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METHODOLOGY

Detection of low‑density Plasmodium 
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Abstract 

Background:  Deep sequencing of targeted genomic regions is becoming a common tool for understanding the 
dynamics and complexity of Plasmodium infections, but its lower limit of detection is currently unknown. Here, a new 
amplicon analysis tool, the Parallel Amplicon Sequencing Error Correction (PASEC) pipeline, is used to evaluate the 
performance of amplicon sequencing on low-density Plasmodium DNA samples. Illumina-based sequencing of two 
Plasmodium falciparum genomic regions (CSP and SERA2) was performed on two types of samples: in vitro DNA mix-
tures mimicking low-density infections (1–200 genomes/μl) and extracted blood spots from a combination of symp-
tomatic and asymptomatic individuals (44–653,080 parasites/μl). Three additional analysis tools—DADA2, HaplotypR, 
and SeekDeep—were applied to both datasets and the precision and sensitivity of each tool were evaluated.

Results:  Amplicon sequencing can contend with low-density samples, showing reasonable detection accuracy 
down to a concentration of 5 Plasmodium genomes/μl. Due to increased stochasticity and background noise, how-
ever, all four tools showed reduced sensitivity and precision on samples with very low parasitaemia (< 5 copies/μl) or 
low read count (< 100 reads per amplicon). PASEC could distinguish major from minor haplotypes with an accuracy 
of 90% in samples with at least 30 Plasmodium genomes/μl, but only 61% at low Plasmodium concentrations (< 5 
genomes/μl) and 46% at very low read counts (< 25 reads per amplicon). The four tools were additionally used on a 
panel of extracted parasite-positive blood spots from natural malaria infections. While all four identified concordant 
patterns of complexity of infection (COI) across four sub-Saharan African countries, COI values obtained for individual 
samples differed in some cases.

Conclusions:  Amplicon deep sequencing can be used to determine the complexity and diversity of low-density 
Plasmodium infections. Despite differences in their approach, four state-of-the-art tools resolved known haplotype 
mixtures with similar sensitivity and precision. Researchers can therefore choose from multiple robust approaches for 
analysing amplicon data, however, error filtration approaches should not be uniformly applied across samples of vary-
ing parasitaemia. Samples with very low parasitaemia and very low read count have higher false positive rates and call 
for read count thresholds that are higher than current default recommendations.
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Background
Amplicon deep sequencing is an increasingly utilized 
genotyping approach that provides a cost-effective strat-
egy to profile the genetic diversity of pathogen infec-
tions. Like single nucleotide polymorphism (SNP)-based 
genotyping methods, both the data-generation and data-
analysis steps of amplicon sequencing are highly scalable, 
allowing for studies of hundreds to thousands of samples. 
Additionally, amplicons can be designed to cover long 
genetic segments composed of multiple variants, allow-
ing for the identification of complete DNA sequences 
(or haplotypes) in a targeted genomic region. When 
targeting a highly polymorphic genomic region, a sin-
gle amplicon can distinguish among hundreds of unique 
haplotypes [1], providing higher resolution than either 
SNP-based or length-based genotyping approaches. This 
improves estimates of the number of lineages within pol-
yclonal infections (or complexity of infection; COI) [2–4], 
permits the discovery of unknown alleles [5–7], and pro-
vides increased information for haplotype-based analyses 
of epistasis and linkage disequilibrium [8].

Amplicon analysis in Plasmodium has been adapted 
to multiple sequencing platforms depending on the 
desired cost, sample size, and sequence length [3, 9–11]. 
Because of this high resolution and flexibility, amplicon-
based methods have been utilized in a range of applica-
tions, including studies of allele-specific vaccine efficacy 
[1], disease severity [10], clearance rate [12], within-host 
competition [13], relapse rate [9], drug resistance [5–7], 
host selection [8], and population structure [8, 14]. 
Amplicon sequencing has high sensitivity for the detec-
tion of minority parasite lineages within an infection, and 
is of particular interest in longitudinal studies that track 
intra-host dynamics [3, 4].

When used to detect known single variant mark-
ers, amplicon sequences can be analysed with relatively 
straightforward approaches. Longer, complex haplotypes, 
however, require more sophisticated analysis meth-
ods. Amplicon sequencing data are known to be sub-
ject to PCR and sequencing artifacts, particularly for 
genomic regions with high A/T-content and high rates of 
homopolymerism [15, 16]. In addition, library prepara-
tion method and primer choice can influence the types 
and extent of errors [17]. Correctly identifying sequence 
errors is therefore a challenge when applying amplicon 
sequencing to Plasmodium falciparum. Fortunately, sev-
eral new analytical tools have been developed in recent 
years to address these challenges [18–21].

Unlike approaches that use reference datasets or clus-
ter sequences with hard percent-identity thresholds, 
these new methods are more flexible and can distinguish 
among sequences that differ by only a single nucleo-
tide change [22]. When Plasmodium concentrations 

are reasonably high, these approaches have been dem-
onstrated to be robust. To date, however, these meth-
ods have not been thoroughly evaluated on low-density 
Plasmodium samples. It is therefore unclear whether 
additional considerations are required when interpret-
ing amplicon sequencing data from infections with low 
parasitaemia.

This study assesses amplicon sequencing’s lower 
limit of detection using four analysis tools, and further 
evaluates each tool’s accuracy and capacity to recover 
quantitative information on the relative abundance of 
different haplotypes within infections. Three of these 
tools—DADA2 [18], HaplotypR [19], and SeekDeep 
[20]—were previously published and developed to con-
tend with any Plasmodium amplicon. The fourth—the 
Parallel Amplicon Sequencing Error Correction (PASEC) 
pipeline—is a distance- and abundance-based error-cor-
rection tool that was specifically tailored for use with CSP 
and SERA2 amplicons [1], and it is formally presented 
here for the first time. Amplicon sequencing of densely 
polymorphic regions in the P. falciparum CSP and SERA2 
genes was applied to two sample collections. The first—a 
set of in vitro human/parasite DNA mixtures that mimic 
low-density parasite infections—was designed to test the 
limit of detection for amplicon sequencing. The second 
sample set consisted of DNA extracted from dried blood 
spots from malaria-infected individuals collected on fil-
ter paper in sub-Saharan Africa. This allowed a compari-
son of analysis approaches using conditions under which 
samples are typically collected and processed. All four 
tools detected P. falciparum haplotypes with high sensi-
tivity, and additionally were able to discriminate between 
major and minor haplotypes with reasonable accuracy. 
Additionally, PASEC was able to identify a SERA2 indel 
in patient samples due to its incorporation of prior 
knowledge on sequence composition.

Overall, the results show that low parasitaemia does 
not preclude amplicon analysis of P. falciparum samples, 
although researchers should expect reduced sensitiv-
ity and reduced precision with low read-count samples 
(< 100 reads/amplicon) and at parasite DNA concentra-
tions under 5 genomes/μl.

Methods
Sample assembly and composition
Mock Plasmodium/human DNA mixtures
Mixtures of DNA from cultured P. falciparum parasites 
were combined with human genomic DNA to construct 
samples that mimic human infections. DNA from up 
to five culture-adapted parasite lines were combined in 
various proportions and number (Fig. 1; for exact sample 
composition and nucleotide differences between clones 
see Additional file 1: Tables S1, S2). Stock mixtures of 200 
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genomic copies/μl of DNA template were prepared by 
real-time PCR quantification of copies/μl in triplicate rel-
ative to a plasmid containing a single copy of the quanti-
fication target gene [23]. These stock solutions were then 
diluted to the indicated concentrations in sequencing-
grade water and 10  ng commercial human DNA (Pro-
mega Corp cat#G3041) was added to all samples. After 
mixing and dilution, a subset of samples were re-quanti-
fied using the same qPCR protocol and reported sample 
concentrations were adjusted as needed. Plasmodium-
free negative control samples were also constructed. 
These contained either 10  ng of human DNA or only 
water.

Natural infections
Previously extracted DNA from 95 blood spots, obtained 
from individuals infected with P. falciparum, was re-
amplified and re-sequenced as part of this study. These 
samples were acquired from both symptomatic and 
asymptomatic individuals from four countries in sub-
Saharan Africa as part of the RTS,S malaria vaccine 
phase 3 trial and had parasite densities that ranged from 
44 to 653,080 parasites/μl as determined by blood smear 
(Fig.  1; [24]). Full details on sampling and extraction, 
including human subjects approval for use of these sam-
ples, are provided in Neafsey et al. [1]. In brief, samples 
were collected as blood spots on Whatman FTA cards, 

shipped to the Broad Institute, and stored in desiccators 
until processing. DNA was extracted in batches of 95 
samples plus one blank control card using seven 3-mm 
punches and the automated Chemagen Chemagic bead-
based extraction platform. Total DNA was stored at 
− 80 °C until re-amplification and sequencing.

Positive control plasmid
A plasmid containing synthetic target amplicon 
sequences for both CSP and SERA2 was obtained from 
a commercial vendor (Invitrogen/Thermo Fisher Sci-
entific) and served as a positive control during the PCR 
amplification step. Outside the primer regions, the plas-
mid sequence contains nucleotide variants not observed 
in natural P. falciparum isolates so that any instances of 
contamination can be readily identified. The plasmid map 
can be found in Additional file 1: Fig. S1.

PCR and sequencing
Two regions from the CSP (PF3D7_0304600) and SERA2 
(PF3D7_0207900) genes were PCR amplified as previ-
ously described [1]. In brief, 5  μl of ~ 0.5  ng/μl DNA 
served as template for the initial PCR which amplified 
the targeted regions. A second PCR was carried out to 
index samples and create the full sequencing constructs. 
The final CSP and SERA2 amplicons cover 288 and 258 
nucleotides, respectively (Pf3D7_03_v3:221,352–221,639; 
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Fig. 1  Mock and natural infection sample composition. a Mock infection samples were constructed from mixtures of P. falciparum and human 
DNA to mimic the parasite DNA concentrations found in extracted low-density infections. b DNA from up to five clonal cultured parasite lines was 
combined to create each mock sample, leading to within-sample haplotype counts of one to four. c Natural infection samples were previously 
collected and extracted from a combination of symptomatic patients and asymptomatic carriers [1]. Parasite densities were determined by blood 
smear
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Pf3D7_02_v3:320,763–321,020). Both amplicons cover 
sequence regions of high nucleotide diversity in sub-
Saharan Africa to maximize the number of distinct hap-
lotypes that can be detected across samples from this 
geographic area.

All DNA samples and negative controls were ampli-
fied and sequenced in duplicate. Paired-end 250-bp reads 
were generated in one MiSeq run conducted on a pool 
of 384 PCR products. Unless otherwise noted, each PCR/
sequencing technical replicate was analysed as a distinct 
sample. Before downstream analysis, raw sequencing data 
were demultiplexed and aligned to amplicon reference 
sequences to remove all non-Plasmodium sequences.

Sample analysis with PASEC
For each sample, paired-end reads were merged using 
FLASH [25] and aligned with BWA-MEM v0.7.12-r1039 
[26] to the amplicon regions of the P. falciparum refer-
ence genome assembly (PlasmoDB v.9.0 3D7). Two short 
homopolymeric tracts in CSP were masked from analy-
sis, as such regions are highly error-prone in Illumina 
sequencing and these specific tracts were not known to 
harbour natural polymorphisms. Masked coordinates are 
given in Additional file 3.

Within each sample, haplotypes were filtered accord-
ing to a set of pre-specified thresholds developed 
by Neafsey et  al. [1]. Haplotypes were required to (1) 
cover the entire amplicon region, (2) have no uncalled 
bases, (3) be supported by at least two sets of merged 
read pairs (henceforth referred to simply as “reads”), 
and (4) have an intra-sample frequency ≥ 0.01. To 
account for single nucleotide errors introduced dur-
ing PCR and sequencing, the filtered haplotypes were 
clustered based on nucleotide distance and read depth. 
To inform the stringency of this clustering, the rela-
tive read depth of putative PCR errors in the dataset 
was analysed. Across all the mock samples, there were 
208 erroneous haplotypes that (1) differed from a true 
haplotype within the same sample by a single nucleo-
tide change, and (2) appeared only once in the sequenc-
ing run, making it unlikely that contamination was the 
source of the error. 92% of these erroneous haplotypes 
were present at a within-sample frequency that was as 
at least eight times less than the frequency of the cor-
rect “parent” haplotype (Additional file 1: Fig. S2). This 
8:1 ratio was, therefore, used throughout the whole 
data set: if two haplotypes within the same sample dif-
fered by only one nucleotide and had a read coverage 
ratio ≥ 8:1, they were merged, maintaining the identity 
of the more common haplotype. This same 8:1 thresh-
old was used in the initial application of the PASEC 
pipeline with data from sub-Saharan Africa where both 
nucleotide and haplotypic diversity was high at these 

amplicons [1]. In studies where it is necessary to dis-
criminate between closely related haplotypes with a 
high frequency skew, however, a different cutoff could 
be applied.

Previous implementations of PASEC removed all 
potential chimeric reads and applied sample read depth 
filters (≥ 200 reads for one of the two amplicons) [1, 
8]. Here, these metrics were analysed, but hard filters 
were not applied to the samples before the downstream 
analyses presented in the results. The results therefore 
represent a minimally—not an optimally—filtered data 
set. For most applications, further filtration is recom-
mended, as discussed below.

Full details on the PASEC pipeline, its customizable 
parameters, and its implementation in this study are 
found in Additional files 2 and 3 and at https​://githu​
b.com/tmfar​rell/pasec​.

Sample analysis with DADA2, HaplotypR, and SeekDeep
All samples were independently analysed using three 
additional amplicon analysis tools: DADA2 [18], Hap-
lotypR [19], and SeekDeep v.2.6.0 [20]. Beyond the 
changes detailed below, input parameters deviated only 
modestly from the default settings. Parameters and 
scripts used for executing each pipeline can be found 
in Additional file 3. While previous implementations of 
PASEC applied a 200 reads/sample threshold, no read 
count filters were applied at the sample level in the 
analysis comparisons.

SeekDeep gives the option of grouping data from tech-
nical PCR/sequencing replicates of the same sample and 
applying clustering and filtering to this grouped data to 
increase confidence in final calls. The pipeline was there-
fore run under two conditions: grouping technical rep-
licates (the recommended, default SeekDeep approach; 
“SeekDeep2x”) and treating each PCR/sequencing rep-
licate independently (“SeekDeep1x”). This permitted 
more equivalent comparisons among pipelines that do 
not incorporate replicate information and allowed for a 
determination of whether a single replicate is sufficient 
for making accurate haplotype calls.

For HaplotypR, the command-line interface was 
extended in two ways. First, it was altered to return full 
haplotype sequences as opposed to only bases at vari-
ant positions. Second, the trimming input command 
was expanded to allow each amplicon to have different 
lengths. The version of HaplotypR used in this analysis 
can be found at https​://githu​b.com/tmfar​rell/Haplo​typR. 
After running the pipeline, the authors’ recommended 
sample-level filtering was applied to the data. Specifically, 
each sample was required to have a minimum of 25 reads, 

https://github.com/tmfarrell/pasec
https://github.com/tmfarrell/pasec
https://github.com/tmfarrell/HaplotypR
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and individual haplotypes needed to have a minimum of 
3 reads and a within-host frequency of at least 0.1%.

Comparison of analysis tools
All four tools were assessed for their ability to resolve 
haplotypes at within-sample frequencies down to 1% 
using the mock low-parasitaemia samples. Two perfor-
mance metrics were computed by comparing expected 
vs. observed haplotypes in each sample: sensitivity (pro-
portion of all expected haplotypes that were observed) 
and precision (proportion of all observed haplotypes that 
were expected). For sensitivity calculations, only haplo-
types present at a concentration of at least 1 copy/μl of 
DNA template (5 copies/PCR reaction) were considered. 
For each tool, samples were only included in the perfor-
mance metric calculation if at least one haplotype was 
identified. Except for the SeekDeep2x implementation, 
each PCR/sequencing replicate was analysed as a distinct 
sample.

Results
Sequencing coverage for low‑density mock infections 
and natural infections from sub‑Saharan Africa
In total, 148 DNA mixtures of known haplotypic com-
position, 190 blood samples from sub-Saharan Africa, 12 
positive-control plasmid samples, and 4 negative-control 

samples without Plasmodium DNA were PCR amplified 
for CSP and SERA2 and sequenced on a single Illumina 
MiSeq run.

The 148 mock infections were constructed to mimic 
infections with low parasite density and contained 
between 1 and 200 P. falciparum genomes/μl (Fig.  1a). 
We assume that these values roughly correspond to para-
site densities of 1 and 200 parasites/μl as sampled periph-
eral blood is heavily enriched for ring-stage infected 
cells containing only a single parasite genome. Actual 
extracted DNA concentrations will vary, however, based 
on the volume of blood extracted, the extraction effi-
ciency, and the DNA suspension volume. In the initial 
amplification step, 5  μl of DNA template were used, so 
samples at the lowest end of this distribution (1 genome/
μl) should have had, on average, five genomic copies per 
PCR reaction. After sequencing, 145 samples had full-
length read coverage for at least one of the two ampli-
cons. For each amplicon, initial raw coverage across these 
samples ranged from 0 to 280,876 reads. After imple-
menting the PASEC pipeline, coverage ranged from 0 
to 31,787 reads. Coverage was sufficient for both ampli-
cons, although median coverage was higher for CSP than 
for SERA2 (1872 vs. 909; Fig.  2a). All samples with low 
coverage (< 100 reads) had Plasmodium DNA concentra-
tions below 21 genomes/μl. Overall, however, coverage 
and genome copy number were only weakly correlated 
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Fig. 2  Sequencing coverage of mock and natural infection samples. Overall sequencing coverage was lower for mock infection (a) than natural 
infection (c) samples (Mann–Whitney U Test, P = 1 × 10−7) although natural infections had a higher proportion of samples with no reads. Total read 
coverage (reads combined from both amplicons) correlated weakly with parasite genome concentration for mock infections (b) and parasitaemia 
for natural infections (d)
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(Spearman’s ρ = 0.55, P = 9.3 × 10−14; Fig. 2b), suggesting 
that stochastic factors influence read counts for low para-
sitaemia samples in general.

Read coverage was higher for the samples from natural 
infections (Fig.  2c). These samples were extracted from 
dried blood spots and had parasite densities that ranged 
from 44 to 653,080 parasites/μl as determined by micros-
copy of blood smears. As with the mock infections, 
coverage was generally higher for samples with higher 
parasite loads, but this correlation was low (Spearman’s 
ρ = 0.31, P = 1.1 × 10−9; Fig. 2d). While read coverage was 
higher, overall sequencing success was lower for the nat-
ural than for the mock infections (Fig. 2c), a likely result 
of difficulties with extracting high quality DNA from the 
stored filter paper blood spots. As would be expected 
under this scenario, failure rate was not evenly distrib-
uted across the natural infection samples, suggesting 
some experienced a higher degree of degradation. Each of 
the 95 blood samples was PCR amplified and sequenced 
in duplicate, yielding two CSP and two SERA2 techni-
cal replicates per initial blood sample extraction, or 340 
total amplicon samples. Of these 340 amplicon samples, 
94 (25%) had low read counts (< 100 reads). These failures 
clustered in a small number of blood samples, suggesting 
that amplification and sequencing success is dependent 
on sample quality: only 33 (35%) of the blood samples 
experienced any amplicon failure and 18 samples (19%) 
received low read counts for all 4 amplicon attempts.

Absolute haplotype concentration affects the probability 
of sequencing success
One challenge of amplicon sequencing analysis is to cor-
rectly resolve individual haplotypes present within an 
infection at varying concentrations. Each mock sample 

contained between one and four unique haplotypes at the 
CSP and SERA2 amplicons present at concentrations of 
1–200 copies/μl (Fig. 1b). Overall, there was a high recov-
ery of these expected haplotypes from each of the sam-
ples. PASEC correctly identified all haplotypes present 
at a concentration of 30 copies/μl or higher and 96% of 
haplotypes with concentrations over 20 copies/μl. Con-
versely, only 41% of haplotypes with 1–5 copies/μl were 
recovered (Fig. 3a). As further discussed in the tool com-
parison below, this haplotype sensitivity is only slightly 
influenced by the post-sequencing analysis method and 
instead is driven by a failure to initially amplify and/or 
sequence these low frequency haplotypes.

Amplicon sequencing retains some information 
on within‑sample haplotype frequencies, even at low 
concentrations
When performing direct short-read sequencing, rela-
tive read depth can be used to infer sample features like 
genotype ratios or genome copy number variations. Dur-
ing construction of amplicon libraries, however, PCR 
amplification prior to sequencing introduces stochastic 
variation in the final read counts. Nevertheless, analysis 
of the final read ratios in the mock samples shows that 
some information about the original haplotype ratios can 
be recovered. For samples with at least 100 reads, the 
correlation between the haplotypic ratio in the template 
DNA and final read ratio was strong across all haplotypes 
(Pearson’s r = 0.82, P < 0.001), but weaker for haplotypes 
with intermediate frequencies between 0.1 and 0.9 (Pear-
son’s r = 0.60, P < 0.001; Additional file 1: Fig. S3). In 73% 
of samples with at least a 4% margin between the two 
most prevalent haplotypes, read ratio correctly identi-
fied the most prevalent haplotype in the starting DNA 
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mixture. Again, low read count reduced the probability 
of identifying the correct major haplotype (Fig. 4a). Simi-
larly, major haplotype identification was less accurate in 
samples with very low total Plasmodium DNA concen-
tration (< 5 genomes/μl; Fig. 4b).

Erroneous haplotypes have lower read support 
than correct haplotypes
Read support is a useful indicator of the likelihood that 
a called haplotype is correct. Haplotypes with single-
read support were largely sequencing artifacts, with only 
0.030% matching a haplotype sequence known to be pre-
sent in the sample mixtures. The default PASEC pipeline 
therefore requires haplotypes to have read support ≥ 2, a 
filter that eliminated 89.0% of CSP and 85.8% of SERA2 
initially called haplotypes from the dataset.

After minimal filtration, 0.75% of the total reads were 
erroneous, a percentage close to that previously reported 
by Hathaway et  al. on a different dataset analysed with 
their tool SeekDeep (0.8%) [20]. Overall, this resulted in 
31% of identified haplotypes being erroneous. Both erro-
neous reads and erroneous haplotypes were unevenly 
distributed across samples, however, making it possible 
to reduce the false positive rate with further filtration. 
First, erroneous haplotypes showed lower read support 
than true haplotypes (Fig. 3b). Raising the minimum hap-
lotype read depth from two to five reads increased preci-
sion from 0.81 to 0.91 while having a smaller impact on 
sensitivity, which was lowered from 0.71 to 0.68 (Addi-
tional file 1: Fig. S4). Second, erroneous reads were more 
prevalent in samples with low read depth and/or low 
parasite concentration (Additional file 1: Fig. S5), which 
results in low precision within these sample groups spe-
cifically (Fig. 5). Finally, the number of reads supporting 
erroneous haplotypes differs between samples with low 
and high read depth. In samples with fewer than 100 

reads, 68% of identified haplotypes were erroneous and 
86% of these erroneous haplotypes had fewer than five 
supporting reads. In samples with at least 100 reads, 15% 
of identified haplotypes were erroneous but only 32% of 
these had fewer than five supporting reads. Therefore, 
in instances where samples with low read count must 
be included, researchers may decide to apply filters that 
are dependent on sample read depth, similar to the par-
asitaemia-dependent frequency filters created by Mideo 
et al. [12].

Frequency and source of haplotype errors in the mock 
samples
The PASEC pipeline contains customized filtration and 
error-correction steps to remove erroneous CSP and 
SERA2 haplotypes. The filtration and error-correction 
steps in PASEC were designed to address three main 
sources of erroneous haplotypes: sequencing errors, chi-
meric reads, and sample contamination. The frequency of 
these error types and the efficacy of the various PASEC 
filters are discussed in more detail below. To provide a 
more complete profile of the error types found in ampli-
con data, the presented results are minimally—not opti-
mally—filtered. As most filters will result in a tradeoff 
between sensitivity and specificity, researchers can tailor 
the exact level of filtering to their specific data set and 
scientific question.

Nucleotide sequence errors
The majority of erroneous haplotypes are expected to 
result from sequence errors (nucleotide substitutions 
or indels) that occur during Illumina sequencing or the 
initial rounds of PCR. The PASEC pipeline accounted 
for these errors with two approaches: (1) hard masking 
error-prone sequence regions and (2) clustering haplo-
types that differed by a single nucleotide and had a read 
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coverage ratio ≥ 8:1. Hard masking was applied to two 
homopolymeric regions in CSP composed of 9 and 6 
poly-Ts. In the raw data, erroneous indels within these 
two regions were detected in 5.7% and 1.2% of full-length 
reads. While true indels might occur in these sequences 
in natural populations, this high artifactual indel rate sug-
gests that inference of variants in these regions would be 
too unreliable using Illumina sequencing. Compared to 
masking, the clustering of haplotypes had an even greater 
impact on reducing nucleotide errors: 57.0% of CSP hap-
lotypes and 47.9% of SERA2 haplotypes were eliminated 
at this step.

In the final minimally filtered dataset, approximately 
half of the erroneous haplotypes (51%) differed from 
a true haplotype by one or two nucleotide changes and 
were likely the result of Illumina sequencing or PCR 
errors. As discussed above, these haplotypes were sup-
ported by fewer reads than true haplotypes (Fig. 3b) and 
were more prevalent in samples with low read count. 
Additional filtration could therefore be applied on these 
factors to further reduce the false positive rate after 
assessing the potential need to detect closely related hap-
lotypes with a high frequency skew.

Chimeric reads
Chimeric reads are false recombinant haplotypes gener-
ated during PCR amplification. While a necessary con-
sideration when performing amplicon sequencing, their 
overall impact on the mock sample analysis was mini-
mal. Potential chimeras were identified with the isBimera 
function in DADA2 [18], which identifies all haplotypes 

that could be constructed from a simple combination of 
two other haplotypes within the same sample. This anal-
ysis flagged 7 CSP and 16 SERA2 samples as containing 
a total of 36 chimeric haplotypes. Eleven (31%) of the 
flagged haplotypes were in fact true haplotypes known 
to be within the given sample. Further analysis showed 
that 20 of the 25 flagged erroneous haplotypes were only 
one nucleotide change away from another haplotype in 
the sample, and the remaining five were related by two 
nucleotide changes. This suggests that these haplotypes 
may have resulted from PCR or sequencing error instead 
of chimeric read formation. Eighteen (78%) of the flagged 
samples had total read counts under 200, the read thresh-
old previously used with the PASEC pipeline [1]. The 
increased stochasticity associated with low-read samples 
may explain why these haplotypes were not merged as 
part of the PASEC sequencing error filter.

Correctly identifying chimeric reads in natural infec-
tions presents an additional challenge, especially in 
regions of high malaria prevalence where recombina-
tion among haplotypes will be higher. Of the 50 most 
common CSP sequences detected in sub-Saharan Africa 
[8], 38 (76%) were flagged as chimeric combinations by 
DADA2. Researchers must therefore consider additional 
factors like population-level haplotype frequency when 
identifying chimeric reads in natural infections [19, 20].

Cross‑sample or environmental contamination
A large percentage (49%) of erroneous haplotypes had no 
evidence of chimerism and were unlikely to have resulted 
from sequencing errors as they were ≥ 3 nucleotide 

a b

Fig. 5  Error rates are higher for samples with low read counts and/or low parasite density. Sensitivity and precision are affected by a read count 
per amplicon and b parasite genome concentration. All results were obtained with the PASEC pipeline on the full set of mock samples using only 
minimal filtration. 95% confidence intervals were estimated with 1000 bootstrapped data set replicates
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changes away from any true haplotype within a given 
sample. 68% of these haplotypes were present in other 
samples from the same MiSeq run, suggesting cross-
sample or environmental contamination. The remaining 
haplotypes occurred only once in the whole dataset and 
may have resulted from environmental contamination. A 
small amount of cross-sample or environmental contami-
nation was also observed in the negative control sam-
ples that contained either water (N = 2) or human DNA 
(N = 2). These four Plasmodium-free samples contained 
5, 7, 16, and 20 reads, respectively. All of these read 
counts fell well below per-sample threshold of 200 reads 
that was used previously with the PASEC pipeline [1].

Comparison of PASEC with three state‑of‑the‑art amplicon 
analysis tools
The performance of PASEC—a pipeline that has been 
carefully tuned for use with the CSP and SERA2 ampli-
cons in P. falciparum—was compared to that of three 
analysis tools that were developed to be applied to 
amplicons from any genomic region: DADA2 [18], Hap-
lotypR [19], and SeekDeep [20]. All four of these tools 
were designed to detect low-frequency haplotypes and 
differentiate unique haplotypes with single-nucleotide 
resolution. There are, however, differences in the ana-
lytical approaches. For instance, during error filtration 
PASEC and HaplotypR rely mainly on variant frequency 
and read depth, while SeekDeep incorporates k-mer fre-
quencies and base quality scores and DADA2 further 
models sequencer-specific error likelihoods. SeekDeep 

additionally allows users to incorporate replicate PCR 
and sequencing runs into the analysis. This approach 
provides higher confidence for differentiating between 
sequencing errors and true haplotypes that differ at only 
a single nucleotide. However, as the mock samples did 
not provide the opportunity to discriminate between 
such closely related haplotypes, this SeekDeep feature 
was not evaluated in the trial.

While all these tools have undergone rigorous test-
ing, no previous study has focused on their performance 
under extremely low parasite densities (but see [12]). 
Here, each tool was applied to the mock samples and 
it was evaluated on (1) the proportion of all expected 
haplotypes that were observed (sensitivity) and (2) the 
proportion of observed haplotypes that were expected 
(precision).

Sensitivity and precision
Overall, the four tools performed comparably on the 
mock sample panel, although they showed more vari-
ability in precision than in sensitivity (Fig. 6). What dif-
fers most between pipelines is their ability to filter out 
erroneous haplotypes, not identify correct haplotypes. 
For instance, while the sensitivity of SeekDeep1x—the 
SeekDeep implementation using only one technical rep-
licate—was comparable to the other four pipelines, its 
precision was substantially lower, driven by the identifi-
cation of a high number of erroneous haplotypes. The use 
of replicate samples in SeekDeep2x greatly decreased the 

a b

Fig. 6  Sensitivity and precision of five analysis pipelines for the detection of haplotypes in mock samples. a Analysis approaches vary more in 
precision than in sensitivity. b Performance of all pipelines improves when considering only samples that had at least 100 reads for an individual 
amplicon. Data shown include results from both the CSP and SERA2 amplicons. 95% confidence intervals were estimated with 1000 bootstrapped 
data set replicates
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tool’s false positive rate, increasing precision with a small 
cost in sensitivity.

Each tool’s performance varied to some extent across 
amplicons. This variation was not consistent across pipe-
lines, and as a result, the pipelines’ rank order for preci-
sion and sensitivity was different for CSP and SERA2 
(Table 1; Additional file 1: Fig. S6).

Effect of sample read depth and genome copy number
All five pipelines showed reduced performance at low 
parasite concentrations (< 5 genomes/μl of template 
or < 25 genomes/PCR reaction; Additional file  1: Fig. 
S7) and at very low read depths (< 25 reads/sample; the 
exception being HaplotypR, which filtered out samples 
with < 25 reads). In particular, SeekDeep2x performed 
best on samples with at least 100 reads (Fig.  6b). Para-
site genome copy number also affected the tools’ success 
at returning any data for a sample (i.e., resolving at least 
one haplotype within that sample). Overall, the pipe-
lines reported haplotypes within 78% (HaplotypR), 81% 
(DADA2), 84% (SeekDeep2x), 89% (PASEC), and 96% 
(SeekDeep1x) of the samples (Additional file 1: Fig. S8A). 
The majority of the samples returning no data contained 
Plasmodium DNA concentrations under 5 genomes/μl 
(Additional file 1: Fig. S8B).

Determination of major haplotype frequency
As reported above, PASEC correctly identified the 
expected major haplotype in 73% of the mock samples. 
Misidentification of the expected haplotype could result 

from errors in the pipeline or stochasticity during sam-
ple construction, PCR amplification and sequencing. 
Strongly suggesting that stochasticity in sample process-
ing and sequencing plays a role, the frequency estimate 
for each sample’s major haplotype was highly correlated 
between tools (Pearson’s r for all pairs > 0.85, P < 0.001; 
Additional file 1: Fig. S9A). The correlation between tools 
was even higher when limiting the analysis to samples 
with at least 100 reads (Pearson’s r for all pairs > 0.97, 
P < 0.001; Additional file 1: Fig. S9B). All tools, therefore, 
arrive at comparable frequency estimates based on the 
number of reads produced per haplotype.

Analysis of natural infection samples from sub‑Saharan 
Africa with the four tools
All five pipelines were then applied to newly generated 
amplicon data from 95 previously extracted parasite 
positive blood spots from four countries in sub-Saharan 
Africa (Fig.  1c) [1]. These biological samples were PCR 
amplified and sequenced in duplicate, yielding 190 inde-
pendently sequenced samples for each of the two ampli-
cons. With the exception of SeekDeep2x, the technical 
replicates were again treated as separate samples in the 
analysis step. All tools were run with the same parame-
ters used for the mock samples.

The tools differed in the total number of unique hap-
lotypes identified across the samples, with estimates 
ranging from 48 to 336 for CSP and 38 to 412 for SERA2 
(Additional file  1: Fig. S10). For both amplicons, Seek-
Deep1x and DADA2 identified substantially more 

Table 1  Sensitivity and precision of each pipeline (mean [95% CI])

DADA2 HaplotypR PASEC SeekDeep1x SeekDeep2x

All samples

 Sensitivity

  All 0.66 [0.62, 0.70] 0.66 [0.62, 0.70] 0.71 [0.68, 0.75] 0.72 [0.68, 0.76] 0.62 [0.56, 0.68]

  CSP 0.66 [0.61, 0.71] 0.64 [0.59, 0.70] 0.70 [0.64, 0.75] 0.70 [0.65, 0.75] 0.61 [0.53, 0.69]

  SERA2 0.65 [0.59, 0.70] 0.68 [0.62, 0.74] 0.73 [0.68, 0.78] 0.73 [0.68, 0.79] 0.63 [0.55, 0.71]

 Precision

  All 0.81 [0.77, 0.84] 0.88 [0.85, 0.90] 0.81 [0.78, 0.85] 0.25 [0.23, 0.27] 0.68 [0.63, 0.74]

  CSP 0.72 [0.67, 0.77] 0.94 [0.91, 0.97] 0.86 [0.81, 0.89] 0.26 [0.23, 0.28] 0.77 [0.69, 0.84]

  SERA2 0.91 [0.87, 0.94] 0.82 [0.78, 0.86] 0.77 [0.72, 0.82] 0.25 [0.22, 0.28] 0.61 [0.53, 0.68]

Samples with ≥ 100 reads

 Sensitivity

  All 0.83 [0.80, 0.86] 0.84 [0.81, 0.86] 0.83 [0.81, 0.86] 0.83 [0.80, 0.86] 0.78 [0.78, 0.87]

  CSP 0.82 [0.78, 0.86] 0.82 [0.77, 0.86] 0.82 [0.78, 0.86] 0.82 [0.78, 0.86] 0.84 [0.78, 0.89]

  SERA2 0.85 [0.80, 0.89] 0.86 [0.81, 0.90] 0.85 [0.80, 0.89] 0.85 [0.81, 0.89] 0.82 [0.75, 0.88]

Precision

  All 0.83 [0.80, 0.86] 0.89 [0.87, 0.92] 0.92 [0.90, 0.94] 0.26 [0.24, 0.28] 0.79 [0.74, 0.84]

  CSP 0.75 [0.70, 0.79] 0.94 [0.91, 0.96] 0.95 [0.92, 0.97] 0.27 [0.24, 0.30] 0.88 [0.83, 0.93]

  SERA2 0.92 [0.88, 0.95] 0.84 [0.80, 0.88] 0.90 [0.86, 0.93] 0.25 [0.22, 0.28] 0.71 [0.63, 0.78]
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haplotypes than the other approaches, although a large 
percentage of these haplotypes were found at within-
sample frequencies under 1%, raising the possibility that 
they were artifacts. Only PASEC identified a three nucle-
otide indel in SERA2 that was found on seven different 
haplotypic backgrounds. This was because the PASEC 
hard filters permitted this indel to remain based on its 
prior observation in African parasites [1].

Consistent with expectations for sub-Saharan Africa, 
the majority of the natural infection samples contained 
multiple P. falciparum parasite haplotypes. COI was 
estimated for each sample as the maximum number of 
unique haplotypes identified at either of the two ampli-
cons. With the exception of SeekDeep1x, all four tools 
produced similar trends of mean COI per country (Fig. 7; 
Additional file 1: Fig. S11). The overall higher number of 
haplotypes identified with SeekDeep1x is also in keeping 
with the observation that SeekDeep showed lower preci-
sion on the mock samples than the other tools when run 
with single replicates (Fig. 6).

Discussion
Amplicon sequencing of complex haplotypic regions 
is a powerful tool being applied to an increasing range 
of questions in malaria research. This highly scalable 
approach can accurately estimate COI, identify distinct 
haplotypes within polyclonal infections, and permit tem-
poral tracking of distinct clones, however, reliable analy-
sis requires a thorough understanding of potential error 
sources. Previous applications and evaluations of ampli-
con sequencing have focused on moderate to high density 
infections. Here, the performance of amplicon sequenc-
ing was assessed for the first time under a scenario of 
extremely low parasite densities (1–200 genomes/μl of 
DNA template), which mimicked samples that could be 
obtained from asymptomatic carriers. The results show 

that amplicon sequencing remains a viable approach 
under such challenging scenarios, as it was able to detect 
77% of individual haplotypes present at concentrations 
of 5–10 genomic copies/μl when using 5  μl of template 
per PCR reaction. The ability of Illumina-based amplicon 
sequencing to reliably detect Plasmodium DNA at these 
extremely low concentrations shows that it has a limit 
of detection on par with standard nested PCR [27] and 
qPCR [28] methods.

While amplicon sequencing is successful at low parasite 
densities, analysis of such samples presents unique chal-
lenges, particularly when parasite DNA concentration 
drops below 5 genomes/μl. At these low concentrations, 
overall sample-level error rates are higher and quantifica-
tion of haplotype ratios is less accurate, regardless of the 
applied analysis tool. Researchers should, therefore, take 
steps to lower false positive rates in this challenging class 
of samples. Since erroneous haplotypes are generally sup-
ported by fewer reads (Fig.  3b) and samples with lower 
read counts have a higher proportion of false haplotypes 
(Additional file 1: Fig. S5), it should be standard practice 
to raise read thresholds when analysing low parasitaemia 
or low coverage samples.

PASEC’s high performance was the result of hand-
tuning for use with the amplicons CSP and SERA2. 
This included the hard masking of difficult-to-sequence 
homopolymer runs in the CSP amplicon and the a pri-
ori identification of indels in SERA2. As a result of this 
customization, it was the only tool to identify a naturally 
occurring three nucleotide deletion in SERA2 that is pre-
sent in Africa. Importantly, however, this study shows 
that three other tools—DADA2, HaplotypR, and Seek-
Deep—also provide robust results when prior knowledge 
of the error profile of an individual amplicon is unavail-
able and rapid, parallelized analysis is not needed.

Amplicon sequencing will become more useful as fur-
ther methodological development is undertaken. For 
instance, ongoing updates to SeekDeep (made after v. 
2.6.0, which is used here) have focused on improving 
both sensitivity and specificity, especially with low read-
depth and single-replicate samples (github.com/bailey-
lab/SeekDeep). In this analysis, precision varied most 
among tools, resulting from their different approaches 
towards error correction. As the rank order of the tools’ 
precision differed between the two amplicons, however, 
the relative success of these different approaches seems 
dependent on genetic context. Evaluation of these tools 
on a larger set of diverse amplicons will be required to 
formulate an understanding of how specific genetic 
characteristics drive these differences in precision. In 
the meantime, with PASEC and SeekDeep in particular, 
users can increase precision by implementing a simple 
100 read threshold at the sample level (Table  1) or by 
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Fig. 7  Mean COI estimates for four sub-Saharan African study sites 
made by the five analysis pipelines. COI was defined as the maximum 
number of haplotypes retrieved for the sample from either of the two 
amplicons. Amplicon-specific estimates are found in Additional file 1: 
Fig. S11
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calibrating filters with variable read thresholds when par-
asite concentrations are known [12]. Additional increases 
in precision will require further development in areas 
like contaminant identification, and this work is ongo-
ing [29, 30]. These advances will also improve sensitiv-
ity with low-frequency haplotypes as more refined error 
identification could lessen the need for stringent cutoffs 
like the 1% within-sample read count filter recommended 
with PASEC. Further improvements in sensitivity, how-
ever, will largely rely on changes upstream of the analy-
sis stage as the inability to detect a haplotype generally 
resulted from a failure to capture it at the amplification or 
sequencing stage. This is reflected by the roughly equiva-
lent sensitivities for the four evaluated tools.

The exact error profile described here is not directly 
portable to studies that use alternative amplicons and 
PCR protocols or that employ different sequencing meth-
ods. Still, it likely provides reasonable guidelines for the 
use of amplicon sequencing with low-density samples. 
Mideo et al. [12] previously implemented sample-level fil-
tering with a different CSP amplicon that was sequenced 
using Ion Torrent technology. Using a dilution series of 
mock samples, they evaluated the relationship between 
parasite density and haplotype error rate, allowing hap-
lotype frequency cutoffs to shift as a function of sample 
parasite DNA concentration. As in the study here, they 
found that the proportion of erroneous reads within a 
sample increased dramatically below 6 genomic copies/
μl. However, while this similarity is suggestive, it should 
not preclude future evaluations with different protocols, 
and researchers should continue to inform filtration 
parameters with study-specific error estimates.

Similarly, studies that use other amplicons or sam-
ple from different geographic regions must consider the 
expected haplotype diversity within the targeted parasite 
population. This knowledge can refine filtering at both 
the nucleotide and haplotype level. At the nucleotide 
level, segments prone to sequencing errors can be hard 
masked, and alternatively, known variants—like difficult-
to-sequence indels—can be permitted to pass through 
otherwise stringent filters. Such filtration is directly 
incorporated into PASEC but could also be performed 
post hoc with other analysis tools. At the haplotype level, 
comparing the frequencies of haplotypes within samples, 
within plates, and across the entire population can help 
flag sequencing errors, chimeric reads, and instances of 
contamination. All the amplicon analysis pipelines used 
here rely on population-level information either gathered 
previously or drawn simultaneously from the dataset to 
inform filtering. As filtering cutoffs directly affect both 
sensitivity and specificity, however, researchers should 
make informed decisions regarding the expected sen-
sitivity/specificity tradeoffs, especially in the instances 

where filtering levels are not manually set by the user. In 
addition for large studies, filtering can be implemented 
in an iterative way as more data are acquired for a given 
population.

Conclusion
As demonstrated here with the new tool PASEC, ampli-
con sequencing can be applied to samples with both 
low and high parasite densities, although the consistent 
detection of parasite clones with very low prevalence (< 5 
genomes/μl of extracted DNA) is challenging. When used 
under their recommended conditions, three other versa-
tile analysis tools (DADA2, HaplotypR, and SeekDeep) 
showed similar performance compared to PASEC. Over-
all, all tools performed well, and so final choice of analy-
sis method will depend largely on study design (e.g., the 
inclusion of technical PCR/sequencing replicates), the 
read coverage of the samples, and expectations regarding 
the targeted Plasmodium genotypes (e.g., the potential 
presence of indels or the need to differentiate between 
low frequency haplotypes with a single SNP difference). 
Regardless of the tool used, however, it should be stand-
ard practice to raise read thresholds when analysing 
amplicon data from samples with low parasitaemia or 
low coverage (< 100 reads) and to tailor final filters based 
on haplotype frequencies within the study population.
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