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Abstract 

Background:  As areas move closer to malaria elimination, a combination of limited resources and increasing hetero-
geneity in case distribution and transmission favour a shift to targeted reactive interventions. Reactive case detection 
(RCD), the following up of additional individuals surrounding an index case, has the potential to target transmission 
pockets and identify asymptomatic cases in them. Current RCD implementation strategies vary, and it is unclear 
which are most effective in achieving elimination.

Methods:  OpenMalaria, an established individual-based stochastic model, was used to simulate RCD in a Zambia-like 
setting. The capacity to follow up index cases, the search radius, the initial transmission and the case management 
coverage were varied. Suitable settings were identified and probabilities of elimination and time to elimination esti-
mated. The value of routinely collected prevalence and incidence data for predicting the success of RCD was assessed.

Results:  The results indicate that RCD with the aim of transmission interruption is only appropriate in settings 
where initial transmission is very low (annual entomological inoculation rate (EIR) 1–2 or prevalence approx. < 7–19% 
depending on case management levels). Every index case needs to be followed up, up to a maximum case-incidence 
threshold which defines the suitability threshold of settings for elimination using RCD. Increasing the search radius 
around index cases is always beneficial.

Conclusions:  RCD is highly resource intensive, requiring testing and treating of 400–500 people every week for 
5–10 years for a reasonable chance of elimination in a Zambia-like setting.
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Background
One of the great challenges of malaria control in the face 
of decreasing transmission is onwards-transmission by 
asymptomatic infections [1], which are not detected by 
traditional interventions. Furthermore, heterogeneity 
in incidence and transmission and spatial and temporal 
clustering of cases [2] make mass interventions cost-inef-
ficient, increasingly ineffective and unsustainable in low-
transmission settings. The World Health Organization 
(WHO) elimination guide [3, 4] addresses this need to 
adapt intervention strategies in the elimination phase to 

highly targeted, locally adapted measures to track down 
foci of transmission. Surveillance-based strategies, such 
as (re)active case detection (RCD) serve as key tools in 
following these aims and optimizing resource allocation.

In reactive strategies, when an index case of clinical 
malaria presents to a health facility, this triggers follow-
up activities around the index case. Assuming that cases 
are geographically clustered and that presence or absence 
of symptoms is independent of surrounding cases, reac-
tive interventions may thus allow targeted detection or 
intervention on symptomatic cases who do not seek care 
as well as asymptomatic cases. Although reactive strate-
gies have high approval rates and have been implemented 
in a range of settings, in practice, many variations of 
strategies are employed globally. In low-prevalence 
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urban areas of India, contacts of cases are screened [5]. 
In Southern Province, Zambia, all individuals within a 
140  m radius of the index case are tested [6]. RCD has 
also been implemented in 13 of 14 countries in the Asia 
Pacific region including China [7]. China successfully 
adapted the so-called “1-3-7” strategy where malaria 
cases are reported within 1  day, their confirmation and 
investigation occurs within 3  days and the appropriate 
follow-up intervention to prevent onwards transmis-
sion occurs within 7  days. Follow-up interventions may 
include indoor residual spraying (IRS) or RCD within the 
household [7, 8]. Little information on the detailed imple-
mentation strategies is available for other programmes in 
the Asia Pacific region [9]. Overall, the range of possible 
surveillance-response combination strategies is too vast 
for systematically assessing different strategies across 
a wide range of settings. A comparison of RCD efficacy 
between the few existing field studies is difficult due to 
differences in contextual determinants (such as health 
system infrastructure, geography, demographic structure 
or transmission intensity), which may influence optimal 
strategies. In addition to this, none of the existing field 
studies have assessed the effect of RCD on transmission 
[10] and the sites in question are yet to reach elimination, 
making them unsuitable for deriving even case study 
estimates of the potential of different RCD strategies in 
achieving elimination. Even with a simple test-and-treat 
follow-up, the relative relevance of parameters, such as 
the numbers of index cases and follow-up individuals, 
and optimum strategies thus remain to be determined.

Previous work using a deterministic susceptible-
infected-susceptible (SIS) model highlights the impor-
tance of prevalence at the beginning of the intervention 
and suggests that relative values of the number of index 
cases followed, ι , and the number of neighbours in the 
search radius, ν , affect equilibrium prevalence levels even 
when the total number of individuals screened (the prod-
uct of ι and ν ) is the same. The proportion of all infections 
found per unit time appears to be the main determinant 
of reduction in prevalence [11]. These models highlight 
the main features of the dynamics of the system but can-
not provide quantitative predictions applicable to specific 
settings as they do not incorporate stochastic events, the 
effects of seasonality, within host parasite dynamics, host 
immunity, dynamic numbers of index cases or dynamic 
testing rates. In this study, test-and-treat-based reactive 
case detection was implemented in OpenMalaria, a pow-
erful, individual-based stochastic model that includes the 
above factors. OpenMalaria was parameterized using 
a data set from Southern Zambia, to provide a realistic 
setting for which the applicability of simpler models was 
evaluated. The relevance of different parameters in deter-
mining the proportion of runs where transmission is 

interrupted was assessed by carrying out simulations uti-
lizing different RCD strategies across entomological and 
health care settings.

Two large simulation experiments are reported in this 
paper. The first experiment is used to characterize set-
tings where RCD alone can lead to interruption of trans-
mission, assess which strategies are most efficacious in 
the different settings, and determine the sensitivity of 
success to programme specific parameters (follow-up 
capacity vs. search radius). The second experiment is 
used to assess the time to interruption of transmission 
and determine whether success is predictable through 
routinely collected data. Because the simulations are sto-
chastic, the results were analysed using conventional sta-
tistical models and machine learning techniques, treating 
them as a large real-world experiment.

Methods
Transmission and disease model
The impact of RCD was simulated using OpenMalaria 
(https​://githu​b.com/Swiss​TPH/openm​alari​a.wiki.git), a 
modelling platform allowing for individual-based sto-
chastic models of malaria dynamics in humans [12], 
linked to a periodically-forced deterministic model of 
malaria in mosquitoes [13]. Further details about the 
model have been previously published [14]. In brief, 
OpenMalaria captures different clinical presentations of 
malaria in individual humans as well as vector ecology 
across a range of species and Plasmodium falciparum 
dynamics in both humans and mosquitoes, allowing for 
simulations of interventions in comparatively realistic 
settings. Since blood stage parasite densities are tracked, 
the model allows for case management based on simu-
lated events dependent on individual patient parasite 
densities. The simulated human population is updated 
every 5  days with multiple outcomes, including clinical 
incidence, the total number of infections, and the infec-
tiousness to mosquitoes, which depends on the recent 
history of parasite densities. The original model required 
the fitting of 38 parameters of malaria epidemiology, 
either independently (13 parameters) for independent 
model components, such as within-host parasite dynam-
ics, or through a combined fitting process (25 param-
eters). A total of 61 scenarios were constructed based on 
field data and correspond to field sites where the pattern 
of transmission and one or more epidemiological vari-
ables were known. Ten different objective functions (like-
lihood or sum of squares) were derived from these data 
sets, representing important epidemiological malaria 
relationships, such as age pattern of incidence of clini-
cal malaria. A number of alternative model formulations 
exist.

https://github.com/SwissTPH/openmalaria.wiki.git
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OpenMalaria was parameterized in accordance with 
Zambia 2010 Southern Province census data with a simu-
lated population size of N = 10,000, approximately equal 
to the population of a single health centre catchment. 
Seasonality was incorporated in the same pattern from 
Southern Zambian data as in previous publications (e.g. 
[15]). A warm-up period of one human life span was run 
to induce a stable level of immunity. During the warm-
up period, simulations were run with forced transmis-
sion rates. Simulations were run for nominal calendar 
year t = 2010 until t = 2035 with introduction of RCD at 
t = 2020 for a period of 10 years. Monitoring was started 
with surveys in 5-day intervals from t = 2017.

Model of reactive case detection
RCD was modelled as a test-and-treat intervention added 
to and dependent on routine passive case detection and 
treatment included in the simulations for a period of ten 
years (Fig. 1a). Within each 5-day time step, for all ι pas-
sively detected index cases tested with a rapid diagnos-
tic test with a detection threshold 50 parasites per 1  μl 
and a specificity of 0.942 [16], an additional ν individuals 
(neighbours) are tested, and treated if infected. All treat-
ments are simulated as leading to an immediate cure (but 
prophylactic effects were not considered).

OpenMalaria does not explicitly model the spatial pat-
tern of infection. Instead, the effect of case clustering is 
captured by simulating treatment of all infections in ντ 
individuals selected at random, where the targeting ratio, 
τ , is the ratio of the prevalence amongst the ν individu-
als closest to the case, to the population prevalence, p . 
Equivalently, τ is the ratio of the size of a random sample 
that would be need to be tested (and treated if infected), 
to the number actually tested and treated, in order to 
achieve the same number of effective treatments [11].

The targeting ratio was estimated as a function of p and 
ν using Markov Chain Monte Carlo (MCMC) methods 
from data of a cluster-randomized trial carried out in the 
Zambian study area [11, 17] and is defined as:

where N  is the population of the health centre catchment. 
α1−3 are constants derived from field data: α1 = 0.230 , 
α2 = −1.395 and α3 = 2.874 . It should be noted that this 
definition of τ provides a better fit for low to medium val-
ues of τ and that high values are mathematically possible 
at low ν and p . Since these have not been observed in the 
field, τ was constrained to τ ≤ 10 (Fig. 1b).

This yields an intervention coverage c of

where ι is the actual number of index cases investigated 
per 5-day period. ι is dependent on the number of cases 
that present to a health facility and the maximum capac-
ity of the RCD programme to follow up index cases, ιmax . 
Treatment failure in the community (for whatever rea-
son) or diagnostic insensitivity are equivalent to a reduc-
tion in v. Coverage was calculated for each 1% prevalence 
interval and for ι = 1 . . . ιmax . The number of passively 
detected index cases that could be followed up per time 
interval, i.e. the capacity of the program, was constrained 
by fixing ιmax.

Simulation experiments
Simulation experiment 1: a total of 83,200 simulations 
were run in a full factorial experiment, considering 64 
settings defined by different transmission intensities and 
case management levels for different intensities of RCD 
with one random seed each (Table  1). The simulated 
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Fig. 1  Basic concepts used in the models. a Reactive case detection setup. b The targeting ratio, τ as a function of prevalence, p and search radius ν
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entomological inoculation rates (EIR) were all rather low. 
Entomological specifications including seasonality were 
parameterized as in previous simulations of southern 
Zambia [15]. In accordance with the southern Zambian 
study site, a reference health care system was chosen such 
that the probability of effective treatment of any clinical 
case within 14 days (E14) was 21.8% with a failure proba-
bility of 19.3% [15]. This was converted to the health care 
system input parameter in OpenMalaria describing the 
probability that a case with an uncomplicated episode of 
malaria seeks care within 5 days as described previously 
(supplement to Penny et  al. [18]). Eight different case 
management coverages (E14 levels) were simulated. The 
simulated importation rate was zero.

In each of the 64 settings, 1300 RCD strategies were 
considered (Table  1). The 50 simulations per setting 
with ν = 0 were control simulations where no RCD was 
performed. The simulated total number of infections, 
number of confirmed clinical cases, and treatments 
aggregated across all age groups and the simulated EIR, 
were tracked.

Simulation experiment 2: a second simulation experi-
ment was carried out to analyse time to zero prevalence 
(including both patent infections and those below the 
detection threshold) as a function of ιmax and ν , repli-
cating each simulation five times with different random 
seeds (Table  1), allowing us to analyse stochasticity in 
interruption of transmission. This experiment considered 
only the reference case management level.

Analysis of simulation results
Because of the stochasticity featured in the model, the 
simulated dataset was analysed as though it were a real-
world experiment. The initial assessment was of whether 
and where RCD alone can lead to interruption of trans-
mission as a proof of concept, considering also very low 

transmission settings (EIR = 1, 1.25). As transmission in 
such settings can be unstable, stochastic interruption of 
transmission may occur in control settings, so interrup-
tion of transmission in RCD simulations is not necessar-
ily due to the RCD.

Predictors of interrupting transmission: The proportion 
of simulations in Experiment 1 where transmission was 
interrupted was aggregated across all interventions with 
EIR as an independent variable, stratified by case man-
agement level. The number of simulations summarized 
per data point, n, was 1300 

(

ιmax1−50, ν0−50,2

)

 . First, the 
proportion of simulations where RCD interrupted trans-
mission ( p = 0.0 ) by the end of the monitoring period 
(t = 2035) was calculated. Results were aggregated over 
all runs where RCD was implemented and where the 
control ( ν = 0 , i.e. no RCD) did not reach interruption of 
transmission, regardless of RCD strategy. Thus, the effec-
tiveness of RCD was defined as the proportion 1− e1n0

e0n1
 , 

where e is the number of scenarios where transmission 
was interrupted, n is the corresponding total number of 
scenarios, and the subscripts indicate whether RCD was 
implemented (subscript 1) or not (subscript 0).

Each of the 64 settings was further assigned to one of 
three categories depending on whether transmission was 
interrupted in all, none, or only some simulations. This 
indicated in which settings success was dependent on the 
RCD strategy. The proportions or probabilities of inter-
rupting transmission for a given setting and RCD strategy 
were estimated using a range of classification algorithms 
(Random Forest, Gaussian Process, Naïve Bayes and Sup-
port Vector Machines (SVM)). This provided smooth 
probability surfaces in the absence of replication, thus 
avoiding the need for massive numbers of simulations. 
The performances of these algorithms were compared 
using 10-fold cross validated mean area under the curve 

Table 1  Setup of simulation experiments

The reference value (in italic) for E14 is the only value simulated in Experiment 2, where E14 is the probability of effective treatment of any clinical case within 14 days

Variable Description Levels Step size No. of levels 
in experiment 
1

No. of levels 
in experiment 
2

EIR Entomological Inoculation Rate in infectious bites per person per annum 1, 1.25, 1.5, 
1,75, 2.0, 3.0, 
4,0, 5.0

– 8 8

E14 Probability (%) of effective treatment of any case within 14 days 13.9, 21.8, 26.0, 
36.7, 46.1, 
54.6, 62.1 
68.9%

– 8 1

ιmax Maximum number of index cases followed up in a 5-day period 1–50 1 50 50

ν Number of neighbours tested, and treated if infected, for each index case 0–50 2 26 26

Seeds Seeds for random number sequence – – 1 5
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(AUC) and accuracy estimates with a two-third training/
test split.

A formal variable importance analysis of the deter-
minants of interruption of transmission was carried 
out by fitting a set of random forest classifiers to the 
simulation outcomes for settings where these outcomes 
were strategy-dependent. Two different random for-
est classifiers were used based on their inbuilt features, 
after finding their performance to be very similar (accu-
racy = 83–84%). The assessments considered the overall 
permutation importance of EIR, case management, ιmax , 
ν , and the derived variable ιmax

/

max(INC) , the follow 
up capacity as a proportion of the maximum incidence 
across the simulation period. The permutation impor-
tance of each of the above variables was derived, in each 
case adjusted for the other variables.

A second approach measuring the overall incremental 
impact of RCD while adjusting for interruption of trans-
mission in control simulations was to estimate the popu-
lation attributable fraction, PAF. This is the proportion 
of simulations with interrupted transmission in Experi-
ment 1 where transmission was interrupted because of 
the RCD, calculated as described in the supplementary 
information.

Median time to zero prevalence in years: this was com-
puted for each scenario in Experiment 2 where transmis-
sion was interrupted in simulations for at least 3 out of 5 
random seeds.

Prediction of RCD success: the simulations in Experi-
ment 2 were also used to assess the suitability of routinely 
collected incidence and prevalence data in predicting 
RCD success (since EIR is not commonly measured in the 
field). Multiple single-variable logistic regressions was 
used to determine compare the following variables as 

predictors of RCD success: pre-intervention EIR, inci-
dence and the prevalence in the year before introduction 
of RCD, in the first year of the intervention period, and 
the relative reductions of incidence and prevalence, 
defined as p2020−p2019

p2019
 and INC2020−INC2019

INC2019
 , where p2019 , 

INC2019 , p2020 , and INC2020 are prevalence and incidence 
in the last year before and the first year of RCD, 
respectively.

Software
The base model variant of OpenMalaria V36 [12] was 
used. The parameterization process and model vari-
ants are detailed by Smith et al. [12, 19]. Scenarios were 
generated and all analysis was performed in R 3.4.1.The 
classification analysis was carried out using the mlr pack-
age in R. Classif.ranger was used to calculate the overall 
variable permutation importance, whilst the adjusted 
permutation importance was calculated using the classif.
RandomForest.SCR classifier from the randomForestSCR 
package (https​://kogal​ur.githu​b.io/rando​mFore​stSRC​/). 
Calculations were performed at sciCORE (http://scico​
re.uniba​s.ch/) scientific computing core facility at Uni-
versity of Basel.

Results
Transmission was interrupted in 68.2% of simulations in 
Experiment 1, 69.3% of simulations with RCD and 42.7% 
of control settings. The proportion of simulations with 
interruption of transmission where this could be attrib-
uted to the RCD (PAF) was 37.5% overall (95% CI 35.0, 
39.9). Results stratified by case management level are 
presented in Table  2. The effectiveness of RCD ranges 
between 28% (21, 34) and 51% (41, 59) for different lev-
els of case management. PAF estimates range between 

Table 2  Contingency analysis for interruption of transmission with RCD stratified by case management levels

The total number of simulation runs at each case management level is 11,400 with 11,000 RCD+ and 400 RCD−. E14 is the probability of effective treatment of any 
clinical case within 14 days. REF indicates the reference scenario
a  Wald confidence limits

†Chi-squared

E14 (%) Transmission interrupted Total Effectiveness PAF (%)a p-value†

RCD+ (e1) RCD− (e0) RCD+(n1) RCD− (n0)

13.9 4421 87 10,000 400 0.51 (0.41, 0.59) 49.8 (39.7, 58.2) < 0.001

21.8 (REF) 5618 130 10,000 400 0.42 (0.33, 0.50) 41.2 (32.4, 48.8) < 0.001

26.0 6023 121 10,000 400 0.50 (0.42, 0.57) 48.8 (40.7, 55.8) < 0.001

36.7 6760 150 10,000 400 0.44 (0.37, 0.51) 43.6 (36.1, 50.2) < 0.001

46.1 7586 218 10,000 400 0.28 (0.21, 0.34) 27.4 (20.7, 33.5) < 0.001

54.6 7883 224 10,000 400 0.29 (0.22, 0.35) 28.2 (21.8, 34.0) < 0.001

62.1 8510 191 10,000 400 0.44 (0.38, 0.49) 42.9 (36.9, 48.4) < 0.001

68.9 8604 244 10,000 400 0.29 (0.23, 0.35) 28.3 (22.6, 33.6) < 0.001

Total 55,405 1365 80,000 3200 0.38 (0.36, 0.41) 37.5 (35.0, 39.9) < 0.001

https://kogalur.github.io/randomForestSRC/
http://scicore.unibas.ch/
http://scicore.unibas.ch/
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27.4 (20.7, 33.5) at E14 = 46.1% and 49.8 (39.7, 58.2) at 
E14 = 13.9%. Overlapping confidence intervals and vari-
ability in PAF estimates yield no evidence of a trend for 
different case management levels. These results dem-
onstrate that RCD can increase chances of interrupting 
transmission, but also highlight the stochasticity of this.

Three example simulations of time series of malaria 
annual incidence per 10,000 person-years throughout 
the simulation period are presented in Fig.  2. The over-
all treatment capacity of the intervention, the product 
of ιmax and ν , was kept constant at 100 individuals per 
5 days but resources were differentially allocated between 
the two parameters (50 and 2, 10 and 10, or 2 and 50 for 
ιmax and ν , respectively). The fourth simulation corre-
sponds to treatment of index cases only (zero follow up 
radius). Only the scenario with equal resource allocation 

( ιmax = ν = 10 ) reaches interruption of transmission 
by the end of the monitoring period, demonstrating the 
importance of appropriate resource allocation.

Figure  3a shows settings where transmission was not 
interrupted in controls categorized by proportion of simu-
lations where transmission is interrupted. Each tile repre-
sents simulations of all RCD strategies for the given setting. 
Categories were assigned based on whether in all, some, 
or none of the simulations transmission was interrupted. 
PfPR0-99 values indicate mean prevalence prior to RCD.

For all settings where interruption of transmission is 
dependent on RCD strategy, strategy-dependent proba-
bilities of interrupting transmission were predicted using 
Random Forest, SVM, Gaussian Process and Naïve Bayes 
Classifiers. Mean 15-fold cross-validated AUC was high-
est for Gaussian process classifier (range 0.70–0.98 across 
settings for 67% training), but predicted patterns were 
similar across all classifiers. The results are presented 
in Fig. 3b and demonstrate the narrow range of settings 
where RCD strategy determines RCD success. The RCD 
strategy determined the probability of interrupting trans-
mission only in simulations with an initial PfPR0-99 of 
7–20%, depending on case management levels (for the 
dependency of initial PfPR0-99 on EIR and case manage-
ment is shown see Fig. S1 in Additional file  1). Below 
this range, transmission was generally unstable, above 
this range transmission was too high to be interrupted 
regardless of RCD intensity. Of the settings where inter-
ruption of transmission using RCD was possible, settings 
with higher transmission or lower management required 
more intense RCD. High case management alone can 
lead to 100% interruption of transmission even when 
transmission is moderate (PfPR0-99 = 28%, E14 > 63%).

To further assess the differential effects of setting specific 
parameters, an individual sensitivity analyses for EIR was 
carried out, stratified by case management level. Figure 4 
shows results for different initial EIR, different case man-
agement levels, and for the corresponding initial (all age) 

Fig. 2  Example of annual incidence throughout the simulation 
period for different intervention strategies. The total screening 
capacity of RCD is kept constant at 100, but resources are 
differentially allocated between maximum number of index cases 
that can be screened, ιmax , and the individuals to be screened within 
the search radius, ν . Grey dashed lines denote the beginning and end 
of the intervention period. Case management is at reference level 
(E14 = 21.8%, where E14 is the probability of effective treatment of any 
clinical case within 14 days)

Table 3  Single-variable logistic regression results and % correctly classified runs when using the given model

a  Per 1% increase

Estimated odds 95% CI p-value Correctly 
classified 
(%)

EIR 0.082 (0.079, 0.088) < 0.0001 83.9

Incidence before 0.996 (0.996, 0.996) < 0.0001 83.3

log(prevalence before)a 0.090 (0.086, 0.094) < 0.0001 83.3

Incidence year 1 0.990 (0.989, 0.990) < 0.0001 86.1

log(prevalence year 1)a 0.038 (0.035, 0.040) < 0.0001 84.8

reduction in incidence 0.403 (0.367, 0.443) < 0.0001 63.4

reduction in prevalence 1.308 (1.164, 1.470) < 0.0001 62.8
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Fig. 3  Dependence of prevalence and of probability of elimination on settings. a Mean PfPR0-99 before RCD for different combinations of 
transmission potential and case management. Each pixel represents 250 different RCD strategies with the maximum number of index cases that 
can be followed up, ιmax , and the search radius, ν , ranging from 1 to 50 and 0 to 50 respectively. b Predictions of probability of elimination for all 
strategies and settings. Probabilities were generated using a Gaussian Process classifier (c-classification, radial kernel) for each setting where it was 
previously identified that the elimination outcome is RCD strategy dependent. At EIR = 5 too few simulations reached elimination to generate 
contour plots. E14 is the probability of effective treatment of any clinical case within 14 days

Fig. 4  Proportion of runs where transmission is interrupted. The proportion of runs where transmission was interrupted only when RCD was 
implemented but not in the control setting, where the search radius is 0 ( ν = 0 ). a Interruption of transmission by EIR. Proportion of simulations 
where p = 0 at t = 2035 (points) across all maximum follow-up capacities, ιmax and ν . b Interruption of transmission by initial prevalence. 
Combinations of EIR and case management were converted to mean initial prevalence from simulations. E14 is the probability of effective treatment 
of any clinical case within 14 days
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prevalence. There is a strong inverse relationship between 
EIR and RCD success. At the reference case management 
level, 50% of simulations with initial prevalence 10% led 
to interruption of transmission. Increasing case manage-
ment can make elimination possible at somewhat higher 
transmission intensities. RCD with the aim of transmis-
sion interruption is thus only appropriate in settings where 
transmission is very low. Further analyses used machine 
learning approaches and estimates of the excess probabil-
ity of transmission interruption that allowed for stochastic 
interruption of transmission in the absence of RCD.

Figure 5 shows the results of an importance analysis of 
the effects of ιmax and ν on the probability of elimination. 
The results were obtained by fitting a random forest clas-
sifier to the simulated data and using an inbuilt function 
for variable importance. Setting specific parameters, case 
management and EIR, are the most important variables 
for elimination (panel A). Panels B-F show the covariate-
adjusted variable importance on the probability of elimi-
nation. Any increase in search radius is associated with 
an increase in the proportion of eliminated simulations. 
Increasing the capacity to treat and follow up index cases 
( ιmax ) is of great benefit initially, but quickly reaches an 
optimum and saturates at a threshold. Increasing case 

management shifts the saturation threshold to higher 
values of ιmax but does not change the overall pattern 
observed with increases of the other parameters.

Further analyses to determine characteristics of the 
ιmax threshold, were carried out. RCD success in each set-
ting was analysed in relation to the ratio of ιmax to differ-
ent quantiles of the distribution of 5-day incidence over 
the entire simulation period from 2020 to 2035. ιmax as a 
proportion of the all-time maximum incidence, ιmax

max(INC) , 
showed the strongest relationship with RCD success, 
suggesting that the ability to cope with maximum inci-
dence during transmission peaks is the most important 
factor in choosing ιmax . It is important to note that the 
maximum incidence of the simulation period need not 
be reached prior to RCD implementation as stochastic 
fluctuations in incidence may lead to an increase in case 
incidence during the intervention period when case man-
agement is low. The adjusted importance analysis of this 
metric confirms that ιmax should be set such that all index 
cases can be followed up (Fig. 5f ).

The contributions of case management and case follow 
up to interrupting transmission were assessed. Figure  6 
shows the proportion of simulations where transmis-
sion is interrupted ( e

n
 ) and the proportion where this is 

Fig. 5  Permutation feature importance in settings with stable transmission (without elimination in controls). a Permutation variable importance. 
b–f Covariate-adjusted variable importance. All plots were generated using a random forest classifier. “Probability 1” describes the probability of 
elimination. E14 is the probability of effective treatment of any clinical case within 14 days, ιmax and ν describe the maximum number of index cases 
that can be followed up and the search radius respectively, and max(INC) describes the maximum 5-day case incidence throughout the simulation 
period
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attributable to RCD ( PAF e
n
 ) as a function of ιmax

max(INC) . 
When stratifying by case management level, the PAF was 
found to decrease at high case management and high 

ιmax
max(INC) , although the total proportion of simulations 
that reach elimination increases. High ιmax

max(INC) can be 
a result of both small RCD effort and low transmission. 
These results thus indicate that at low transmission, the 
relative contribution of case management to elimination 
is higher than that of RCD (although RCD may provide 
some additional benefit).

These results demonstrate that ιmax is optimally chosen 
such that all index cases can be followed up, even during 
high transmission seasons. The relative contribution of 
RCD to interrupting transmission decreases when regu-
lar case management alone is strong (at high case man-
agement and low transmission). Still, RCD can provide 
small additional benefit.

Figure 7 summarizes the time to interruption of trans-
mission in years at reference case management level 
across intervention strategies and transmission levels. 
Points show the median years to interruption of trans-
mission across five seeds at reference case management 
level. Presenting the median ensures that > 50% of seeds 
over all simulations reach interruption and that this is 
not due to stochasticity. The line and shaded area show 
the conditional mean and confidence interval of the 
median, using a LOESS smoother. For EIR = 4 in panel 
A, confidence intervals were too wide to be displayed. 
This suggests that transmission is interrupted towards 
the end of the intervention period, except for at very 
low transmission. A possible carry over effect beyond 
cessation of the programme was observed, as at higher 
EIRs elimination may be reached after the 10-year 
mark. The intervention strategy makes little difference 
except for increasing the search radius at EIR 1.5 – 2, 

Fig. 6  Proportion of eliminated simulations by relative follow up capacity. Blue represents the proportion of eliminated simulations where 
elimination is attributable to RCD (PAF), relative to the total proportion of eliminated simulations (red). Simulations were aggregated by relative 
follow up capacity in 10% intervals, thus each data point presents varying numbers of simulations with generally fewer simulations for ratios above 
1. Mean PAFs (dots) and 95% CI (gray area) were calculated and a LOESS smoothing function with 0.75 span was fitted through the data (blue line). 
E14 is the probability of effective treatment of any clinical case within 14 days, ιmax is the maximum number of individuals that can be followed up 
per 5 days, and max(INC) is the maximum 5-day incidence throughout the simulation period
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approximately equivalent to an initial prevalence of 7%. 
Increasing ιmax has little effect in determining time to 
interruption of transmission. Overall, there was a high 
degree of stochasticity.

Since EIR is difficult to measure in the field, a range of 
possible predictors of routinely collected data was cho-
sen to assess their predictive ability. The predictive pow-
ers of mean incidence and mean annual prevalence the 
year before onset of the intervention period and in the 
first year of the intervention period were tested. The pre-
dictive ability of the relative reduction in incidence and 
prevalence in the first year of RCD was also assessed. 
Prevalence values were log transformed for the purpose 
of this analysis. The results presented in Fig.  8 suggest 
that routine data such as incidence and prevalence are 
equally good in assessing the suitability of a site for RCD 
as EIR. 83.3% (both) and 86.1% and 84.8% of scenarios 
were correctly classified using incidence and log preva-
lence in the year before onset of RCD and the first year of 
RCD, respectively, as covariates in a single variable logis-
tic regression (Table 3). The cut off points for > 50% prob-
ability of interrupting transmission with any strategy at 
reference case management in the fitted model were 711 
per 10,000 person-years, equivalent to a mean of 10 cases 
per 5 days.

Discussion
A framework for implementing spatially targeted reac-
tive interventions in OpenMalaria was developed by 
approximating a targeting ratio which captures spatial 
heterogeneity. Reactive case detection only leads to local 
interruption of malaria transmission in settings with 
low transmission potential, measured by either EIR or 
prevalence (initial EIR approx. 1-3 or prevalence approxi-
mately < 7–19% for 50% probability of success, depending 
on case management levels). RCD was effective in 38% 

(95% CI 36, 41) of scenarios simulated, with a small trend 
towards greater effectiveness at lower case management. 
Large and overlapping confidence intervals highlight the 
stochasticity of interrupting transmission. Whilst the 
simulations use transmission intensity in terms of EIR 
and 5-day case management levels as inputs, they show 
that qualifying settings are also identifiable using rou-
tinely collected prevalence and incidence data. It follows 
that settings can be classified into suitable or non-suita-
ble for RCD, and predictions can be made such that RCD 
is not initiated where it is very unlikely to be successful. 
This is roughly consistent with another modelling study 
based on the same Zambian data, which suggests a prev-
alence threshold for RCD of approximately 10% [20]. The 
relative success of RCD (in terms of reduction in inci-
dence or prevalence) in the first year of implementation 
is not a good predictor of ultimate success.

A primary objective of this study was to determine 
which operational characteristics of RCD most influ-
ence the effectiveness. Considering the joint and indi-
vidual influences of increasing capacity to follow up 
index cases and the search radius, a larger search radius 
is always beneficial. In contrast, increasing ιmax only 
increases the probability of success up to a certain 
threshold, ι∗max , with no additional value in increasing it 
beyond this. This threshold is related to the maximum 
number of cases presenting to be treated, and defines 
a cut-off point in case incidence beyond which the set-
ting is not suitable for elimination via RCD altogether. 
For settings with low to intermediate case management 
levels, all index cases should be followed up. A natural 
approach for programme managers to use when consid-
ering introducing RCD, is to initiate it when the num-
ber of cases reporting has fallen to the level where the 
capacity exists to follow them all up. The simulations 
endorse this instinct, in contrast to previous modelling 

Fig. 7  Median time to interruption of transmission. Results are disaggregated by the maximum number of individuals that can be followed up, 
ιmax , and the search radius, ν . The median time to elimination was calculated across all simulations (all values of ν and ιmax , respectively) of the given 
parameter value. Point estimates were plotted and a LOESS smoothing function was fitted. Median values could not be calculated for EIR > 2 since 
not enough simulations reached interruption of transmission
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of RCD that used a deterministic compartmental sus-
ceptible-infected-susceptible (SIS) model with the same 
function for the targeting ratio [11]. The SIS-models 
attributed greater importance to following up more 
index cases, even at the cost of a smaller ν across the 
entire parameter space, as the targeting ratio is much 
higher at small ν . In that analysis the upper bound of the 
possible number of index cases was set by the standing 
crop of infections; it was assumed that any pre-defined 
number of index cases less than this can be found.

This paper takes a slightly different programme plan-
ning focused approach by assessing the importance of the 
follow-up capacity rather than the actual number of fol-
lowed up index cases. Cases that do not seek official care 
or are asymptomatic limit the potential number of index 
cases. When the case management level is increased, 
more index cases become available making it useful to 
adjust ιmax upwards. Thus it would seem that case man-
agement limits the settings where elimination is possible 
because it imposes the threshold effect on ιmax.

Despite providing a proof of concept that RCD can 
lead to local elimination, the results also suggest that 
successful RCD is highly resource intense and likely to 
be very costly (though no formal economic evaluation 
is presented). In most suitable settings RCD would have 
to be conducted for more than 5  years with a relatively 
aggressive strategy to yield a probability of interruption 
of transmission of > 50%. In the area of the trial in Zam-
bia, for example, the weighted mean EIR is estimated to 
be approximately 2.9 [18] and the case management (E14) 
at the time where the RCD trial was conducted was about 
21.8% [15]. In such a setting, elimination with RCD is not 
feasible. Today, Zambia’s case management (E14) is esti-
mated to be 34.7%. Such a setting would require a follow-
up capacity of approximately 10 index cases and search 
radius of > 35-40 individuals, i.e. a total screening capacity 
of 350-400 individuals per 5-day period would be neces-
sary in order to reach interruption of transmission within 
10 years with a probability of success of only 50%. On the 
contrary, if case management was further increased to 
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E14 = 46% [21], following up 5 index cases with a 25-per-
son radius, i.e. 125 individuals in total, would suffice for 
a 50% probability of interrupting transmission. If case 
management was to be increased to 62% this alone would 
lead to interruption of transmission (in all simulations). 
Strengthening access to care would also have further posi-
tive implications on population health and likely lower the 
burden of disease not just of malaria, but overall. Previ-
ous modelling studies having assessed RCD come to simi-
lar conclusions. An independent modelling study [22] 
suggests that in low prevalence settings, improving case 
management may be more impactful than RCD, although 
RCD may bring qualitative benefits to a setting. For exam-
ple, RCD may improve visibility of community health 
workers and raise awareness of the disease in general.

The results indicate that policy decisions should pri-
oritize improving access to care followed by appropriate 
treatment and follow up of all index cases. This can be 
explained through a greater importance of following up as 
many as possible definite cases that present to the health 
facility. All index cases are definitely cases (definite cases) 
whereas individuals in the search radius may or may not 
be cases at probability pτ (p, ν) . Targeting is stronger and 
τ is larger at small ν . The per-person probability of being 
a case in the radius around an index case is thus greater 
the smaller the radius. Increasing the number of index 
cases through improving access to care and treating and 
following up these index cases is therefore always more 
targeted than treating individuals in the search radius. 
RCD is thus only worthwhile where the number of cases 
detected through RCD (min(ι, ιmax)νpτ ) and in the limit, 
as ιmax → ι , the number of cases detected per index case 
is greater than 1 (1 < νpτ (p, ν)) . This condition describes 
the threshold at which more hidden cases are found 
through RCD than index cases present to the health facil-
ity. If the aim is local elimination, the second condition for 
implementing RCD must of course be that interrupting 
transmission in the setting is itself feasible. As it is a highly 
stochastic event, this condition is more difficult to predict. 
Together, these two conditions define the narrow range of 
settings in which interrupting transmission through RCD 
alone is feasible. Where it is possible, it will thus gener-
ally be more effective to increase case management rather 
than implementing RCD. Based on these results, the fol-
lowing prioritization is proposed: case management to 
increase number of index cases ≫ following up all index 
cases ≫ increasing the search radius. The effect of increas-
ing the search radius also likely flattens off at some point, 
but not within the parameter space considered.

The results are based on Zambian parameterization 
and thus the transferability of results across settings 
with different population densities remains to be con-
firmed. However, by defining the search radius in terms 

of number of individuals rather than a physical distance, 
the findings presented here should be more translatable 
across settings at different population densities, assuming 
that vector movement and thus disease spread is depend-
ent on host availability more so than physical distance. 
Future research comparing RCD in different settings 
should explore this hypothesis. The study did not con-
sider case importation. Simulations of Zambian settings 
with low coverage of case management [22] conclude 
that this is an important determinant of whether elimina-
tion is achieved, but simulations with OpenMalaria sug-
gest that this is not the case if case management coverage 
is high (Smith et al. pers.commun.). Whilst OpenMalaria 
does consider heterogeneous populations, including in 
their health-seeking, the reactive intervention is applied 
to random individuals in the population.

The targeting ratio approach presented here provides 
a framework for implementing generic spatially targeted 
reactive interventions in OpenMalaria. Future work should 
adapt the framework to different settings by fitting the tar-
geting ratio to data from different settings. However, as long 
as infections are acquired within the community similar 
patterns to those presented here can be anticipated, since 
the search radius is specified in terms of number of indi-
viduals, thereby making it independent of the population 
density. Future investigations may further include incor-
porating importation of cases as well as varying the timing 
of RCD and implementing RCD in combination with other 
(mass) interventions. If RCD is only successful at low trans-
mission it would be well worth investigating adding a mass 
intervention at the beginning of RCD intervention course 
as well as employing RCD in scenarios where mass inter-
ventions have brought EIR down to < 3 infectious bites per 
person per year. Further, one may investigate employing 
RCD seasonally in the dry season when incidence is low. 
This may lead to stochastic elimination and save resources. 
This framework can also be adapted and used for wide 
ranges of spatially targeting interventions, such as RCD in 
different settings and reactive vector control.

Conclusions
Overall, the study demonstrates that RCD can increase 
the chances of stochastic elimination, but that it is a very 
resource intense, such that other interventions are likely 
more appropriate in most settings. In its final stages, 
RCD leads to a sustained reduction in overall burden of 
malaria through strengthening the health care system so 
that imported infections are controlled. This stabilizes the 
disease-free state [11], in contrast to one-off higher impact 
interventions, such as MDA that have strong immediate 
effects over a limited period but do not provide a sustained 
reduction in transmission. With MDA, even in the most 
favourable circumstances, persistence is highly stochastic 
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depending on the size of the residual reservoir of infectious 
people exposed to mosquitoes. However, despite its poten-
tial impact RCD is a highly resource intense, long-term 
intervention that is inappropriate in many settings where 
resources are limited. In such settings, investments may be 
better made in improving the routine health care system.
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