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METHODOLOGY

Efficient synchronization of Plasmodium 
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Abstract 

Background:  Long-term in vitro culture of blood stage Plasmodium parasites invariably leads to asynchronous para‑
site development. The most often used technique to synchronize Plasmodium falciparum culture is sorbitol treatment, 
which differentially induces osmotic lysis of trophozoite- and schizont-infected red blood cells due to presence of the 
new permeation pathways in the membranes of these cells. However, sorbitol treatment does not work well when 
used to synchronize the culture-adapted Plasmodium knowlesi A1-H.1 line.

Methods:  A number of common solutes were tested in lieu of sorbitol for synchronization of P. knowlesi A1-H.1 ring 
stage.

Results:  Guanidine hydrochloride was found to selectively lyse trophozoite- and schizont-infected red blood cells, 
yielding highly synchronous and viable rings.

Conclusions:  A method for synchronization of P. knowlesi in human red blood cells was developed. Requiring only 
common laboratory reagents, this method is simple and should be applicable to most laboratory settings.
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Background
Plasmodium knowlesi is a simian parasite that can also 
cause malaria in humans [1, 2]. Whereas this parasite is 
prevalent in the Malaysian Borneo, its geographical range 
extends into the mainland Southeast Asia, Indonesia, 
and the Philippines [3]. Recently, the incidence of human 
infection of P. knowlesi in Malaysia and southern Thai-
land appears to be on the rise, despite the overall decline 
of malaria [3, 4]. The parasite is thus an emerging public 
health threat in affected areas.

Adaptation of P. knowlesi to continuous in vitro culture 
in human RBCs has opened doors to new possibilities 
to study this parasite [5, 6]. As common for long-term 

Plasmodium culture, P. knowlesi culture loses synchro-
nicity over time. Freshly thawed P. knowlesi culture 
becomes mixed stages within 4 to 5 days. However, a syn-
chronized parasite culture is often needed in research, 
particularly when the aim is to examine stage-specific 
phenotypes, transcriptomes, and proteomes. Several syn-
chronization methods developed for in  vitro culture of 
Plasmodium falciparum have the potential for synchro-
nization of in  vitro P. knowlesi culture. These methods 
include magnetic separation to obtain mature tropho-
zoites and schizonts [7, 8], selective lysis of trophozoites 
and schizonts to obtain rings [9], physical separation 
based on differential density [10] or sedimentation [11], 
and cold treatment to obtain rings [12, 13]. Indeed, den-
sity gradient centrifugation and magnetic separation have 
been used successfully to obtain tightly synchronized P. 
knowlesi culture [5, 6]. However, these methods are either 
time-consuming or require special equipment. For P. fal-
ciparum, lysis of trophozoite- and schizont-infected red 
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blood cells (RBCs), first established in 1979, remains one 
of the most commonly used methods due to its high effi-
ciency, simplicity and low cost [9]. This approach exploits 
the increased permeability of the infected RBCs due to 
the new permeation pathways (NPPs) to kill trophozoites 
and schizonts. NPPs allow sorbitol to enter the host cell, 
causing influx of water which leads to cell lysis. Because 
NPPs are active only in the host membrane at the tropho-
zoite and schizont stages [14], the ring-infected RBCs are 
resistant to sorbitol treatment.

While the sorbitol method works well to synchronize 
P. falciparum, its application to the recently human-
erythrocyte adapted line of P. knowlesi (A1-H.1) had 
limited success [15]. In this study, alternative solutes 
were explored and guanidine hydrochloride (GuHCl) 
was found to selectively lyse trophozoite- and schizont-
infected human RBCs to achieve synchronization of P. 
knowlesi culture.

Methods
Plasmodium knowlesi in vitro culture
The P. knowlesi strain A1-H.1 used in this study was 
from Dr. Robert W. Moon, Division of Parasitology, 
Medical Research Council National Institute for Medical 
Research, London. The parasite was cultured in complete 
medium (pH 7.4) containing RPMI-1640 (Invitrogen), 
5.96  g/L HEPES, 2.3  g/L sodium bicarbonate, 2  g/L 
d-glucose, 0.292 g/L l-glutamine, 0.05 g/L hypoxanthine, 
5 g/L Albumax II (Invitrogen), 0.025 g/L gentamycin sul-
fate, and 10% (vol/vol) horse serum (Invitrogen). Human 
red blood cells (RBCs) were obtained from the Thai Red 
Cross at 50% haematocrit and washed with RPMI-1640 
containing 2  g/L sodium bicarbonate, 5.94  g/L HEPES, 
2 g/L d-glucose, and 0.025 g/L gentamycin sulfate. RBCs 
were added to a 2–5% haematocrit and the culture was 
maintained in 75  cm2 flasks at 37  °C with gas mixture 
(90% N2, 5% CO2, and 5% O2).

Initial testing of different solutes for synchronization 
of ring‑stage parasites
Four solutes were tested to synchronize A1-H.1 parasite 
to the ring stage: sorbitol, GuHCl, glucose, and glycine. 
Phosphate-buffered saline (PBS) pH 7.4 was used as the 
control. For each test solute, a solution was prepared 
containing 280  mM sorbitol, 140  mM GuHCl, 280  mM 
glucose, or 280  mM glycine with 20  mM HEPES, pH 
7.4. All solutions were filter sterilized with 0.2 μm mem-
brane filters. The procedure was carried out at the room 
temperature (25–27  °C). Asynchronous parasite culture 
was first harvested by centrifugation at 600×g for 5 min. 
The packed RBCs (0.25 mL) was resuspended in 10 mL 
of each test solution by gently mixing with a pipette 
and incubated for 20  min. Cells were then centrifuged 

(600×g for 5  min) and the supernatant was removed. 
The cell pellet was washed twice with 10  mL of RPMI-
1640 incomplete medium before placing into culture. For 
thin blood smear preparation, the pellet was adjusted to 
40–50% haematocrit with complete medium. The blood 
smears were prepared, fixed with methanol, and stained 
with 10% Giemsa. The percent parasitaemia of each stage 
was determined under the microscope by counting intact 
infected RBCs from at least of 3000 cells three times.

Final GuHCl synchronization protocol for Plasmodium 
knowlesi in vitro culture

1.	 Harvest cells by centrifugation at 600×g for 5 min at 
room temperature.

2.	 Resuspend cell pellet in at least 20X volume of 
140  mM GuHCl, 20  mM HEPES, pH 7.4 and incu-
bate at room temperature for 20 min.

3.	 Collect cells by centrifugation at 600×g for 5 min at 
room temperature and remove supernatant.

4.	 Wash cell pellet twice with at least 20X volume of 
RPMI-1640 incomplete medium.

5.	 Resuspend cell pellet in complete medium and return 
cells to culture under mixed gas.

Measuring parasite multiplication after GuHCl treatment
To compare the multiplication rates of ring-stage para-
sites after GuHCl treatment to those obtained by density 
gradient centrifugation, schizonts were first purified by 
centrifugation of parasite culture through 55% Nycodenz 
[6]. After two washes with RPMI-1640, the parasites were 
placed back in culture with uninfected RBCs at 2% haem-
atocrit for 6 h to allow maturation and invasion. The par-
asites (0–6 h old rings + remaining schizonts) were then 
subjected to a) GuHCl treatment or b) a second round of 
centrifugation through 55% Nycodenz (the bottom frac-
tion under the Nycodenz cushion now contained only 
rings). Rings were then harvested, washed twice with 
RPMI-1640, and placed back in culture. Giemsa-stained 
thin smears were prepared for parasitaemia determina-
tion immediately after ring selection (0 h) and during the 
next cycle (36  h). Percent parasitaemia was determined 
by counting at least 2500 RBCs, the 95% confidence 
interval of which calculated according to the binomial 
distribution.

Results
To identify small molecules that could be used to syn-
chronize P. knowlesi culture, a few common solutes 
were tested for their ability to selectively induce osmotic 
lysis of mature parasite-infected RBCs (Fig.  1). Asyn-
chronous P. knowlesi in  vitro culture was incubated in 
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HEPES-buffered solutions of sorbitol (280 mM), GuHCl 
(140  mM), glucose (280  mM), or glycine (280  mM) for 
20 min at room temperature. These concentrations were 
chosen to keep the buffers approximately iso-osmotic. 
PBS and distilled water were included as negative and 
positive controls, respectively. Treatment with sorbitol, 
glucose, or glycine did not cause lysis of RBCs infected 
with P. knowlesi A1-H.1, whereas GuHCl treatment 
resulted in lysis of infected RBCs (Fig.  1a, b). Giemsa-
stained blood smears clearly showed presence of all 
parasite stages of the asynchronous culture after sorbitol 
treatment, whereas in GuHCl-treated culture the major-
ity of remaining parasites were at the ring stage (Fig. 2). 
Quantification of parasite developmental stages demon-
strated that GuHCl treatment disproportionally reduced 
the numbers trophozoite and schizonts (Figs. 1c, 2). Thus 
far, we could consistently obtain over 85% ring stage from 
a mixed culture. 

To test whether GuHCl treatment is toxic to the para-
sites, we followed parasite development after treatment. 
Microscopic examination of the GuHCl-synchronized 
ring culture every 2 h over 28 h revealed that the parasites 

developed normally and completed the intraerythrocytic 
cycle within 28 h (Fig. 3) as previously reported [6]. The 
multiplication rate of GuHCl synchronized parasites was 
also compared to that of rings purified by density gradi-
ent centrifugation (Fig.  4). In two biological replicates 
out of three, the fold increases in parasitaemia of these 
two cell preparations were similar (Fig. 4a, b), confirming 
normal parasite development after GuHCl synchroniza-
tion. However, in one replicate (Fig. 4c), parasitaemia did 
not increase after GuHCl treatment. The reason for this 
is still unclear, but this finding suggests that GuHCl may 
be toxic to the parasite under some circumstance.

Discussion
In this study, a method for obtaining a highly synchro-
nous ring-stage culture of P. knowlesi is reported. The 
method is a modification of the standard sorbitol syn-
chronization protocol of P. falciparum which does not 
work with the human adapted A1-H.1 line of P. knowlesi 
[15]. It was found that replacing sorbitol with GuHCl can 
achieve synchronization of this parasite.

Fig. 1  GuHCl induces lysis of trophozoite- and schizont-infected erythrocyte. a Left, supernatants of P. knowlesi-infected (1.1% ring, 1.5% 
trophozoite, 0.4% schizont) human RBC culture after treatment with PBS, sorbitol, GuHCl, glucose, glycine, or distilled water. Right, supernatant 
of uninfected RBCs after the same treatments. b Haemoglobin released, quantified by absorbance at 570 nm. c Stage distribution of the parasite 
before and after each treatment. Data from a single experiment in a 
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Fig. 2  Synchronization of P. knowlesi A1-H.1 parasite by GuHCl. a GuHCl treatment. b Sorbitol treatment. Left to right: ring parasitaemia before and 
after treatment, trophozoite and schizont parasitaemia before and after treatment, proportion of rings before and after treatment, representative 
Giemsa-stained thin smear of infected RBC culture after treatment. Different symbols represent different biological replicates (N = 5)

Fig. 3  Development of GuHCl synchronized P. knowlesi A1-H.1. a Giemsa-stained thin blood smears showing the morphology of the parasites 
during asexual growth after GuHCl treatment. b Parasite stage distribution from the same experiment. c Total parasitaemia every 2 h after 
synchronization from the same experiment
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The resistance of A1-H.1 to sorbitol is surprising 
for two reasons. Firstly, aside from a few purposefully 
selected P. falciparum laboratory lines [16–18], NPPs are 
considered conserved across Plasmodium species [14, 
19–21]. Secondly, rhesus RBCs infected with P. knowlesi 
from in  vitro culture are sensitive to sorbitol treatment 
[22]. The low sorbitol permeability of the A1-H.1 strain 
in human RBCs observed here may be due to mutations 
or epigenetic changes that occurred during the para-
site’s adaptation to in vitro culture in human RBCs. The 
prime candidates for this permeability change are the 
RhopH complex components whose role was previously 
implicated in the NPPs activity [23–25]. Alternatively, a 
specific human RBC protein(s) may influence NPPs func-
tion. A comparison of the NPPs properties of A1-H.1 
infected rhesus and human RBCs should be able to shed 
light on this divergence.

Several techniques are available to enrich the Plasmo-
dium parasites at a specific stage. Most of them were 
developed for P. falciparum, including physical sepa-
ration based on differential density [10], temperature 
cycling [26], cell cycle inhibitors [27], magnetic col-
umn purification [7, 8, 28], and Plasmion [11, 29]. For P. 
knowlesi, density centrifugation and magnetic purifica-
tion have been used to isolate mature stages [6, 30, 31]. 
Besides these methods, the recent report of merozoite 
invasion inhibition by heparin and sulfated polymers sug-
gests that these inhibitors may also be a viable alternative 
for parasite synchronization [32]. The method of GuHCl 
synchronization here offers another means to obtain the 
ring stage. The advantage of this method is that it is sim-
ple, fast, and scalable.

Besides P. knowlesi A1-H.1, there are other lines of P. 
knowlesi that have been adapted for long-term in  vitro 
culture. These include the original H strain adapted to 
grow in rhesus RBCs [33] and the Hhu line adapted to 
grow in human RBCs [5]. In this study, the GuHCl syn-
chronization method was tested only with A1-H.1 grown 
in human RBCs. How well the method performs with 
the H and Hhu lines is currently not known, nor is the 
effectiveness of the method for the A1-H.1 line grown 
in simian RBCs. However, because high guanidinium 
permeability of infected RBCs has been observed even 
with distantly related P. falciparum [34], it is possible 
that the GuHCl synchronization method will work uni-
versally well with other P. knowlesi lines as well as with P. 
falciparum.

Limitations
GuHCl synchronization is routinely used in the authors’ 
laboratory. While this method works well and yields 
healthy ring-stage parasites most of the time, it can 
sometimes result in parasites with a slow multiplication 

rate, a risk revealed in Fig.  4c. The reason for this phe-
nomenon is still unclear, but it may limit the utility of 
this method when delayed parasite growth needs to be 
avoided. Normal multiplication rates usually resume 
within one or two cycles.

Fig. 4  Parasite multiplication following ring synchronization by 
GuHCl or density gradient (Nycodenz) centrifugation. Parasitaemia 
was determined immediately after synchronization and at 36 h 
later. a–c Represent different biological replicates (A1-H.1 cultures in 
different human RBCs). Error bars indicate 95% confidence intervals
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Conclusions
This study demonstrates the utility of GuHCl as an 
effective means for synchronization of the ring-stage P. 
knowlesi A1-H.1 in  vitro culture in human RBCs. The 
failure of sorbitol to synchronize this line of parasite sug-
gests that NPPs of this parasite line has a distinct solute 
permeability profile when compared to that of P. falci-
parum. The methodology described could be applied to 
identify a solute appropriate for osmotic synchronization 
of other parasite or parasite lines that may be resistant to 
sorbitol or guanidine treatment.
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