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Abstract 

Background:  The propensity of different Anopheles mosquitoes to bite humans instead of other vertebrates influ-
ences their capacity to transmit pathogens to humans. Unfortunately, determining proportions of mosquitoes that 
have fed on humans, i.e. Human Blood Index (HBI), currently requires expensive and time-consuming laboratory 
procedures involving enzyme-linked immunosorbent assays (ELISA) or polymerase chain reactions (PCR). Here, mid-
infrared (MIR) spectroscopy and supervised machine learning are used to accurately distinguish between vertebrate 
blood meals in guts of malaria mosquitoes, without any molecular techniques.

Methods:  Laboratory-reared Anopheles arabiensis females were fed on humans, chickens, goats or bovines, then 
held for 6 to 8 h, after which they were killed and preserved in silica. The sample size was 2000 mosquitoes (500 per 
host species). Five individuals of each host species were enrolled to ensure genotype variability, and 100 mosquitoes 
fed on each. Dried mosquito abdomens were individually scanned using attenuated total reflection-Fourier trans-
form infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra (4000 cm−1 to 400 cm−1). The spectral 
data were cleaned to compensate atmospheric water and CO2 interference bands using Bruker-OPUS software, then 
transferred to Python™ for supervised machine-learning to predict host species. Seven classification algorithms were 
trained using 90% of the spectra through several combinations of 75–25% data splits. The best performing model was 
used to predict identities of the remaining 10% validation spectra, which had not been used for model training or 
testing.

Results:  The logistic regression (LR) model achieved the highest accuracy, correctly predicting true vertebrate blood 
meal sources with overall accuracy of 98.4%. The model correctly identified 96% goat blood meals, 97% of bovine 
blood meals, 100% of chicken blood meals and 100% of human blood meals. Three percent of bovine blood meals 
were misclassified as goat, and 2% of goat blood meals misclassified as human.

Conclusion:  Mid-infrared spectroscopy coupled with supervised machine learning can accurately identify multiple 
vertebrate blood meals in malaria vectors, thus potentially enabling rapid assessment of mosquito blood-feeding 
histories and vectorial capacities. The technique is cost-effective, fast, simple, and requires no reagents other than 
desiccants. However, scaling it up will require field validation of the findings and boosting relevant technical capacity 
in affected countries.
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Background
The Global Technical Strategy for Malaria Elimina-
tion 2016–2030 [1] recommends that countries should 
integrate effective surveillance as a core intervention 
in their malaria policies. As such, the World Health 
Organization (WHO) recently provided guidelines to 
support measurements of the most important para-
sitological and entomological indicators [2]. Effective 
entomological surveillance requires detailed quantita-
tive understanding of key biological attributes which 
influence overall potential of vector populations to 
transmit Plasmodium to humans [3]. Such attributes 
may include the likelihood with which specific Anoph-
eles populations bite humans as opposed to the other 
available vertebrate hosts, i.e. the human blood indi-
ces (HBI), defined as proportion of all mosquito blood 
meals obtained from humans [4, 5]. Other attributes 
include parasite infection rates, i.e. the proportion of 
females infected with Plasmodium [6], survivorship, i.e. 
whether the mosquitoes can live long enough to allow 
complete sporogonic development of Plasmodium 
inside them [7], mosquito susceptibility to insecticides 
commonly used to control them [8], and the location 
of mosquito biting, i.e. indoors or outdoors, and how it 
overlaps in space and time with humans [9–12].

Accurate identification of mosquito blood meal 
sources is important for understanding host–vector 
interactions, and provides essential information on 
transmission dynamics of mosquito-borne diseases [13, 
14]. Until recently, blood meals in haematophagous 
insects were typically identified using immunological 
assays such as the latex agglutination test [15], precipi-
tin test [16] or enzyme-linked immunosorbent assays 
(ELISA) [13]. Kent et  al. published the first polymer-
ase chain-reaction (PCR) based assay, which addressed 
many limitations of previous methods and enabled 
accurate detection of blood meals in field-collected 
mosquitoes up to several hours post-feeding on cows, 
dogs, human, pigs, and goats [14]. Lately, other tech-
niques, such as matrix-assisted laser desorption ioni-
zation-time of flight mass spectrometry (MALDI-TOF 
MS) has been applied for mosquito blood meal identifi-
cation [17–19]. Today, the ELISA [13, 20] and PCR [14] 
assays are the primary reference methods for measur-
ing HBI in malaria vectors used by most laboratories. 
Despite generally offering reliable results, these proce-
dures are time-consuming and require repeated sup-
ply of reagents making them expensive and unreliable 

in poorly-resourced settings. Additionally, the ELISA 
assays are prone to cross-reactivity if laboratory stand-
ards are not regularly updated [21].

Non-molecular techniques such as infrared spectros-
copy may offer just as effective but cheaper, quicker, 
reagent-free and potentially simpler alternatives for 
assessing key malaria transmission indicators. Indeed, 
studies have shown that near-infrared (NIR) spectros-
copy coupled with chemometrics (mathematical meth-
ods of understanding chemical systems) can predict 
different mosquito ages [22–27], distinguish between 
mosquito species [22, 28] and even detect presence 
or absence of pathogens such as Wolbachia bacteria, 
Plasmodium and Zika virus in the mosquitoes [29–32]. 
These successes could be vastly improved by using 
more effective analytical approaches to process spec-
tral data. Further improvements could potentially be 
achieved by relying on mid-infrared (MIR) wavelengths 
(4000 cm−1 to 400 cm−1), which compared to those of 
NIR (12,500 cm−1 to 400 cm−1), Fig. 1 also allow detec-
tion of changes in chemical composition of samples, 
and can clearly show contributions of different chemi-
cal bonds of product constituents in separate peaks 
[33].

This current study investigated the potential of using 
supervised machine learning algorithms and MIR spec-
troscopy to accurately distinguish between blood meals 
of four different vertebrate species within abdomens of 
the malaria vector, Anopheles arabiensis.

Methods
Mid‑infrared spectrometer
A Bruker ALPHA Fourier-transform infrared (FTIR) 
spectrometer equipped with a Platinum ATR device 
was used [34]. The spectrometer had a platinum dia-
mond sampling module with a spectral range of 375–
7500  cm−1 and maximum spectral resolution between 
2 and 0.8 cm−1. The infrared optical window was fitted 
with zinc selenide (ZnSe) to accommodate high humid-
ity conditions.

The unit is small (22  cm × 30  cm), highly portable 
(Fig.  2) and has a permanently aligned interferometer 
for precise data acquisition [35]. It was installed with an 
internal validation unit (IVU) with reference standards 
and programmed to conduct automated instrument 
tests for operational and performance qualification. Its 
core is encased in robust metal housing with a lifespan 
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greater than 10  years, and requires minimal mainte-
nance other than replacement of desiccants depending 
on humidity inside the mid-IR spectrometer [35].

The spectrometer together with the operating com-
puter was installed in the vector biology laboratory, the 
VectorSphere, at Ifakara Health Institute (IHI), Ifakara, 
Tanzania (Fig. 2). Proprietary OPUS software version 7.5 

Fig. 1  Differences between NIR and MIR spectra obtained from dried mosquito samples collected using ATR-FTIR spectrometer. Compared to 
near-infrared (NIR), mid-infrared (MIR) allows detection of changes in chemical composition of the samples. Its wavelengths are more sensitive to 
fundamental vibration of molecular bonds and the different isolated peaks contain information of different chemical components in the mosquito 
cuticle

Fig. 2  Mid-infrared ALPHA spectrometer with attenuated total reflectance (ATR), and single reflexion diamond platinum crystal, installed at the 
VectorSphere, Ifakara Health Institute, Tanzania. A control computer is included for the operator
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[36], licensed to IHI, was also installed to record and pro-
cess the MIR spectra.

Mosquitoes
The malaria vector An. arabiensis was used in this study 
because of the natural plasticity of its blood-feeding pref-
erences, and its readiness to feed on non-human hosts 
when humans are not available [4, 5]. Laboratory-reared 
females were used. Larvae were reared in plastic basins 
and fed on Tetramin® fish food (Tetra GmbH, Melle, 
Germany), while adults were maintained on 10% sugar 
meals and human arm-feeding for colony maintenance. 
Adult mosquitoes were maintained at temperature of 
27 ± 2 °C, relative humidity (RH) of 80 ± 5% as previously 
described [37]. Females aged 4–6  days old were used 
for experiments, all starved for 6 h prior to direct blood 
feeding as described below.

Mosquito blood‑feeding on different vertebrate hosts
We identified four vertebrate host species widely available 
and commonly fed upon by Anopheles mosquitoes [5, 38] 
in rural Tanzania. These included: bovine, chicken, goat, 
and human. For each host species, five individuals were 
recruited, and 100 female An. arabiensis fed upon each 
one. This way, every host species had 500 blood-fed mos-
quitoes (100 per individual host/replicate). All humans 
were all males and recruited from the research team, and 
other animal hosts (i.e. bovine, chicken, and goat) were 
bought and were part of the research project. All hosts 
were restrained and mosquitoes were fed until they were 
fully engorged. The blood-feeding took place over several 
days so that the groups consisted of individual mosqui-
toes from different reproductive batches in the mosquito 
colony. After blood-feeding, mosquitoes were held for 
6 h for digestion to begin and to minimize potential dif-
ferences associated with extent of blood digestion in the 
gut [39]. After the holding period, the mosquitoes were 
killed using chloroform [33] and preserved in micro-cen-
trifuge tubes with silica gel to keep them dry before scan-
ning. Each sample was labelled by date, vertebrate host 
type, mosquito species, sample ID and age.

Scanning the preserved mosquitoes
Abdomens were first separated from the heads and tho-
raxes of the dried mosquitoes. Since the study was pri-
marily focused on gut content, the heads and thoraces 
were discarded and instead only the abdomens were 
scanned. The mosquito specimen (abdomen) was placed 
at the center of the MIR crystal plate, and supported 
by the spectrometer arm (the anvil). MIR spectra were 
captured (spectral range 4000–400  cm−1), with spectral 
resolution set at 5  cm−1. Each individual specimen was 
scanned 32 times in 30 s, and resulting spectra averaged 

to obtain a single representative spectrum as previously 
described [33]. The spectra were recorded in absorbance 
units and stored using Bruker OPUS software [36].

Pre‑processing of the MIR spectra
The OPUS software [36] was used to clean and compen-
sate spectra with water vapor absorption bands (intense 
bands centered around 2340  cm−1, 3600 and 550  cm−1 
wavenumbers) and carbon dioxide (CO2) interference 
bands (4000–3400  cm−1 and 2200–1300  cm−1) as pre-
viously described [33]. The cleaned spectral data were 
converted from the Bruker OPUS format to text files in 
Python™. Further spectral cleaning was done by discard-
ing spectra with low intensities (below 0.11 absorbance 
units; mostly between 400 and 500  cm−1) and spectra 
with no features (flat spectra) [33]. The final cleaned 
spectra matrix was saved in comma separated values 
(CSV) format for further analysis.

Data training, validation, and prediction of blood meal 
sources
The MIR spectra were analyzed in the Python™ program-
ming language with the scikit-learn library [40]. Super-
vised machine learning techniques were used to train 
models on known and predicted classes for the validation 
set, based on a multi-class classification strategy [40]. 
Models were trained and cross-validated using the strat-
egy as illustrated in Fig.  3. First, the whole dataset was 
partitioned into training (90% of the data) and validation 
datasets (10%), ensuring proportional representation of 
the different host types and individuals (Fig. 3). The vali-
dation set was split from the whole dataset before train-
ing process such that the 10% subset was neither used for 
training nor for selection of the trained models. Instead, 
it was preserved for evaluating accuracies of the final 
model. Once the training dataset was separated, it was 
itself subjected to multiple rounds of randomly-stratified 
splits into training sets (75%) and test sets (25%) as illus-
trated in Fig.  3, to achieve rigorous classification of the 
different blood meal types, this time involving only the 
training dataset. The spectra data were used to classify 
blood meals into one of four host species classes.

To achieve this, classification algorithms were used to 
learn patterns from matrices of features which represent 
different blood meal sources. Seven different algorithms 
were tested using default settings on the training set. The 
candidate algorithms included: k-nearest neighbours 
classifier (KNN), logistic regression (LR), support vector 
machine classifier (SVM), naïve Bayes (NB), random for-
est classifier (RF), XGBoost classifier (XGB), Multilayer 
perceptron (MLP) [40]. Prediction scores were presented 
in terms of percentage accuracy.
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Finally, the best performing model of the seven above, 
i.e. model with highest accuracy (percentage of times a 
blood meal was correctly classified to the right host spe-
cies) and precision (variability between actual estimates), 
was selected. The model was optimized by fitting 100 
bootstrapping regressions, and bagged to increase pre-
diction performance. Performance of this final model was 
evaluated using the validation set.

Results
Of the 2000 individual spectra collected, 26 randomly 
distributed were discarded during data cleaning because 
of sub-standard quality. Of the remaining 1974 spectra, 
1776 were used in training and testing of supervised 
machine learning models and 198 were used for final val-
idation of the final model.

Of the seven classification algorithms tested, logis-
tic regression (LR) was identified as the best approach 
since it outperformed the other six classifiers in identi-
fying mosquito blood meal sources of laboratory-reared 
An. arabiensis (Fig.  4). After additional optimization by 
bootstrapping, LR successfully predicted mosquito blood 
meal sources by correctly identifying the source of host 
blood meals more than 90% of the time. A total of 100 
bootstrapped models were fitted, which when aggregated 
predicted mosquito blood meals with an overall accuracy 
of 98.6%, Fig. 5). Average accuracies by class were 98% for 
bovine and human blood, 99% for goat blood, and 100% 
for chicken blood (Fig. 6).

In the final validation on held-out 198 previously 
unseen spectra, the optimized model predicted correct 
identities of blood meals in this new dataset by 98.4% 
overall accuracy (96% for goat blood, to 97% for bovine 

Fig. 3  Schematic illustration of the processes of data splitting, model training, cross-validation and evaluation of performance of final model
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blood and 100% for chicken and human blood) (Fig. 7). 
Three-percent of bovine blood samples were misclassi-
fied as goat blood and 2% of goat blood misclassified as 
human blood (Fig. 7).

Discussion
This work has demonstrated that mid-infrared spectros-
copy (MIR) coupled with supervised machine learning 
can accurately distinguish between mosquito blood meals 
originating from common vertebrate hosts, i.e. bovine, 
chicken, goat and human, without requiring molecular 
techniques. It is also represents the first evaluation of an 
infrared-spectroscopy approach for blood meal analysis, 
and application of machine learning to analyze mosquito 
blood feeding histories spectral data. The experiments 
were done using laboratory-reared An. arabiensis mos-
quitoes but with known blood hosts replicated across five 
individuals for each host type. An. arabiensis was selected 

for these experiments because of its natural plasticity of 
host preferences [4, 5], but similar analyses would apply 
for all other mosquito species.

This work builds upon a series of studies using NIR 
spectroscopy, most of which have already demonstrated 
the potential of these technologies for analysis of several 
important mosquito traits. Examples include prediction 
of different mosquito ages [22–27], use of NIR spec-
troscopy and chemometrics to distinguish between two 
malaria vector species, Anopheles gambiae sensu stricto 
and An. arabiensis [22, 28], and detection of pathogens 
such as Zika virus [30], malaria parasites [31, 32] and the 
symbiont, Wolbachia [29, 30].

Until now a key challenge of this approach has been 
the lack of high-capacity statistical tools to handle the 
massive quantities of spectral data generated from the 
procedures, and also lack of field validation of many of 
these approaches. Both these challenges are now on the 
verge of being addressed by multiple research groups. As 
recently described by González-Jiménez et  al. [33], this 
current study also applied MIR as opposed to the NIR 
wavelengths previously used. MIR extends from 4000 to 
400  cm−1, and is between the far-infrared (FIR) region 
(400 cm−1 to 10 cm−1) and NIR region (12,500 cm−1 to 
400 cm−1) [41]. As shown in Fig. 1, it records spectra with 
greater information content compared to NIR. Moreover, 
key features of MIR spectra such as number of infrared 
absorption bands and their intensities combined with 
the advantage of robust instrumentation available for 
MIR such as used here [34]. The mosquito abdomen was 
squashed during the scanning so blood meal was present 
at the surface of the specimen. Different isolated peaks in 
MIR contain information of different chemical compo-
nents in the mosquito cuticle, at it appears proteins and 
lipids may be responsible for the difference in spectra for 
different vertebrate as also observed in MALDI-TOF MS 
approach [17–19]. The MIR-based approach has great 
potential for accuracy and scalability. In this study, only 
mosquito abdomen was used but also other parts (head 
and thorax) could be used to distinguish between species 
and age.

To process the MIR data, this study deployed multiple 
supervised machine learning algorithms before selecting 
the most accurate and precise candidate for final analy-
sis. Machine learning is increasingly applied in medical 
and public health industry [33, 42–48], and will likely 
become dominant in disease predictions and surveillance 
[42, 43]. For example, it has been used to solve problems 
in genomic medicine [44, 45] and to predict responses to 
antiretroviral treatment, in one case with ~ 78% accuracy 
[46]. Nearly 10  years ago, the approaches were already 
being used to predict diabetes and pre-diabetes outcomes 
with greater than 80% accuracy [47]. Recently, Chen 

Fig. 4  Prediction accuracies for different classification algorithms. 
Models tested include k-nearest neighbours (KNN), logistic regression 
(LR), support vector machines (SVM), naïve Bayes (NB), XGBoost (XGB), 
random forest (RF), Multilayer perceptron (MLP). Based on prediction 
accuracy and precision achieved, the best performing model was LR

Fig. 5  Prediction accuracies obtained by the final logistic regression 
(LR) model for different vertebrate blood meal sources. Distribution 
around the prediction accuracy indicates standard deviation in the 
100 bootstrapped models and is used to assess model precision
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et  al. proposed a faster neural network approach based 
on multimodal disease risk prediction using data from 
health care facilities [48]. This approach reached 94% 
accuracy in evaluating risk of cerebral infarction disease.

In this current work, logistic regression (LR) models 
were found to be the best performing for quantifying var-
iations of MIR spectral information on mosquito blood 

meal sources. Optimization of the LR model with 100 
bootstrapped realizations of the dataset led to very high 
prediction accuracy of 98.8%, achieving perfect score in a 
few instances (Fig. 4). The selected model remained very 
highly accurate, exceeding 98% even when challenged 
with a new dataset not previously seen by the model.

The technique has shown to be highly effective, achiev-
ing accuracies previously achieved by ELISA [13] and 
PCR. However, the samples here were prepared just 6 
to 8  h after blood-feeding on known animal bloods, so 
future studies should consider using different diges-
tion stages as this may influence accuracy [14, 39, 49]. 
The technique will need to be evaluated whether it can 
detect and distinguish blood feeding histories of malaria 
mosquitoes for more than 6  h as well as mixed blood 
meals. In this study, there was no uniformity between the 
individuals of the same host species in terms of attrib-
utes such as sex, age, weight and health status. Mosqui-
toes selected in this study were fully engorged; it is still 
unknown whether the technique will also detect mos-
quitoes with partial blood meals. Additional advantages 
of this technique over direct ELISA include the fact that 
it is time-saving in both sample preparation and analysis, 
and has reduced cross-reactivity. Despite the fact that 
PCR is even more sensitive than ELISA and has low risk 
of cross reactivity, they still consume time and require 
skilled expertise in deoxyribonucleic acid (DNA) extrac-
tion [14]. Lastly, all mosquito samples used in this study 
were blood-fed on known hosts in a controlled environ-
ment. Future work should therefore validate these find-
ings using field collections, in which case PCR assays 
would be the best standard reference [14].

The costs are also significantly lower, and particularly 
since no reagents are required other than desiccants. 
ELISA systems currently cost approximately 13,044 USD, 
while the cost for MIR spectrometer we used (Bruker 
ALPHA Fourier-transform infrared (FTIR) spectrom-
eter equipped with a platinum ATR) was approximately 
29,000 USD, including shipment and installation, and 
the costs were incurred only at the initial purchase of 
the machine. Unlike the MIR spectrometry, ELISA sys-
tems require additional reagents, such that the cost per 
sample can be between 1 and 1.5 USD. MIR is more cost-
effective as it does not require repeated reagents for sam-
ple processing. This means that in an active laboratory, 
it would take just 1 year for the overall financial invest-
ment in ELISA systems to exceed the costs of MIR sys-
tems, and thereafter the costs per sample would continue 
to reduce. The turnaround time between sample prepa-
ration and results for ELISA is approximately 2 days for 
every 100 samples (including sample preparation, pro-
cessing and results reading). On the other hand, once the 
MIR system has been calibrated and established, users 

Fig. 6  Normalized confusion matrix for the trained model (training 
set = 1332 spectra; test set = 444 spectra; total spectra = 1776). 
Each row represents instances in actual class (true label), while each 
column represents instances in predicted class (predicted label). From 
the top left to bottom right, the blue line highlights final prediction 
accuracies in each class

Fig. 7  Normalized confusion matrix for final model evaluation 
(training data = 1776 spectra; validation data = 198 spectra; total 
spectra = 1974). Each row represents instances in actual class (true 
label), while each column represents instances in predicted class 
(predicted label). From the top left to bottom right, the blue line 
highlights final prediction accuracies in each class
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can scan 300 or more samples in a day, each sample tak-
ing approximately 1  min to scan. The scale of use also 
suggests that this tool could greatly improve district-wide 
or nation-wide vector surveillance efforts.

Conclusion
In conclusion, mid-infrared spectroscopy coupled with 
supervised machine learning can accurately identify 
multiple vertebrate blood meals in malaria vectors, thus 
enabling rapid assessment of mosquito blood-feeding 
histories and vectorial capacities. The technique is cost-
effective, fast, simple and requires no reagents other than 
desiccants. All the analyses were done in open source 
software, except for data extraction done using the pro-
prietary Bruker OPUS software, but which can also be 
done with available open source scripts. Nonetheless, 
scaling up this approach will require field validation of 
the findings and specific training to improve techni-
cal capacity in affected countries. Once validated, this 
approach could potentially replace current molecular 
techniques for blood meal analysis (i.e. PCR and ELISA).
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