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Abstract 

The Demographic and Health Surveys (DHS) Program has supported three household Malaria Indicator Surveys (MIS) 
in Madagascar. The results of 13 key malaria indicators from these surveys have been mapped as continuous sur-
faces using model-based geostatistical methods. The opportunities and limitations of these mapped outputs were 
discussed during a workshop in Antananarivo, Madagascar in July 2018, attended by 15 representatives from various 
implementation, policy and research stakeholder institutions in Madagascar. Participants evaluated the findings from 
the maps, using these to develop figures and narratives to support their work in the control of malaria in Madagascar.
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Background
The Demographic and Health Surveys (DHS) Program 
in Rockville, Maryland USA, funded by USAID, has 
provided technical assistance to more than 300 house-
hold surveys in over 90 countries, advancing global 
knowledge of health and population trends in develop-
ing countries [1]. The most recent nationally-represent-
ative surveys conducted in Madagascar are the 2011, 
2013 and 2016 Malaria Indicator Surveys (MIS) [2–4]. 
Following the 2016 MIS, there was a request to further 
examine the outputs from these surveys and aid in the 
capacity strengthening of the participants to use the data 

for programmatic decision-making. Given the diverse 
epidemiology of malaria in Madagascar and issues of 
accessibility across the country [5–7], it was proposed 
to collaborate with the Malaria Atlas Project (MAP) to 
create a series of modelled surface maps showcasing the 
results of 13 key malaria indicators from both the 2013 
and 2016 MIS surveys [8]. The MAP research group is a 
World Health Organization (WHO) Collaborating Cen-
tre in Geospatial Disease Modelling that uses an evi-
dence-based cartographic approach to model continuous 
spatial maps and quantify metrics including population 
estimates of malaria infection prevalence and clinical 
burden [9–11]. At the time of writing, modelled indicator 
maps for 32 different country surveys globally are freely 
available from the DHS Spatial Data Repository website.

The spatially modelled surfaces of the DHS malario-
metric data are produced using a combination of publicly 
available DHS data and global environmental datasets, 
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and use standardized geostatistical methods to promote 
comparability across countries and facilitate policy and 
programme decision-making. Although the creation of 
these surfaces is not new, their incorporation as part of 
formal decision-making processes is not yet routine.

To help contribute to informed decision-making about 
future malaria policies and intervention programmes in 
Madagascar, The DHS Program and MAP collaborated 
to create a workshop curriculum exploring the spatially 
modelled surfaces of the 2013 and 2016 MIS surveys. The 
workshop goals were to convey the added value of spatial 
modelling in deriving more robust indicator metrics, and 
to help support the integration of maps into monitoring 
and evaluation of malaria indicators across Madagascar.

Why map the MIS indicators?
Improved understanding of geographic variation and 
inequity in health status, wealth, and access to resources 
within countries is increasingly recognized as central to 
meeting malaria control targets [12]. Malaria indicators 
assessed at national levels may conceal important ineq-
uities in smaller administrative/geographic areas, often 
with the rural poor the least well represented. As malaria 
prevalence drops and international funding for malaria 
comes under pressure, the ability to target limited 
resources to underserved groups becomes more crucial 
[13, 14]. At the same time, gaps exist in progress towards 
achieving targets for key malaria indicators [15]. Moni-
toring inequalities for targeting control interventions and 
measuring progress towards health and development 
goals requires a reliable, detailed, and disaggregated evi-
dence base.

Different approaches currently allow for estimating 
malaria indicator metrics for small geographic units. 
These include (i) increasing the sample sizes of national 
household surveys to ensure representative sampling 
of lower administrative areas, (ii) using data from rou-
tine health information systems from health facilities 
or communities, and (iii) small area estimation includ-
ing spatially interpolated maps that use statistical mod-
elling  techniques to predict values for small geographic 
units. Increasing sample sizes incurs additional costs 
and time, which are often not feasible in an increasingly 
resource-constrained environment. Next, the quality and 
national representativeness of routine health information 
system data is not always reliable, nor are the data always 
easily accessible. It is, therefore, the third approach with 
spatial interpolation that has attracted increased interest 
in recent years [12, 16, 17].

Malaria is highly diverse across Madagascar, requir-
ing different combinations of interventions across the 
country’s epidemiological ecozones [5, 18]. These areas 
are stratified based on the duration and intensity of 

transmission, and the preceding years’ diagnostic posi-
tivity rates. The Madagascar MIS sampling design was 
powered to generate summary indicator metrics at these 
epidemiological and programmatic scales (n = 5), as well 
as at the national level. Programme implementation, 
however, is managed at the health district level (n = 114), 
and the raw MIS results cannot determine indicator pro-
gress at this scale. Geostatistical approaches are able to 
use the available cluster-level MIS results coupled with 
environmental covariates to predict indicator values for 
all areas of the country. This greatly empowered dataset 
allows indicators to be aggregated to programmatically 
useful scales [8].

Workshop structure and objectives
The purpose of the Madagascar Modelled Surfaces 
Workshop was to assist the National Malaria Control 
Programme (NMCP, or “Direction de Lutte contre le 
Paludisme”) and other malaria data partners in the inter-
pretation and application of modelled maps that show-
case the geographic variation of malaria indicators across 
Madagascar. The workshop’s specific objectives included 
training on (i) understanding and correctly interpreting 
the core household MIS indicators, (ii) understanding the 
creation of the modelled surfaces, their limitations and 
inherent assumptions, (iii) accurately interpreting the 
modelled surfaces, and (iv) identifying narratives in the 
maps to answer key programmatic questions.

In advance of the workshop, key members of the 
NMCP, the Ministry of Health (MoH), the Direction 
des Etudes et de la Planification, the Direction du Sys-
tème d’Information, and the research organization Insti-
tut Pasteur de Madagascar were contacted to nominate 
members of their staff to attend the workshop. Partici-
pants were required to have some experience with geo-
graphic information system (GIS) software and needed to 
analyse malaria data as part of their job. In total, 15 peo-
ple participated in the workshop, which took place over 
4 days in July 2018 in Antananarivo, Madagascar.

Activities throughout the workshop were designed to 
encompass a range of adult learning techniques. Interac-
tive PowerPoints, blended learning, guided demonstra-
tions, hands-on exercises and small group activities were 
all used. The workshop culminated in final presentations 
from each indicator topic team (broadly categorized as: 
vector, case management, and morbidity) including a 
programmatic question they wanted to address, the audi-
ence for their presentation, an introduction to the prob-
lem in Madagascar, the indicators selected for analysis, 
appropriate maps, and interpretation/recommendations 
emerging from the modelled surfaces.
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Mapping methodology
The field of spatial statistics is continually developing 
ever more complex and refined models [12, 16]. Highly 
bespoke approaches, however, limit the comparability 
of model outputs, both through time and between loca-
tions. Instead, the methodological approach for mapping 
The DHS Program indicators was deliberately designed 
to generate standardized outputs informed by globally 
available input datasets, thereby allowing full compa-
rability across countries and survey years [8]. From the 
Madagascar MIS results, a subset of 13 malaria indica-
tors was identified as suitable for spatial analysis [19], 
and were modelled in advance of the workshop (Table 1). 
These surfaces (including both mean predictions and the 
associated 95% credible interval uncertainty maps) are all 
freely available from The DHS Spatial Repository web-
site, together with detailed reports about the mapping 
methods employed [17, 19–22]: http://spati​aldat​a.dhspr​
ogram​.com/model​ed-surfa​ces/. Globally, modelled maps 
of selected indicators from 32 MIS/DHS surveys from 31 
countries are currently available.

As previously described, a model-based geostatistics 
(MBG) approach was found most appropriate for gen-
erating standardized spatial outputs from the raw MIS 
cluster results [8, 20]. The foundation of MBG is spa-
tial interpolation, where estimates for each grid cell are 
driven by nearby survey observations coupled with the 
geographic patterns of biologically pertinent spatially-
continuous covariate surfaces (Table  2). The modelling 

process characterizes the patterns observed in the sur-
vey data into four components: sampling variance is rep-
resented by a binomial sampling model; non-sampling 
error is explained through fixed effects (by a multivariate 
regression relationship defined by linking the indicator 
variables to the covariates) and random effects (Gauss-
ian Process parameterized by a Matern spatial covari-
ance function); and finally, a simple Gaussian noise term 
represents residual variation. All model parameters are 
jointly estimated in a Bayesian framework [8, 20] which 
generates pixel-level predictions for each indicator across 
the country, informed by the patterns in the relevant 
environmental covariates selected by the model for their 
spatial correlation with the raw indicator data.

These overarching methodological concepts were 
introduced during the workshop, together with a dis-
cussion of exploratory spatial data descriptive statistics 
(including variograms and histograms plotting the struc-
ture of the indicator values) and model validation statis-
tics. The workshop objective was to provide conceptual 
insight into the mapping methods and allow appropri-
ate critical evaluation of the modelled outputs. As such, 
strong emphasis was also placed on the output limita-
tions (e.g. weakness of modelling urban areas and dif-
ficulties of temporality in the indicator measures [17]) 
and the importance of assessing relative confidence in 
the predictions between areas. Examples of GIS-based 
manipulations of the modelled surfaces were then pre-
sented and trialed by the participants.

Table 1  MIS indicators from the 2013 and 2016 Madagascar surveys selected for spatial modelling

The modelled continuous surfaces together with 95% credible interval maps are available for both survey years as .png images and .tif raster files from the DHS 
Program Spatial Data Repository [21, 22]

Indicator Definition

MLFEVTCACT​ Among children under age five with fever in the 2 weeks preceding the survey, the percentage who took a drug combination with 
artemisinin

MLFEVTCADV Among children under age five with fever in the 2 weeks preceding the survey, the percentage for whom advice or treatment was 
sought

MLFEVTCBLD Among children under age five with fever in the 2 weeks preceding the survey, the percentage who had blood taken from a finger or 
heel for testing

MLHEMOCHL8 Percentage of children aged 6–59 months with haemoglobin lower than 8.0 g/dl

MLIPTPW2SA Percentage of women aged 15–49 with a live birth in the 2 years preceding the survey who during the pregnancy took two or more 
doses of SP/Fansidar, with at least one dose during an antenatal care visit [intermittent preventive treatment for pregnant women 
(IPTp2+)]

MLIRSMHIRS Percentage of households with indoor residual spraying (IRS) in the 12 months preceding the survey

MLITNAPACC​ Percentage of the de facto household population who could sleep under an ITN if each ITN in the household were used by up to two 
people

MLNETCCITN Percentage of children under age five who slept under an ITN the night before the survey

MLNETPHITN Percentage of households with at least one ITN

MLNETUPITN Percentage of the de facto household population who slept under an insecticide treated net the night before the survey

MLNETWWITN Percentage of pregnant women who slept under an ITN the night before the survey

MLPMALCMSY Percentage of children aged 6–59 months tested using microscopy who are positive for malaria

MLPMALCRDT Percentage of children aged 6–59 months tested using a rapid diagnostic test (RDT) who are positive for malaria

http://spatialdata.dhsprogram.com/modeled-surfaces/
http://spatialdata.dhsprogram.com/modeled-surfaces/
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Putting maps into practice: exploratory 
case studies of programmatic applications 
of the modelled MIS indicator maps
The final two days of the workshop were largely dedicated 
to allowing the participants to explore the modelled 
maps to derive programmatically-pertinent recommen-
dations that could plausibly be applied in the context of 
their current positions. Outcomes of these group discus-
sions are summarized here, illustrating different ways in 
which The DHS Program modelled surfaces may be easily 
and rapidly applied by NMCPs and fellow stakeholders. 
While more formal analyses were encouraged, these were 
outside the timeframe of the workshop.

Example 1  Strengthening access to intermittent pre-
ventative treatment in pregnancy.

Intermittent preventative treatment in pregnancy 
(IPTp) with sulfadoxine–pyrimethamine (SP) was 
brought into policy in Madagascar in 2004, and a pro-
gressive scale-up has led to this now being implemented 
in all control-phase districts. The WHO recommenda-
tion to increase the minimum number of doses from 
two (IPTp2+) to three (IPTp3+) was initiated in Mada-
gascar in 2015. Given this, the IPTp3+ coverage indica-
tor was not appropriate to examine given the temporality 
of its definition (having as denominator the “total num-
ber of women surveyed who delivered a live baby in 
the 2  years preceding the survey” [23], i.e. extending to 
before the IPTp3+ policy was locally implemented). 

Instead, IPTp2+ was evaluated. District-level aggregation 
of the modelled surface indicated that coverage in 2016 
remained below 20% in 40% of target districts (Fig.  1a). 
This was consistent with relatively weak coverage of ante-
natal consultations with an estimated one third of preg-
nant women never attending an antenatal consultation 
(source: MoH, 2017), and health facilities regularly noti-
fying SP stock-outs (43% did during 2016; source: NMCP, 
2017).

The modelled surfaces made apparent a degree of spa-
tial heterogeneity in the coverage of IPTp2+ (Fig.  1a), 
with high predictive uncertainty (> 20%) also widespread 
(Fig.  1b) likely associated with the relatively small sam-
ple sizes inherent to this indicator (N = 2786, relative to 
10,816 respondents for other indicators in 2016).

Recommendations were made for increased sampling 
effort in high uncertainty coastal districts during future 
MIS, as well as strengthening the reporting of IPTp dur-
ing antenatal consultations at health facilities. Reinforced 
collaboration between the NMCP and the National Fam-
ily Health programme was also recommended, alongside 
renewed awareness campaigns targeted to areas of weak-
est coverage (Fig. 1a).

Example 2  Spatio-temporal trends in access to insecti-
cide-treated nets and implications for future mass distri-
bution campaigns.

Madagascar aims for universal coverage of insecticide-
treated nets (ITN) across all control-phase districts. This 

Table 2  Mapping covariates used in the modelling [17]

Short name Description Original data source Temporal Date

Population

 Access Travel time to cities with greater than 50,000 population via all 
transport methods

http://forob​s.jrc.ec.europ​a.eu Static 2000

 NTL VIIRS nighttime lights http://ngdc.noaa.gov/eog/ Static 2012

 GPW Gridded population of the world (GPW) population density http://sedac​.ciesi​n.colum​bia.edu/ Static 2010

Physical earth

 Elevation Shuttle radar topography mission (SRTM) near—global digital 
elevation models (DEMs)

http://webma​p.ornl.gov/ Static 2000

Environment

 Aridity Mean annual aridity http://csi.cgiar​.org/Aridi​ty/ Synoptic 1950–2000

 PRECIP Average monthly rainfall http://www.world​clim.org/ Synoptic 1950–2000

 EVI Enhanced vegetation index http://modis​.gsfc.nasa.gov/ Multitemporal 2001–2014

 LST.day Land surface temperature in the daytime http://modis​.gsfc.nasa.gov/ Multitemporal 2001–2014

 LST.delta Land surface temperature daily fluctuation range http://modis​.gsfc.nasa.gov/ Multitemporal 2001–2014

 LST.night Land surface temperature in the nighttime http://modis​.gsfc.nasa.gov/ Multitemporal 2001–2014

 PET Mean annual potential evapotranspiration http://csi.cgiar​.org/Aridi​ty/ Synoptic 1950–2000

 TCB Tasseled—cap brightness http://modis​.gsfc.nasa.gov/ Multitemporal 2001–2014

 TCW​ Tasseled—cap wetness http://modis​.gsfc.nasa.gov/ Multitemporal 2001–2014

http://forobs.jrc.ec.europa.eu
http://ngdc.noaa.gov/eog/
http://sedac.ciesin.columbia.edu/
http://webmap.ornl.gov/
http://csi.cgiar.org/Aridity/
http://www.worldclim.org/
http://modis.gsfc.nasa.gov/
http://modis.gsfc.nasa.gov/
http://modis.gsfc.nasa.gov/
http://modis.gsfc.nasa.gov/
http://csi.cgiar.org/Aridity/
http://modis.gsfc.nasa.gov/
http://modis.gsfc.nasa.gov/
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is achieved primarily through mass distribution cam-
paigns, the last having been in 2012–2013, 2015 and 
2018 [18, 24]. The current objective is that at least 90% of 
households in the target districts should have at least one 
ITN per two residents. Several channels of continuous 
distribution supplement the mass campaigns, including 
antenatal consultations, community-health worker distri-
butions, and subsidized sales in peri-urban communities. 
The MIS in 2013 and 2016 therefore assessed the overall 
impact of these activities, allowing changes in coverage 
during that time period to be quantified.

Interpretation of the survey outcomes must account for 
timings relative to mass distribution campaigns. The 2013 
MIS took place part way through a distribution cam-
paign, with 31 districts covered in the 6  months before 
the MIS, and 61 districts after the MIS. In contrast, all 
target districts were included in the mass ITN distribu-
tion during the 6 months preceding the 2016 MIS.

Several ITN coverage indicators based on different 
denominators (households vs. residents) were included in 
the spatial analyses, each representing different aspects 
of the programme’s impact (Table 1). Here, participants 

selected three of these indicators to assess ITN cover-
age across Madagascar in 2016 (Fig.  2a–c) and relative 
changes in these indicator levels since 2013 (Fig.  2d–f), 
with the aim of exploring what lessons could be derived 
from the modelled surfaces for future distribution cam-
paigns. These included the spatial reach of the distribu-
tion campaigns using the indicator of presence of any 
ITNs in the household (Fig. 2a, d), the adequacy of cov-
erage when accounting for the number of household 
residents (the target is for one net per two individuals; 
Fig. 2b, e), and finally usage of available nets (Fig. 2c, f ). 
The mapped surfaces were aggregated to district units to 
reflect the level at which decision-making and logistics 
are coordinated during ITN campaigns.

The modelled surfaces revealed that while the reach 
of the ITNs was quite high, with 52 of 92 target districts 
predicted to have > 90% of households with at least one 
bed net, this coverage dropped dramatically when con-
sidering the adequacy of ITN availability according to 
the objective of one ITN per two people by household. 
No district met the national objective of 90% in 2016, 
though 39 (42%) had levels > 75%. Nevertheless, reported 

Fig. 1  Coverage in 2016 of women with a live birth in the 2 years preceding the survey who received two or more prophylactic doses of SP/
Fansidar (IPTp2+). The spatially continuous map is summarized to the district level (mean values of indicator ML_IPTP_W_2SA) in a, with pixel-level 
uncertainty shown in b 
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indicators of usage by household residents indicated that 
ITNs were being used at rates suggesting that even where 
ITN numbers were insufficient within households, resi-
dents were sleeping under the nets which were available. 

Coverage of these ITN indicators was generally better 
in coastal areas where transmission was higher [6], par-
ticularly along the northern districts of the west and east 
coasts. Coverage dropped into the highland areas where 

Fig. 2  Characteristics of ITN coverage and usage at the district level for 2016 (a–c) and relative change from 2013 (d–f). a, d Correspond to the 
percentage of households with at least one ITN (indicator ML_NETP_H_ITN). b, e Quantify the proportion of the population with access to an ITN 
within their household when shared by at most two people (ML_ITNA_P_ACC). c, f Map the percentage of household residents reported to have 
slept under an ITN the night preceding the interview (ML_NETU_P_ITN). The spatially continuous maps are aggregated to the district level and 
presented as mean values, with relative uncertainty based on crude means of the pixel-level uncertainty metrics



Page 7 of 10Howes et al. Malar J           (2019) 18:90 

transmission was less intense. The maps suggested gen-
erally sustained or positive changes in coverage between 
2013 and 2016, with greatest improvements in southern 
districts even though coverage remained among the low-
est nationally in these same districts. In the east coast 
districts, where transmission is highest and ITN cov-
erage still falls short of national targets, there was little 
reported change from 2013. However, there were exten-
sive areas of high uncertainty in the model predictions, 
notably in the maps of ITN accessibility and usage where 
the map estimates need to be interpreted with caution 
(Fig. 2b, c, e, f ). Spatial heterogeneity in the cluster-level 
results may explain uncertainty in these areas.

Recommendations for future campaigns that emerged 
from these modelled maps were to focus on increasing 
the numbers of nets distributed, with reinforced efforts 
particularly in east coast areas where coverage was low 
despite relatively high transmission. Results on usage 
were encouraging but still inadequate, indicating that 
further behaviour communication interventions would 
be important alongside the distributions, as per the 
NMCP’s guidelines.

Example 3  Treatment-seeking for febrile infants.

Seeking treatment during a febrile episode is the criti-
cal first step towards effective case management and 

reductions in malaria morbidity, as well as towards ensur-
ing reliable reporting of malaria episodes for surveillance. 
Low treatment-seeking rates across much of Africa are a 
main reason for the WHO using data sources independ-
ent of routine surveillance in their estimations of clinical 
case burdens [15, 25]. The MIS indicator quantifying this 
is rates of treatment seeking by mothers for any children 
younger than 5 years having suffered a febrile episode in 
the 2 weeks preceding the survey.

The national-level MIS results from Madagascar sug-
gest an increased, but nevertheless low, treatment-
seeking rate from any type of health provider for febrile 
children from 38% in 2013 to 46% in 2016. Only 29% 
and 36%, respectively, sought treatment from the public 
health facilities likely to provide appropriate free case 
management and to report monthly case estimates to 
the centralized MoH database. These low rates of con-
tact with recommended healthcare providers are a target 
of Madagascar’s current National Strategic Plan through 
behaviour-change communication activities. Better 
insight into this indicator’s tendencies would help focus 
future efforts based on current gaps and local infection 
risk levels.

The MIS treatment-seeking indicator was therefore 
evaluated to see what spatio-temporal trends could be 
derived beyond the national summary figures. Descrip-
tive statistics are presented for 2013 (Fig. 3a–c) and 2016 

Fig. 3  Descriptive statistics of the spatial characteristics of treatment seeking rates by mothers for febrile infants under 5 years old in the 2 weeks 
preceding the interview (indicator ML_FEVT_C_ADV). a–c Represent the 2013 MIS data, and d–f are for 2016. The maps in a, d illustrate the 
cluster-level raw treatment-seeking rates, while b, e are variograms (a tight spatial structure would show an increasing lag—or dissimilarity between 
points—with increasing spatial distance). c, f Plot the model validation of observed cluster-level raw values (y-axis) against predicted values in those 
locations. In the model validation, a random 25% of the dataset is withheld and the model run with the remaining 75%; this process is repeated four 
times without replacement, thus giving validation-predictions for all cluster locations (c, f). Tight scatterplot correlation suggests greater precision in 
the model’s predictive performance



Page 8 of 10Howes et al. Malar J           (2019) 18:90 

(Fig. 3d–f). The cluster-level raw numbers showed a high 
level of spatial heterogeneity (Fig.  3a, d), likely associ-
ated with the variable and sometimes small samples sizes 
(overall n2013 = 633 and n2016 = 1096 eligible mothers 
across the country whose children had suffered a febrile 
episode in the 2  weeks preceding the survey, which 
become very small when considered at the cluster-level). 
The raw datapoint values (Fig. 3a, d) and the variograms 
(Fig.  3b, e) revealed that the dataset had limited spatial 
structure, also reflected by high relative uncertainty in 
the predicted maps. Consistent with these characteris-
tics, the model predictions revealed low correlation with 
the raw cluster-level observed data (Fig.  3c, f ). These 
warnings in the data suggest that the spatial predictions 
from this current dataset and model may not be appro-
priate to rely on.

These insights indicate to stakeholders interested in 
improving rates of appropriate malaria case management 
that the data and models examined here are insufficient 
to allow meaningful assessments of current treatment-
seeking levels. Additional efforts will be necessary to 
strengthen the evidence base and allow this indicator’s 
subnational trends to be understood. The low sample 
sizes associated with this specific MIS indicator—owing 
to its opportunistic nature—limit the statistical power 
required for high-resolution analyses.

Alternative approaches, such as active case detection, 
or simply larger sample sizes could provide more robust 
insight into this important indicator. A strong message, 
therefore, emerges to advocate for reinforcement of this 
indicator, to allow important questions about variability 
in behaviour across the island and the impact of NMCP 
initiatives on behaviour change over time to be answered. 
This remains essential to improving treatment-seeking 
rates and appropriate case management: cornerstones of 
any control programme.

Participant evaluations
Qualitative interviews conducted ahead of the work-
shop with NMCP staff suggested that knowledge and 
use of maps by the Programme were commonly limited 
to descriptive mapping of aggregated reported incidence 
rates and summaries of epidemic clusters. Modelled 
malaria risk maps were not used programmatically, nor 
was there significant knowledge of what they represent.

Participants were issued a 13-question test to evalu-
ate their knowledge of MIS indicators, modelled sur-
faces, and statistical uncertainty both before and after the 
workshop. The mean participant score increased from 54 
to 87%, with all but one participant improving in their 
performance (that participant’s score remained constant 
at 86%). Anonymous evaluation forms were also filled out 
on the last day of the workshop, giving participants the 

opportunity to assess the relevance, pace and content of 
the workshop content, and to give comments or sugges-
tions. Feedback was positive. Participants indicated that 
they learned a great deal from the lectures and exercises. 
They appreciated the knowledge and skills acquired dur-
ing the workshop and planned to use the modelled sur-
faces as part of programmatic decision-making in the 
future.

Throughout the workshop, participants identified 
examples of how the modelled maps could be applied 
in their specific domains of work. These included, for 
example, allowing more precise decision-making in 
the absence of complete datasets; tailoring interven-
tion responses appropriately during epidemics using 
regionally-specific indicator information; providing more 
information in resource-constrained contexts where 
additional data is difficult to request; and use as advocacy 
tools when communicating with non-expert audiences 
or for synthesizing information in grant applications. 
The imminent launch of the 2018 bed net distribution 
campaign provided a very explicit case study for how 
the modelled surface maps could support refinements 
to future planning activities, with the maps highlighting 
areas at greatest need for reinforced resources.

The most consistent critique was that the workshop 
was not long enough. In particular, the majority of par-
ticipants thought that they would have benefitted from 
more time to practice manipulating the maps in ArcGIS, 
as well as training in R coding. The workshop allowed 
participants the opportunity to discuss data-informed 
decision making in Madagascar, and many commented 
that the workshop helped further their understanding of 
malaria indicators which they deemed essential for pro-
gramme level decisions. Discussions around the context, 
strengths and weaknesses of  the indicators, as well as 
MIS study designs, proved to be a very valuable asset to 
the workshop.

Conclusions
This was the first country-specific Modelled Surfaces 
Workshop to be implemented by The DHS Program. 
While this type of workshop may not be recommended 
for every country, it was highly beneficial for Madagascar, 
where multiple MIS surveys have been implemented and 
the malaria epidemiology is variable across the country. 
Developing the portfolio of modelled indicator maps and 
training the workshop participants to critically evaluate 
and analyse them, increases the capacity of the country’s 
malaria control stakeholders to make data-driven deci-
sions. The Madagascar maps are freely accessible from 
the DHS Spatial Data Repository website [21, 22], along-
side maps of selected indicators from MIS/DHS surveys 
in 30 other countries. All participants recommended the 
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workshop to other NMCPs, and some requested addi-
tional training to be conducted in Madagascar.
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