study period. 
During this time, rainfall is shown to taper significantly 
until essentially non-existent.
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Fig. 5  Daily rainfall by week during the study period
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Rainfall was not statistically analysed within the param-
eters of the spatial outcomes; it instead provided context 
to the changes in potential habitat numbers and location. 
The undulation of the resulting habitats and their pro-
ductivity was captured and displayed within spatial–tem-
poral time-series models.

Weekly habitat modelling
Habitat models were developed on a weekly basis depict-
ing the spatial distribution of each habitat surveyed. 
Weeks 1, 5, 10, and 16 are displayed to exhibit the clear 
variance of habitat location and productivity over time 
at the conclusion of each key rainfall interval identi-
fied (Fig.  6). These weekly models provided an easy to 
decipher visual on the distribution and larval count of 
productive Anopheles habitats. Stitching weekly mod-
els together allowed for the spatial transition of larval 
count per habitat to be observed over time in a time-
series fashion. This information provides an initial frame 
of reference for optimal locations for which to conduct 
Anopheles control over the course of the surveillance 
programme.

Habitats were extremely scarce upon the first week of 
surveillance due to the long term dry conditions. This 
was by far the least productive week, so much so, that 
almost all identified productive habitats fall outside of the 
surveillance boundaries in the Southern swampy areas of 
the community (Fig. 6). These areas were surveyed after 
all areas within the demarcated surveillance area were 
surveyed and exhausted.

Consistent rains began during the early portion of 
week 2 and Anopheles productivity increased in turn 
during the following weeks. By week 5 clear clustering 
of productive habitats became apparent in the rice pad-
dies located within the northeast region of the Parish. At 
the same time, positive habitats begin to appear in small 
numbers in the western agricultural regions of the com-
munity (Fig. 6).

As the rainy period continued into its final week (week 
10), Anopheles larvae and habitats within the northeast-
ern rice paddies continued to increase in abundance. At 
this this juncture, productive Anopheline habitats were 
also shown to have spread into the interior of the com-
munity, as well as western agricultural lands. Visually, 
week 10 elicited the most spatially diverse and highly 
productive habitat distribution within the study period 
(Fig. 6).

The rains begin to subside during weeks 1 and 11 and 
Anopheles habitats reacted similarly, slowly reducing in 
productivity and abundance. By the conclusion of the 
study, in week 16, one could observe a significant reduc-
tion in Anopheline count and productivity, and a spatial 

recession from the interior of the community to locations 
only in the agricultural outskirts (Fig. 6).

Spatial statistical analysis
The weekly habitat and resulting time-series models were 
able to visually depict the locations of Anopheles habi-
tat productivity and clustering over time. However, this 
analysis was simply visual and could not provide signifi-
cant reasoning for prioritization of similarly productive 
habitats. This reasoning was afforded through the imple-
mentation of weekly statistical analysis of all habitat loca-
tions and productivity in relation to one another in space.

Moran’s I spatial autocorrelation
The Global Moran’s I statistic is not meant to, and did 
not, provide information on specific habitat productivity 
or location within Papoli. Instead, this analysis provided 
evidence that significant clustering occurred within the 
community. The Global Moran’s I statistic was able to 
identify clustering in 11 of the 16 surveillance weeks. Of 
the 5 non-clustered weeks, 3 occurred during low count 
dry periods. The remaining 2 instances fell slightly out-
side the range of statistical significance for clustering 
(Table 1).

The first 2  weeks of sampling resulted in a pattern 
that was not significantly different than that of the ran-
dom. Z-scores of 0.012054 and 0.225019 and Moran’s 
index outputs of −  0.013066 of 0.010379 were reported 
for weeks 1 and 2, respectively. This randomness can be 
attributed to sample size, as only 6 positive Anopheles 
sites were identified during the first week, and 7 were 
identified the following week. The rains began in the 
midst of week 2, and by week 3 enough positive habitats 
were identified to indicate clustering. Though only 14 
sites were identified, these occurred in such a manner 
that clustering was evident.

The most intense clustering occurred during weeks 
4 and 5. Moran’s Index and z-scores were signifi-
cantly higher during this 2-week period than any other 
within the study sample. Week 4 displayed a z-score of 
14.461069 along with a Moran’s index of 0.629283, while 
week 5 had slightly stronger clustering outputs with a 
z-score of 16.716332 and a Moran’s index of 0.622881. 
Significant clustering continued through week 6, which 
elicited outputs of 4.818493 and 0.251934 for the z-score 
and Moran’s index.

Slight changes occurred with the output for week’s 
7 and 8, as these weeks were just outside the param-
eters of clustering, and instead were categorized as ran-
dom. Week 7 had a p-value of 0.142508 and a z-score 
of 1.466515, while week 8 was even closer to clustering 
with a p-value and z-score barely outside the clustering 
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parameters, 0.105593 and 1.618322, respectively. Both 
weeks had a Moran’s index close to 0.05.

Clustering is indicated once again during week 9 and 
continues in this fashion until week 15 when habitat 

counts significantly decreased. Week 15 generated a 
Moran’s index of 0.032872, a z-score of 1.138473, and a 
p-value of 0.254923, thus displaying randomness. Simi-
lar values indicative of randomness were generated for 

Fig. 6  Spatial habitat models at the conclusion of each key rainfall interval: weeks 1, 5, 10, 16
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the final week of surveillance with outputs of 0.017599 
for Moran’s index, 0.591973 z-score, and a p-value of 
0.553869. Habitats scarcity during these final weeks 
mimicked the early weeks of surveillance as rainfall had 
subsided significantly by the conclusion of the surveil-
lance period.

Anselin’s Local Moran’s I
In contrast to the global statistic, the Local Moran’s I sta-
tistic was able to determine and spatially depict statisti-
cal significance for all weeks of surveillance (Fig. 7). The 
global and local patterns may not always align since the 
global statistic decomposes into its various components 
within a LISA [27]. As a result, it is possible for clustering 
to occur on the local level, even if it was not established 
on the global level.

Results for the first week of sampling identify only two 
instances of highly productive habitat clustering. These 
areas occur in the southernmost part of the community 
outside of our surveillance area (Fig.  7). Habitats and 
habitat productivity are extremely limited during this 
period as rainfall has been extremely scarce in the previ-
ous weeks and months. Between weeks 2 and 5 clustering 
begins to expand and make its way to the highly produc-
tive northeastern portion of the community. From this 
juncture onward, this rice agricultural-dominant region 
is established as a key area for Anopheline production. 
By week 5 multiple highly productive habitat locations 
within close proximity to each other are identified in 
this area. At this same time, enough habitat productivity 
and diversity occur for the identification of Low Outli-
ers to be displayed in this same area. Such Low Outlier 

locations are devoid of Anopheline larvae, but are closely 
surrounded by productive Anopheline habitats (Fig. 7).

Weeks 6 through 10 represent an established rainy 
period within Papoli. The Moran’s I output for week 10 
depicts an expansion of key Anopheline habitats that 
result from such extended precipitation. The north-
east portion of the community remains an intense area 
of high clustering, however, Low Outlier instances have 
reduced in this area, while High Outliers begin to appear 
more prominently in other areas of the community. The 
west, northwest, and southern portions of the commu-
nity all display instances of High Outlier autocorrelation 
(Fig.  7). These areas represent isolated high Anopheles 
larval activity habitats in close proximity to a multitude 
of non-Anopheles productive habitats.

The habitat spatial output for the remaining weeks 
begins to reduce in number and location diversity as the 
rainy period subsides and a transition into a dry season 
begins. By week 16 the northeastern portion still elicits 
high clustering activity, but in a much reduced capac-
ity and with no instances of Low Outliers. Cluster: High 
areas are also evident in the western portion of the com-
munity along with a single high outlier area. Additional 
high outliers are located in the northwestern portions 
during this week (Fig. 7).

Discussion
It is fairly obvious after 4  months of surveillance and 
spatial mapping that the majority of Papoli’s Anopheles 
mosquitoes are originating within the northeastern por-
tion of the community, within the rice paddy-based agri-
culture. Other locations of significance similarly become 
apparent as surveillance progresses temporally.

Visually, the spatial outcomes of productive habitats are 
made starkly apparent through the initial habitat model-
ling and resulting time-series output. In a well-funded 
control operation, these spatial models alone are suffi-
cient enough information to dictate locations for treat-
ment operations. In such an operation, each productive 
habitat can be identified and treated. This approach is 
targeted, effective, and does not waste resources by blan-
ket treating an entire area, regardless of productivity. 
However, mosquito control resources are often limited. 
This is especially true in the rural areas of the world most 
impacted by the malaria burden. It is at this point that the 
Local Moran’s I statistics demonstrates its value.

The most important contribution of the Local Moran’s 
I in this context is the ability to prioritize habitats based 
on the spatial significance of their productivity. In 
instances where resources are extremely limited this sta-
tistic will identify essential areas for control by pinpoint-
ing the highest areas of production. Prioritizing control 

Table 1  Moran’s I Autocorrelation

Week Moran’s Index z-score p-value

1 − 0.013066 0.012054 0.990382

2 0.010379 0.225019 0.821964

3 0.168173 3.883808 0.000103

4 0.629283 14.461069 0.000000

5 0.622881 16.716332 0.000000

6 0.251934 4.818493 0.000001

7 0.054189 1.466515 0.142508

8 0.058488 1.618322 0.105593

9 0.144689 4.203926 0.000026

10 0.080315 3.211992 0.001318

11 0.225571 5.321790 0.000000

12 0.105720 2.560649 0.010448

13 0.078098 3.115252 0.001838

14 0.202997 7.390563 0.000000

15 0.032872 1.138473 0.254923

16 0.017599 0.591973 0.553869
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Fig. 7  Anselin’s Local Moran’s I output and corresponding 0.5 km Anopheles gambiae flight buffer at the conclusion of each key rainfall interval: 
weeks 1, 5, 10, 16
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in this fashion will maximize the impact of all available 
resources.

Cluster: High and High Outlier outputs can be assessed 
as priority locations for control purposes. Cluster: High 
outputs are of the utmost importance and serve as the 
top priority for control. Habitats with this distinction 
are indicative of multiple sites of high larval productivity 
within close proximity and are most certainly contribut-
ing heavily to the Anopheles burden of the community. 
Following only slightly behind Cluster: High outputs in 
the hierarchy of importance for control measures are 
High Outlier outputs. These areas of negative spatial 
autocorrelation pinpoint locations, in otherwise unpro-
ductive spaces, that are significantly producing larva of 
these disease vectors. The ability to identify and treat 
these locations will make a significant impact on the 
Anopheles mosquito population of a community. And 
from this reduction in population, it can be inferred that 
malaria transmission itself will follow suit.

Low Outlier and Cluster: Low outputs also provide use-
ful information regarding the community’s malaria vec-
tor makeup. Further analysis of these unproductive areas 
may provide valuable information on the characteristics 
of habitats that are resulting in the lack of production. 
This same approach can be taken with the High Outlier 
habitats in an effort to better understand their produc-
tivity in relation to the unproductive sites surrounding 
them. Integrating this knowledge into the field surveil-
lance process can only enhance the programmes efficacy.

Other statistics for local spatial association, such as 
the Getis-Ord Gi* statistic and Local Geary’s C statistic 
were possible candidates for analysis, but each has a lim-
iting factor that reduces its efficacy for use in mosquito 
surveillance and control. The Getis-Ord Gi* statistic is 
essentially an analysis of spatial association through the 
identification of hot and cold spots [39]. Though quite 
useful for identifying these areas of positive autocor-
relations, this tool does not have the ability to identify 
negative autocorrelation, which represent our significant 
outliers.

Geary’s C is quite similar to Moran’s I, but functions 
in the inverse fashion. As opposed to measuring spatial 
autocorrelation, this statistic is instead a spatial measure-
ment of dissimilarity, or negative autocorrelation. This 
approach can still identify both negative and positive 
autocorrelations, but has been consistently shown to be 
less powerful when compared to the Moran’s I on a global 
level [40, 41]. Additionally, a univariate local Geary’s C, 
such as that dictated by mosquito larval count, is more 
complex in the interpretation of a location with a signifi-
cant statistic when compared to both Local Moran’s I and 
Getis-Ord [42]. Using a Moran’s I statistic allows for a 

more powerful global statistic, as well as a simple, easy 
to interpret output when deconstructed to the local level.

The techniques outlined serve as a template for simi-
lar surveillance and control operations. The variables and 
time frames can be manipulated to best fit the resources 
of each control programme. Daily modelling and subse-
quent control activities could be implemented to com-
bat productivity on a more efficient basis. This approach 
would prevent emergence of late instar and pupal speci-
mens that were identified during the early week por-
tions of surveillance. Similarly, pupae, as opposed to total 
larvae could serve as the dependent variable for model 
development. Pupal count is positively associated with 
habitat stability and productivity and may serve as a bet-
ter indicator of habitat of significance [43].

The true driving force behind the success of the pri-
oritization of habitats is field surveillance. Spatial analy-
sis is only as effective as the data it utilizes. A field team 
must be well trained and disciplined in all aspects of 
habitat identification and sampling. Human error is to 
be expected, as all habitats may not be able to be identi-
fied and productivity may not always be exactly accurate. 
However, the better trained and more skilled each field 
team member is the more effective habitat prioritization 
in this fashion will be.
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