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Abstract 

Background: Plasmodium falciparum infection during pregnancy is a major cause of poor maternal health, adverse 
foetal outcome and infant mortality in sub‑Saharan Africa. Genetic disposition is involved in susceptibility to malaria 
in pregnancy and its manifestation. MicroRNAs (miRNAs) influence gene regulation including that of innate immune 
responses. A miRNA‑146a rs2910164 G > C single nucleotide polymorphism (SNP) has been associated with increased 
risks of several diseases, but no data as to malaria are available.

Methods: The association between miRNA‑146a rs2910164 and P. falciparum infection among 509 Ghanaian women 
attending antenatal care (ANC) and 296 delivering Ghanaian primiparae was investigated. Malaria parasites were 
diagnosed by microscopy and PCR. Leukocyte‑associated hemozoin in placental samples was recorded as well. Pro‑
portions were compared between groups by Fisher’s exact test, and logistic regression models were used to adjust for 
possible confounders.

Results: By PCR, P. falciparum infection was detected in 63% and 67% of ANC attendees and delivering primipa‑
rae, respectively. In both groups, two in three women were either heterozygous or homozygous for miRNA‑146a 
rs2910164. Among ANC attendees, homozygosity conferred increased odds of infection (adjusted odds ratio (aOR), 
2.3; 95% CI, 1.3–4.0), which was pronounced among primigravidae (aOR, 5.8; 95% CI, 1.6–26) but only marginal in 
multigravidae. Likewise, homozygosity for miRNA‑146a rs2910164 in primiparae increased the odds of past or present 
placental P. falciparum infection almost six‑fold (aOR, 5.9; 95% CI, 2.1–18).

Conclusions: These results indicate that SNP rs2910164 G > C is associated with increased odds for P. falciparum 
infection in first‑time pregnant women who are considered to lack sufficient acquired immune responses against 
pregnancy‑specific strains of P. falciparum. These findings suggest that miRNA‑146a is involved in protective malarial 
immunity, and specifically in the innate component.
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Background
Plasmodium falciparum infection during pregnancy is a 
major cause of poor maternal health, miscarriage, still-
birth, low birth weight (LBW), preterm delivery and 
infant mortality in sub-Saharan Africa. Primiparous 
woman exhibit an increased susceptibility to P. falcipa-
rum infection and consequently bear a higher risk for 
placental malaria (i.e., parasites and/or malaria pigment 

(hemozoin) discernible in placental tissue or blood), 
malarial anaemia and malaria-related morbidity and 
mortality as compared to multigravidae. The increased 
risk of malaria and complications is largely due to para-
sites exhibiting specific variants of the P. falciparum 
erythrocyte membrane protein-1, which facilitate adhe-
sion to the syncytiotrophoblast (the surface lining the 
placental intervillous space), followed by the accumula-
tion of infected erythrocytes and inflammatory cells in 
the placental intervillous space [1]. The acquisition of 
specific immune responses to syncytiotrophoblast-adher-
ing P. falciparum strains increases with every consecutive 
pregnancy, resulting in better parasite recognition and 
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reduced susceptibility and manifestation in multigravidae 
[2]. Moreover, due to placental sequestration, microscopy 
strongly underestimates actual prevalence of P. falcipa-
rum infection in pregnancy [3].

Host genetic variation plays an important role in sus-
ceptibility to and manifestation of malaria. The associa-
tion of single nucleotide polymorphisms (SNPs) in genes 
encoding toll-like receptors (TLRs) and other mem-
bers of the innate immune system with susceptibility to 
(severe) malaria in Sub-Saharan African populations [4, 
5] suggests that SNPs in other immune regulators such 
as micro-RNAs (miRNAs) influence malaria as well. 
MiRNAs are a class of small, non-coding, evolutionar-
ily conserved RNA strains of approximately 22 nucleo-
tides, and they are involved in gene regulation by their 
posttranslational action at the 3′-UTR region of mRNA. 
They control many processes, including pathways in the 
innate and adaptive immune responses [6]. MiRNA-146a 
is involved in the innate immune response by a negative 
feedback loop including two key molecules downstream 
of the TLR machinery: interleukin-1 receptor-associated 
kinase (IRAK)-1 and TNF receptor-associated factor 
(TRAF)-6 [7]. Recent studies have shown the potential of 
using miRNA-146a as a biopharmaceutical agent [8, 9]. 
The presence of the variant C-allele in SNP rs2910164 
disrupts miRNA-146 processing and leads to altered 
IRAK-1 and TRAP-6 expression [7]. SNP rs2910164 in 
the passenger strand of pre-miRNA-146a has been linked 
with both decreased and increased risk to various types 
of cancer [10], autoimmune diseases [11] and increased 
susceptibility of mycobacterial infections [12, 13].

In this cross-sectional study, the presence of miRNA-
146a SNP rs2910164 G > C was hypothesized to affect 
susceptibility to P. falciparum infection. Plasmodium 
falciparum infection was assessed and the miRNA-146a 
SNP was genotyped in 805 Ghanaian pregnant women, a 
group at high risk of malaria.

Methods
In November and December 1998 and between Janu-
ary 2000 and January 2001, respectively, 530 pregnant 
women attending antenatal care (ANC) and 893 deliv-
ering woman were recruited at the Presbyterian Mis-
sion Hospital in Agogo, Ashanti Region, Ghana, a region 
holoendemic for P. falciparum [14]. Informed consent 
was obtained from all study participants (from parents 
or guardians of those < 18  years of age). The study pro-
tocols were reviewed and approved by the Committee 
on Human Research Publication and Ethics, School of 
Medical Sciences, University for Science and Technol-
ogy, Kumasi, Ghana. Study groups, procedures and 
malariological indices have been described previously 
[15, 16]. Briefly, all women were clinically examined, 

socioeconomic data, gravidity or parity, fever (≥ 37.5 °C, 
axillary for ANC attendees and sublingual for deliver-
ing women) were documented, and samples of venous 
and intervillous (delivering women) blood were collected 
into EDTA. For the present study, 530 ANC attendees 
and 304 primiparae with live singleton delivery were 
included. The group of ANC attendees comprised of 
24.9% (127/509) primigravidae, 21.2% (108/509) secundi-
gravidae and 53.8% (274/509) multigravidae.

Plasmodium parasite density in venous and intervillous 
blood samples were microscopically counted on Giemsa-
stained think films per 500 white blood cells (WBC) and 
per 100 high-power fields (HPF), respectively. The pres-
ence of leukocyte-associated hemozoin in the intervillous 
samples was also recorded. For ANC attendees, WBCs 
were counted using a Cell Counter (HC555, Clinicon, 
Germany) and the peripheral blood parasite density was 
calculated as parasites per microliter, deducing the mul-
tiplicator from the individual WBC count. Plasma and 
blood cells were separated by centrifugation. Genomic 
DNA was extracted from blood (QIAamp Blood Kit, 
Qiagen, Germany) and plasmodial infections and spe-
cies were diagnosed by nested PCR assays [17]. “Past or 
present placental malaria” was defined as positivity of 
placental samples for P. falciparum infection by PCR, 
microscopy, and/or hemozoin detection. MiRNA-146a 
SNP rs2910164 genotyping was carried out by melting-
curve analysis applying commercially available primers 
and probes (TIB Molbiol, Germany).

Haemoglobin (Hb) was measured by a HemoCue pho-
tometer (Ångelholm, Sweden), and anaemia was defined 
as Hb level < 11  g/dL [18]. Gestational age was assessed 
within 24  h of delivery by applying the morphological 
Finnström score and a value < 37 weeks was categorized 
as preterm delivery [19]; LBW was defined as < 2500  g. 
Pyrimethamine (PYR), then used as chemoprophylaxis, 
was detected by enzyme-linked immunosorbent assay 
based methods in urine (ANC attendees) or plasma (pri-
miparae) [15]. Proportions of P. falciparum infection 
among women with and without the miRNA-146a SNP 
were compared by a two-tailed Fisher’s exact test, and 
odds ratio (OR) and 95% confidence intervals (95% CIs) 
were computed. Additionally, miRNA-146a genotypes 
were compared with respect to the outcomes of malaria, 
i.e., fever, anaemia, LBW and preterm delivery. Trends, 
e.g., increasing infection prevalence in women with wild 
type alleles over heterozygosity to homozygosity for the 
miRNA-146a SNP, were tested by the Cochran Armit-
age test. Logistic regression models were used to adjust 
ORs of infection for known predictors, i.e., age (years), 
presence of PYR, and rainy or dry season (only in deliver-
ing women). All analysis was done in R version 3.4.3. A 
P-value < 0.05 was considered statistically significant.
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Results
Typing of the miRNA-146a SNP was successful in 96.0% 
(509/530) of ANC attendees and 97.4% (296/304) of 
delivering women. The miRNA-146a polymorphism was 
present in 67.7% (heterozygous, 48.1%; homozygous, 
19.6%; allele frequency, 0.44) of ANC attendees and 
69.2% (48.3% and 20.9%; allele frequency, 0.45) of deliv-
ering women (Tables 1, 2, 3). In both groups, allele dis-
tribution was in Hardy–Weinberg equilibrium  (c2 = 0.24; 
P = 0.62,  c2 = 0.18; P = 0.67).  

In peripheral blood samples of ANC attendees (mean 
age, 26.6 ± 6.3), malaria parasites were detected by 
microscopy in 32.8% (167/509), and 63.3% (322/509) 
were found to harbour P. falciparum by PCR. Infec-
tion prevalence (PCR) was higher in primigravidae 
(74.0%, 94/127) than in multigravidae (59.7%, 228/382; 
P = 0.004). The geometric mean parasite density (GMPD) 
of microscopically positive samples was 304/μL (95% CI, 
259–356) for all ANC attendees, 165/μL (95% CI, 139–
195) for primigravidae and 719/μL (95% CI, 536–963) 

Table 1 Prevalence of P. falciparum infection (PCR) according to miRNA-146 genotype in pregnant women attending ANC

Allele frequencies of SNP rs2910164 G > C were 0.47 (303/644) in infected and 0.38 (142/374) in non-infected women (P = 0.005)

OR odds ratio, aOR adjusted odds ratio
a Fisher’s exact test for independence, compared to reference (wild type)
b Logistic regression model, including co-predictors age, PYR in urine or plasma and number of antenatal care visits. Effect of genotype on outcome variable was 
compared to reference (wild type)

SNP rs2910164 Positive cases Univariate  analysisa Multivariate  analysisb

% (Fraction) OR (95% CI) P aOR (95% CI) P

All 63.3 (322/509)

 Wild type 55.5 (91/164) 1 1

 Heterozygote 64.9 (159/245) 1.5 (1.0–2.3) 0.063 1.4 (0.9–2.1) 0.12

 Homozygote 72.0 (72/100) 2.1 (1.2–3.7) 0.0089 2.3 (1.3–4.0) 0.0053

 Het. or Hom. 67.0 (231/345) 1.6 (1.1–2.4) 0.014 1.6 (1.1–2.4) 0.023

Primigravidae 74.0 (94/127)

 Wild type 60.0 (21/35) 1

 Heterozygote 75.4 (46/61) 2.0 (0.8–5.5) 0.17 1.8 (0.7–4.7) 0.20

 Homozygote 87.1 (27/31) 4.4 (1.2–21.0) 0.025 5.8 (1.6–26.0) 0.012

 Het. or Hom. 79.3 (73/92) 2.5 (1.0–6.4) 0.040 2.5 (1.0–6.2) 0.040

Multigravidae 59.7 (288/382)

 Wild type 54.3 (70/129) 1 1

 Heterozygote 61.4 (113/184) 1.3 (0.8–2.2) 0.24 1.3 (0.8–2.1) 0.29

 Homozygote 65.2 (45/69) 1.6 (0.8–3.0) 0.17 1.8 (0.9–3.4) 0.082

 Het. or Hom. 62.5 (158/253) 1.4 (0.9–2.2) 0.12 1.4 (0.9–2.2) 0.14

Table 2 Plasmodium falciparum (PCR) infection according to  miRNA-146 genotype in  placental blood of  delivering 
primiparae

Allele frequencies of SNP rs2910164 G > C were 0.49 (187/384) in infected (PCR) and 0.38 (80/208) in non-infected women (P = 0.02)

OR odds ratio, aOR adjusted odds ratio
a Fisher’s exact test for independence, compared to reference (wild type)
b Logistic regression model, including co-predictors age, season, PYR in urine or plasma and number of antenatal care visits. Effect of genotype on outcome variable 
was compared to reference (wild type)

SNP rs2910164 Positive cases Univariate  analysisa Multivariate  analysisb

% (Fraction) OR (95% CI) P aOR (95% CI) P

Primiparae 64.9 (192/296)

 Wild type 60.4 (55/91) 1 1

 Heterozygote 60.8 (87/143) 1.0 (0.6–1.8) 1.0 1.4 (0.7–2.9) 0.38

 Homozygote 80.6 (50/62) 2.7 (1.2–6.4) 0.013 5.9 (2.1–18.0) 0.0011

 Het. or Hom. 66.8 (137/205) 1.3 (0.8–2.3) 0.29 2.1 (1.0–4.2) 0.038
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for multigravidae. 14.7% (75/509) of the ANC attendees 
were febrile, and 53.6% (273/509) had anaemia (mean Hb, 
10.7 ± 1.4 g/dL).

Among delivering primiparae, malaria parasites were 
detected microscopically in 26.4% (78/296) and 45.6% 
(135/296) of peripheral and placental blood films, respec-
tively. By P. falciparum PCR, these figures were 59.1% 
(175/296) and 64.9% (192/296). Past or present placental 
malaria, i.e. considering also deposited hemozoin, was 
identified in 67.9% (201/296). The GMPD of microscopi-
cally positive peripheral and placental blood samples was 
709/μL (95% CI, 563–894) and 1.15/HPF (95% CI, 0.86–
1.54), respectively. 4.1% (12/293) of the delivering women 
were febrile and 38.8% (115/296) had anaemia (mean Hb, 
11.2 ± 4.1 g/dL). 25.7% (76/296) of the neonates had LBW 
and 26.4% (78/296) were preterm.

Carriage of the miRNA-146a SNP was associated 
with increased odds of P. falciparum infection in both 
ANC attendees (Table  1) and primiparae (Tables  2, 
3). This finding was due to a strong respective effect 
among homozygous individuals, i.e., more than five-fold 
increased odds of infection in primigravidae and pri-
miparae, and a lesser, non-significant one among het-
erozygous women. Consequently, in primigravidae and 
primiparae, significant trends were seen for increas-
ing P. falciparum prevalence from wild type individuals 
over heterozygous to homozygous women (ANC attend-
ees, Z-statistic = − 2.8, P = 0.005; primigravidae, Z-sta-
tistic = − 2.5, P = 0.01; primiparae, Z-statistic = − 2.1, 
P = 0.04). Of note, increased P. falciparum prevalence 
was also observed among multigravid miRNA-146a 
SNP carriers, however, only weakly and statistically not 
significant.

In terms of clinical manifestation of infection, the 
miRNA-146a SNP did not show any significant associa-
tion. In ANC attendees, fever occurred in 17.1% (28/164) 
of wildtype individuals and 13.6% (47/345; P = 0.3) of 
SNP carriers, and anaemia was present in 49.4% (81/164) 

and 55.7% (192/345; P = 0.2), respectively. Likewise, 
among primiparae, proportions did not differ between 
wildtype women and SNP carriers for fever (5.6%, 5/89 
vs. 3.4%, 7/204; P = 0.5), anaemia (40.7%, 37/91 vs. 38.0, 
78/205; P = 0.7; LBW (25.3%, 23/91 vs. 25.8%, 53/205; 
P = 1.0), and preterm delivery (26.4%, 24/91 vs. 26.3%, 
54/205; P = 1.0). Stratification by infection status did not 
change this observation.

Discussion
A common miRNA-146a SNP is associated with 
increased odds of P. falciparum infection in first-time 
pregnant women. This suggests this regulator of inflam-
mation and innate immune responses to be involved in 
susceptibility to malaria. Genetic host variation contrib-
utes to large inter-individual variation in susceptibility 
to and manifestation of malaria, and the high frequency 
of several alleles in malaria-endemic regions are consid-
ered to reflect evolutionary selection due to this disease. 
Examples of malaria-protective traits include haemoglo-
bin variants, enzyme disorders, and erythrocyte mem-
brane polymorphisms [20]; whereas polymorphisms in 
genes encoding innate immune factors may increase or 
decrease susceptibility and manifestation [21].

The present study for the first time shows an impact of 
a miRNA genetic variation on the risk of human malaria, 
even though functional investigations have previously 
pointed to a role of miRNAs in that disease [22–24]. As 
a limitation, the present cross-sectional studies were not 
a priori designed to show associations with genetic traits. 
As a matter of fact, association does not necessarily mean 
causality. The classification of past or present placental 
malaria, i.e., combining microscopy, hemozoin detec-
tion, and PCR results, was applied to yield the highest 
diagnostic sensitivity including recently resolved infec-
tion (hemozoin) but does not match with the otherwise 
known classification based on placental histopathology. 

Table 3 Past or present placental malaria (PCR, microscopy, haemozoin) according to miRNA-146 genotype in delivering 
primiparae

OR odds ratio, aOR adjusted odds ratio
a Fisher’s exact test for independence, compared to reference (wild type)
b Logistic regression model, including co-predictors age, season, PYR in urine or plasma and number of antenatal care visits. Effect of genotype on outcome variable 
was compared to reference (wild type)

SNP rs2910164 Positive cases Univariate  analysisa Multivariate  analysisb

% (Fraction) OR (95% CI) P aOR (95% CI) P

Primiparae 67.9 (201/296)

 Wild type 61.5 (56/91) 1 1

 Heterozygote 66.4 (95/143) 1.2 (0.7–2.2) 0.48 1.6 (0.8–3.5) 0.21

 Homozygote 80.6 (50/62) 2.6 (1.2–6.1) 0.013 5.9 (2.1–19.0) 0.0013

 Het. or Hom. 72.2 (145/205) 1.5 (0.9–2.6) 0.14 2.3 (1.1–4.7) 0.020



Page 5 of 7van Loon et al. Malar J            (2019) 18:7 

Lastly, due to the absence or late development of acquired 
immune mechanisms targeting the specific malaria para-
sites adhering to the intervillous syncytiotrophoblast 
[2], primigravidae and primiparae are considered rela-
tively immune-naive. On the one hand, this facilitates 
the identification of the influence of genetic disposition, 
particularly with respect to innate immune responses. 
Therefore, and after having observed only weak and non-
significant associations among multigravid ANC attend-
ees, we abstained from genotyping multiparae. On the 
other hand, these findings need to be confirmed for other 
diseases entities, e.g. uncomplicated malaria or severe 
paediatric malaria.

Both TLR-2 and TLR-4 recognize P. falciparum, which 
initiates innate immune responses [25]. During innate 
recognition, miRNA-146a is up-regulated by NF-kB 
through a MyD88-dependent pathway. Subsequently, 
IRAK-1 and TRAF-6 are downregulated by miRNA-146a 
through posttranslational repression. MiRNA-146a thus 
influences TLR functionality via a negative feedback loop 
on the downstream mediators IRAK-1 and TRAF-6 [6, 
7].

Consequently, altered TLR and cytokine signalling 
might influence the innate immune response to P. fal-
ciparum in individuals with variant miRNA-146a. The 
miRNA-146a rs2910164 G > C SNP, located in the pas-
senger strand of the hairpin structured miRNA (miRNA-
146a*), affects the processing of pre-miRNA-146a into 
mature miRNA-146a. Homozygosity for this polymor-
phism is associated with reduced expression of the down-
stream mediators, and heterozygosity with the expression 
of additional miRNA-146a: one from the leading strand 
and two from the passenger strand (miRNA-146a*G and 
miRNA-146a*C), which all three give rise to a mature 
miRNA [26, 27]. The additional mature miRNA-146a*G 
and miRNA-146a*C are predicted to have a distinct set 
of target genes, different from the mature miRNA-146a 
[26]. Whereas no results with respect to malaria have 
been published, previous studies reported associations of 
miRNA-146a rs2910164 G > C with increased suscepti-
bility to pulmonary tuberculosis [12] and leprosy [13], in 
addition to various effects in neoplastic conditions [10].

Expanding on Haldane’s malaria hypothesis, a poly-
morphism increasing malaria risk should be expected 
to be rare in endemic regions. However, in sub-Saharan 
Africa, miRNA-146a rs2910164 occurs in 67% (GC, 
44.2%; CC, 23.0%) [28], similar to the present results, 
and thus more frequently than in Caucasians (41%; GC, 
34.5%; CC, 6.2%) [28]. Similar discrepancies have been 
observed for, e.g., TLR-4 variants or mannose-binding 
lectin deficiency [29, 30].

Potential explanations include alleles or geno-
types, which may have become deleterious after the 

out-of-Africa-migration of humans, possibly because 
of increased susceptibility to severe bacterial infec-
tions and sepsis [31]. Alternatively, counter-selecting 
evolutionary forces leading to high miRNA-146a SNP 
frequencies in sub-Saharan Africa (which conse-
quently would have a larger impact than malaria) are 
hard to imagine. With respect to tuberculosis, both 
increased and decreased susceptibility to pulmonary 
tuberculosis in case of miRNA-146a rs2910164 have 
been reported from China [12, 32]. Moreover, the 
present study showed associations with infection but 
not with manifestation. For a common TLR-4 SNP 
in Ghana, increased susceptibility to severe malaria 
but a trend towards reduced mortality was found in a 
previous study [30]. Considering the complex roles of 
miRNA-146a in immunomodulation and inflammatory 
responses [33], more refined and prospective studies 
involving patients of differing ethnicities are required 
to disentangle the potential influences of miRNA-146a 
rs2910164 G > C on the various entities of malaria, i.e., 
from (asymptomatic) infection to (fatal) disease.

Conclusion
Homozygosity for the miRNA-146a rs2910164 SNP pre-
disposes to P. falciparum infection in first-time preg-
nant Ghanaian women. This suggests that miRNA-146a 
plays an important role in the respective innate immune 
response but further studies are required to detail the 
actual pathophysiology involved. Understanding protec-
tive immunity towards malaria in pregnancy is essen-
tial to improve maternal health and for decreasing the 
huge share of malaria in infant mortality in sub-Saha-
ran Africa. MiRNA-based biopharmaceuticals are an 
active field of research. Enhanced antimicrobial immune 
responses have been observed after silencing or adminis-
tration of miRNAs [8, 9, 34, 35]. The findings in the pre-
sent study suggest that miRNA-146a is involved in innate 
immunity against malaria highlighting its potency as a 
biopharmaceutical target.
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