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Abstract 

Background:  To assess the occurrence of Plasmodium ovale wallikeri and Plasmodium ovale curtisi species in travel-
lers returning to Germany, two real-time PCR protocols for the detection and differentiation of the two P. ovale species 
were compared. Results of parasite differentiation were correlated with patient data.

Methods:  Residual nucleic acid extractions from EDTA blood samples of patients with P. ovale spp. malaria, collected 
between 2010 and 2019 at the National Reference Centre for Tropical Pathogens in Germany, were subjected to 
further parasite discrimination in a retrospective assessment. All samples had been analysed by microscopy and by 
P. ovale spp.-specific real-time PCR without discrimination on species level. Two different real-time PCR protocols for 
species discrimination of P. o. curtisi and P. o. wallikeri were carried out. Results were correlated with patient data on 
gender, age, travel destination, thrombocyte count, and duration of parasite latency.

Results:  Samples from 77 P. ovale spp. malaria patients were assessed, with a male:female ratio of about 2:1 and 
a median age of 30 years. Parasitaemia was low, ranging from few visible parasites up to 1% infected erythrocytes. 
Discriminative real-time PCRs revealed 41 cases of P. o. curtisi and 36 cases of P. o. wallikeri infections. Concordance of 
results by the two PCR approaches was 100%. Assessment of travel destinations confirmed co-existence of P. o. curtisi 
and P. o. wallikeri over a wide range of countries in sub-Saharan Africa. Latency periods for the two P. ovale species 
were similar, with median values of 56.0 days for P. o. curtisi and 58.0 days for P. o. wallikeri; likewise, there was no sta-
tistically significant difference in thrombocyte count with median values of 138.5/µL for patients with P. o. curtisi and 
152.0/µL for P. o. wallikeri-infected patients.

Conclusions:  Two different real-time PCR protocols were found to be suitable for the discrimination of P. o. curtisi 
and P. o. wallikeri with only minor differences in sensitivity. Due to the overall low parasitaemia and the lack of differ-
ences in severity-related aspects like parasite latency periods or thrombocyte counts, this study supports the use of P. 
ovale spp. PCR without discrimination on species level to confirm the diagnosis and to inform clinical management of 
malaria in these patients.
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Background
Human Plasmodium ovale spp. malaria is caused by two 
different sympatric Plasmodium species, namely P. ovale 
curtisi, which was considered the “classic” human patho-
gen, and P. ovale wallikeri, which has been described as 
a genetically distinguishable variant. Parasitological fea-
tures such as parasitaemia, 18S rRNA gene copy number, 
or pan-aldolase activity are similar, with an overrepresen-
tation of infected erythrocytes lacking Schüffner’s stip-
pling among P. ovale wallikeri isolates [1]. Although the 
organisms are morphologically virtually indistinguishable 
and are associated with sympatric ranges through tropi-
cal Africa, Asia, and Oceania, considerable genetic dif-
ferences have been observed between P. ovale curtisi and 
P. ovale wallikeri. They do not recombine and are associ-
ated with substantial genetic divergence between sexual 
stage proteins, such as 6-cysteine and proteins containing 
Limulus coagulation factor C domains, probably result-
ing in sexual incompatibility [2]. Phylogenetic separa-
tion and diversity of P. o. curtisi and P. o. wallikeri surface 
antigens support species status [3, 4].

The occurrence of P. o. curtisi and P. o. wallikeri in 
returning travellers has been reported from Canada [1], 
China [5–12], Southern Europe [13, 14], and the UK 
[15]. A wide range of sub-Saharan Africa has been iden-
tified as the major region of P. ovale spp. acquisition for 
Chinese travellers [8, 9, 11, 12], while a majority (88%) 
of returnees to Canada came from Western Africa [1]. 
Both P. ovale spp. have been infrequently reported from 
Bangladesh [16]; Bioko Island [17], the Comoros Islands 
[18], Congo-Brazzaville [17], Ethiopia [19, 20], Ghana 
[21], India [22], the Ivory Coast [16], Kenya [23], Senegal 
[24, 25], and Uganda [17]. Plasmodium o. wallikeri is also 
prevalent in Malaysia [26], while P. o. curtisi infections 
have recently been reported from Sri Lanka [27]. Inter-
estingly, P. o. wallikeri has been detected both in human 
patients and in Western Lowland gorillas in the Central 
African Republic [28].

Potential differences in pathogenicity of P. o. curtisi and 
P. o. wallikeri are of ongoing interest. An early Spanish 
study assessing patients from 2005 to 2011 indicated sig-
nificantly more severe thrombocytopenia in patients with 
P. o. wallikeri malaria as well as non-significant trends 
for shorter time periods between infection and onset of 
clinical symptoms (latency period), lower albumin lev-
els, higher temperature, and more haemolysis markers 
compared to patients with P. o. curtisi infections [13]. A 
British study showed geometric mean latency periods of 

40.6 days for P. o. wallikeri and of 85.7 days for P. o. cur-
tisi, with both parasites frequently occurring in patients 
despite their using chemoprophylaxis during travel com-
pared with Plasmodium vivax or Plasmodium falciparum 
malaria [15]. A multi-centre study conducted in France, 
Italy, and Spain recently also suggested P. o. wallikeri to 
be more pathogenic, as defined by associations with more 
severe thrombocytopenia, coagulopathy as expressed by 
higher international normalized ratios (INR), and shorter 
latency in Caucasians.

Further, P. o. wallikeri infections were more frequent 
in males and particularly in Caucasians. However, severe 
cases were observed for P. o. curtisi as well, and infections 
with both P. o. spp. suggested an association with diabe-
tes mellitus and—again—decreased effectiveness of anti-
malarial drugs as chemoprophylaxis compared with P. 
falciparum [14]. The latter phenomenon might be asso-
ciated with the geometric mean latency periods and the 
formation of hypnozoites. Recently, a well-characterized 
case of a hypnozoite-associated relapse of P. o. wallik-
eri malaria with a strain of identical genotype has been 
reported [29]. However, few well-documented cases of 
P. ovale spp. malaria relapses have been published so far 
[29–31] with a strong dominance of P. o. curtisi [31].

Various PCR approaches for the detection and dis-
crimination of P. o. curtisi and P. o. wallikeri have been 
described [18, 32–36], including TaqMan qPCR [18, 32–
34], semi-nested PCR [37], and nested PCR [38] as well 
as quantitative and high-resolution melting approaches 
with detection limits as low as 1  parasite/µL [39]. Mul-
tilocus genotyping has also been applied for P. o. curtisi 
and P. o. wallikeri discrimination [23, 38].

In this study, samples from 77 patients with P. ovale 
spp. malaria returning to Germany between 2010 and 
2019 were further differentiated in a retrospective assess-
ment based on two different real-time PCR approaches. 
Results were compared with patient characteristics to 
contribute to the scant information available on the pos-
sibly differences in aetiological relevance of P. o. curtisi 
and P. o. wallikeri.

Methods
Aim, design, and setting
The epidemiology of P. o. curtisi and P. o. wallikeri in trav-
ellers returning to Germany and the available patient-
related information were assessed in a retrospective 
cross-sectional study over 10  years using clinical infor-
mation and residual sample materials collected at the 
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Bernhard Nocht Institute for Tropical Medicine Ham-
burg, the German National Reference for Tropical Patho-
gens, between 2010 and 2019.

Samples
Residual nucleic acid extractions from EDTA blood sam-
ples of all 77 patients with confirmed P. ovale spp. infec-
tions within the study interval were used, which had been 
collected and stored at − 80  °C at the Bernhard Nocht 
Institute for Tropical Medicine, Hamburg, Germany. The 
samples were collected between 2010 and 2019. Extrac-
tions had been performed using the QIAamp DNA 
Blood Mini Kit (Qiagen, Hilden, Germany). All samples 
had been assessed by species-specific real-time PCR 
before storage (RealStar Malaria S&T PCR Kit 1.0, altona 
Diagnostics, Hamburg, Germany), and a subset also by 
microscopy (Additional file 1).

PCR‑based discrimination of P. ovale curtisi and P. ovale 
wallikeri
All DNA samples were analysed using two different 
published real-time PCR protocols suitable for the dis-
crimination between P. o. curtisi and P. o. wallikeri. PCR 
protocol 1 was applied as a duplex real-time PCR using 
the primers for P. o. curtisi and P. o. wallikeri as described 
by Bauffe et al. [18] (Additional file 2). The reaction was 
run on a Corbett RotorGene 6000 or a Corbett Rotor-
Gene Q cycler using 20  µL volumes with a HotStarTaq 
Mastermix (Qiagen). The final MgCl2 concentration was 
adjusted to 3  mmol/L; the applied primer concentra-
tions were 1.6  pmol/µL and the probe concentration 
0.1 pmol/µL each. A 5 µL volume of extracted DNA was 
used. Reaction conditions comprised 10 min at 95 °C fol-
lowed by 45 cycles of 10 s denaturation at 95 °C as well as 
annealing and amplification for 30 s at 60 °C with subse-
quent cooling to 40 °C for 30 s.

PCR protocol 2 consisted of two separate real-time 
PCRs, one specific for P. o. curtisi and the other specific 
for P. o. wallikeri as described by Calderaro et al. [32, 33] 
(Additional file  2). Again, 20  µL volumes were assessed 
on a Corbett RotorGene 6000 or a Corbett RotorGene Q 
cycler using the HotStarTaq Mastermix (Qiagen). The opti-
mal final MgCl2 concentration was 3 mmol/L; the primer 
concentrations were adjusted to 1.2  pmol/µL and the 
probe concentration to 0.25 pmol/µL each. The amount of 
extracted DNA used was 2 µL. Reaction conditions com-
prised 10 min at 95 °C followed by 45 cycles of 15 s dena-
turation at 95 °C as well as annealing and amplification for 
60 s at 60 °C with subsequent cooling to 40 °C for 30 s.

The oligonucleotide sequences of the primers, probes, 
and positive control plasmids are shown in Additional 
file  2. The positive control plasmids based on pEX-
A128 vector backbones (eurofins Genomics, Ebersberg, 

Germany) were used to prepare rows of 10-fold dilutions 
in order to calculate detection limits using the program 
SciencePrimer (http://scien​cepri​mer.com/copy-numbe​
r-calcu​lator​-for-realt​ime-pcr, last accessed March 8, 
2019). For PCR protocol 1, calculated detection limits 
were < 1 copy/µL for P. o. wallikeri and 52 copies/µL for P. 
o. curtisi; for PCR protocol 2, calculated detection limits 
were 8 copies/µL for P. o. wallikeri and 9 copies/µL for P. 
o. curtisi.

Inhibition control PCRs were not included in these typ-
ing PCRs, because inhibition had already been excluded 
during the initial diagnostic PCR that led to the diagnosis 
of P. o. spp. infection.

Patient characteristics
All patients were anonymized and the respective clini-
cal data were computer-coded. As far as available, the 
following data were assessed: gender, age, region of pre-
sumed infection, number of days between leaving the 
endemic country and onset of malaria symptoms, and 
thrombocyte counts.

Statistics
Due to the low number of P. ovale spp. positive samples, 
only descriptive analysis was performed. The Mann–
Whitney test was applied to independent parameters 
as age, latency time, and thrombocyte count using the 
GraphPad Instat version 3.06 software (GraphPad Soft-
ware, Inc., San Diego, CA, USA). Matched parameters 
as Ct-values while comparing both PCR assays were 
assessed using Wilcoxon’s signed ranks test with the help 
of the open-source software R Commander version 2.5–
3, which was also used to calculate descriptive parame-
ters like interquartile ranges (IQR).

Ethics
Ethical clearance was provided by the Ethics Committee 
of the Medical Association of Hamburg, Germany (reg-
istration number WF-012/19), allowing the anonymized 
assessments to be made without informed consent.

Results
Samples
Residual DNA from 82 diagnostic EDTA blood samples 
containing parasites of P. ovale spp. according to the 
results of microscopy and PCR was stored at the Ger-
man National Reference Center for Tropical Pathogens 
Bernhard Nocht Institute for Tropical Medicine Ham-
burg (BNITM). The samples had been sent to BNITM 
from clinicians and laboratories all over Germany for 
diagnostic verification. Of the 82 samples, 5 represented 
follow-up samples. Accordingly, first diagnostic samples 
from 77 independent patients were included in this study. 

http://scienceprimer.com/copy-number-calculator-for-realtime-pcr
http://scienceprimer.com/copy-number-calculator-for-realtime-pcr
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Parasitaemia was generally low and ranged from a few 
visible parasites up to 1% infected erythrocytes. Initial 
microscopic identification of P. ovale spp. had been suc-
cessful in 12 samples, while initial misidentification as P. 
vivax had occurred in 3 cases. In the remaining 67 sam-
ples, either parasitaemia was insufficient for a qualified 
microscopic parasite differentiation (n = 40) or micros-
copy had not been performed at the Bernhard Nocht 
Institute because PCR was requested by the sender of the 
samples only and the initial microscopic results from the 
senders’ laboratories were unknown (n = 17) (Table 1).

Results of the P. ovale wallikeri and P. ovale curtisi PCRs
All 77 P. ovale spp. samples were subjected to two differ-
ent real-time PCR protocols as previously reported [18, 
32, 33]. The protocols showed 100% concordance and 
identified 41 patients with P. o. curtisi and 36 patients 
with P. o. wallikeri. Cycle threshold (Ct) values for P. o. 
curtisi were 25.4 ± 3.8 (mean ± standard deviation (SD)) 
with a median of 24 (IQR = 3) using the PCR of Bauffe 
et  al. and 27.5 ± 3.9 (mean ± SD) with a median of 26 
(IQR = 3) for the PCR of Calderaro et al. (P < 0.001). For 
P. o. wallikeri, the Ct values were 24.9 ± 5.3 (mean ± SD) 
with a median of 25 (IQR = 4) using the PCR of Bauffe 
et  al. and 28.6 ± 4.2 (mean ± SD) with a median of 28 
(IQR = 4.3) using the PCR of Calderaro et al. (P < 0.001). 
Differences in Ct value between the two PCR protocols 
were 1.9 ± 1.0 (mean ± SD) with a median of 2 (rang-
ing from 0 to 3, IQR = 2) for P. o. curtisi and 3.6 ± 2.3 
(mean ± SD) with a median of 3 (ranging from − 4 to 11, 
IQR = 2) for P. o. wallikeri (P < 0.001) (Table 1). Of note, 
in the five excluded follow-up samples, the Calderaro 
et  al. approach failed to identify one case of P. o. wal-
likeri in a post-treatment control that was still positive 
in the Bauffe et al. approach, but with a relatively high 
Ct value of 37.

Patient characteristics
Of the 77 patients included in the study, gender infor-
mation was available for 76 participants. Altogether, 

53 were male and 23 female. Male-to-female ratios dif-
fered considerably between the two groups of P. o. spp. 
infections comprising 3.4 and 1.6 for P. o. curtisi and P. 
o. wallikeri, respectively. Age information was available 
for 74 patients. Mean and median age were 31.6 ± 14.8 
and 29.5 years (IQR = 23.5 years), respectively, and did 
not differ significantly between the two patient groups 
(P = 0.72). Mean age of P. o. curtisi-infected patients 
was 32.5  years with a standard deviation of 15.3  years 
and was 30.0 ± 10.8  years for P. o. wallikeri patients; 
the median age in both subgroups was 30  years 
(IQR = 26.0 years for P. o. curtisi and 20.5 years for P. o. 
wallikeri) (Table 2).

Information on travel destinations was documented 
for 64 patients (32 with P. o. curtisi, 32 with P. o. wal-
likeri). Results are shown in Table 3 as well as in Addi-
tional files 1 and 3. No proven case of malaria relapse 
was documented.

The time between returning from the travel des-
tinations and the onset of clinical symptoms lead-
ing to the diagnosis of malaria (latency period) 
was documented for 52 patients (27 with P. o. cur-
tisi, 25 with P. o. wallikeri). Latency periods were 
150.9 ± 232.1  days (mean ± SD) with a median of 
56.0 days (IQR = 153.5 days) for patients with P. o. cur-
tisi and 105.7 ± 127.9 days (mean ± SD) with a median 
of 58 days (IQR = 98.0 days) for patients with P. o. wal-
likeri (P = 0.80) (Table 2, Additional file 1).

Table 2  Characteristics of patients with P. ovale curtisi or P. 
ovale wallikeri (details in Additional file 1)

IQR interquartile range

Patients 
with P. ovale 
curtisi

Patients 
with P. ovale 
wallikeri

Male-to-female ratio 3.4 1.6

Age in years (median; IQR) 30; 26.0 30; 20.5

Latency period in days (median; IQR) 56.0; 153.5 58; 98.0

Thrombocyte count per µL (median, 
IQR)

138.5; 105.8 152.0; 155.0

Table 1  Summary of the diagnostic results (details in Additional file 1)

IQR = interquartile range

Microscopic species identifications 12× P. ovale spp., 3× misidentifications as P. vivax,  
40× Plasmodium spp. without further discrimination, 
17× not performed

Range of parasitaemia in microscopically positive samples Few visible parasites up to 1% infected erythrocytes

Ct values of the P. ovale curtisi PCR according to Bauffe et al. (median; IQR) 24; 3

Ct values of the P. ovale curtisi PCR according to Calderaro et al. (median; IQR) 26; 3

Ct values of the P. ovale wallikeri PCR according to Bauffe et al. (median; IQR) 25; 4

Ct values of the P. ovale wallikeri PCR according to Calderaro et al. (median; IQR) 28; 4.3
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Thrombocyte count was available for 10 patients with 
P. o. curtisi and 9 patients with P. o. wallikeri, with values 
of 135.1 ± 56.8/µL (mean ± SD) with a median of 138.5/
µL (IQR = 105.8/µL) and 183.1 ± 114.2/µL (mean ± SD) 
with a median of 152.0/µL (IQR = 155.0/µL), respectively 
(P = 0.40) (Table 2, Additional file 1).

Discussion
The study compared two recently published real-time 
PCR protocols for the identification and differentiation of 
P. o. curtisi and P. o. wallikeri in clinical samples. Results 
of parasite subtyping were correlated with patient char-
acteristics. All patients were travellers returning to Ger-
many from countries known to be endemic for malaria. 
The results further confirmed previous findings about 
the high specificity of PCR for the diagnosis of non-fal-
ciparum malaria at species level, as several misidentifi-
cations during the initial microscopic assessment were 
corrected. In addition, both real-time PCR protocols 
that were compared in this study proved to be suitable 

for the identification of P. o. curtisi and P. o. wallikeri 
with 100% concordance. The protocol of Bauffe et al. [18] 
was slightly more sensitive than that of Calderaro et  al. 
[32, 33], as suggested by lower Ct values and by a case 
of failed detection of P. o. wallikeri in a post-treatment 
control sample. Another advantage of the Bauffe proto-
col was that the assay can be run as a one-well-duplex 
PCR, while the Calderaro protocol requires two separate 
PCR assays to distinguish P. o. curtisi and P. o. wallikeri. 
Accordingly, the relatively more sensitive and convenient 
duplex PCR by Bauffe et  al. [18] is the preferred test in 
this patient population.

Of note, P. ovale spp. infections frequently occur in 
asymptomatic individuals in high endemicity settings 
[40]. Underlying acquired resistance phenomena have 
been described as early as in the late 1930s [41, 42]. In the 
here-described study, only patients were included whose 
clinical symptoms had triggered diagnostic testing for 
malaria. Accordingly, no conclusions can be drawn on the 
diagnostic performance of the applied PCR approaches 
in patients with completely asymptomatic P. ovale spp. 
infections. From previous studies, however, generally 
superior sensitivity of PCR compared to microscopy [43–
45] and alternative modern approaches like mass spec-
trometry [46] for malaria screening are well documented. 
Especially, species-specific malaria PCR is considered as 
more reliable in detecting mixed plasmodial infections in 
particular in cases with significant differences in density 
of the different parasite species [44, 47, 48]. Further, PCR 
is a reliable tool if suboptimal pre-analytic conditions do 
not allow parasite microscopy, e.g. in case of hemolytic 
blood [49].

With regard to P. ovale spp. epidemiology, the here-
described assessment clearly confirmed the co-occur-
rence of P. o. curtisi and P. o. wallikeri in a wide range 
of malaria-endemic countries in Sub-Saharan Africa, as 
already reported [3, 4]. In contrast to previous reports 
[13–15], the findings shown here did not support the 
suggestion of earlier onsets of clinical disease due to P. 
o. wallikeri compared with P. o. curtisi [13–15]. Of note, 
latency could only be assessed for 52 out of 77 patients 
(67.5%). Likewise, significant differences in thrombocyte 
counts were not confirmed. Differences in thrombocyte 
counts have been reported earlier and were used as an 
indicator for differences in disease severity. Admittedly, 
thrombocyte count was available for 19 patients (24.7%) 
only. Altogether, the here-described study comprised 
only half as many samples as the assessment by Nolder 
et al. [15] but it was of similar size to the multi-national 
study of Rojo-Marcos et al. [14] comprising 79 patients. 
However, the latter multicentre study [14] was prospec-
tive and thus more robust, while the interpretation of 
the here-described study is limited by its retrospective 

Table 3  Patients’ travel destinations. Data were available 
for 32 patients with P. ovale curtisi and 32 patients with P. 
ovale wallikeri, (n) describes the  numbers of  patients 
with respective travel destinations

a  Various destinations comprised Benin and the Democratic Republic of the 
Congo; Nigeria and Gabon; Eritrea, Sudan and Libya; as well as Benin, Togo, 
Ethiopia, the Philippines and Iran
b  Various destinations comprised Mali and the Ivory Coast

Travel destination Patient with P. ovale 
curtisi (n)

Patient with P. 
ovale wallikeri 
(n)

Benin – 1

Burkina Faso – 1

Cameroon 3 7

Equatorial Guinea 1 –

Gabon – 1

Ghana 5 6

Guinea 2 –

Ivory coast 1 3

Kenya 1 1

Liberia 2 –

Malawi 1 1

Nigeria 5 2

Papua New Guinea – 1

Zambia 1 –

Sierra Leone 1 1

Somalia 1 –

Sudan – 1

Tanzania 1 2

Togo – 1

Uganda 3 2

Various destinations 4a 1b
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design. As further limitations, patient characteristics and 
travel information were documented only for subsets of 
patients and information on the proportions of travellers 
visiting friend and relatives as well as of immigrants were 
no available. Next to this, details on ethnicity, prophy-
laxis and therapy could not be provided.

Conclusions
In conclusion, the study confirmed the suitability of two 
real-time PCR protocols for the discrimination of P. ovale 
spp. into P. o. curtisi and P. o. wallikeri as well as the sym-
patric occurrence of the two species in a wide range of 
countries in sub-Saharan Africa. In contrast, significant dif-
ferences in latency periods or thrombocyte counts between 
patients infected with either of the two parasite species as 
described previously, were not supported. Admittedly, 
interpretation of those findings is limited by the low num-
ber of available datasets. The P. ovale spp. malaria cases 
reported here were associated with low parasitaemia. Many 
of them were only PCR-positive, so they probably had sub-
microscopic malaria. Taken together, from a medical point 
of view, the results presented here do not support the neces-
sity of P. ovale species differentiation into P. ovale curtisi and 
P. ovale wallikeri for the clinical management of P. ovale spp. 
malaria patients. Next to this, the data shown here stress the 
importance of PCR for the diagnosis of P. ovale spp. malaria.

Additional files

Additional file 1. Details of patients and samples.

Additional file 2. Oligonucleotides used in the P. ovale spp. differentiation 
PCR platforms.

Additional file 3. Graphical distribution of P. ovale curtisi (red dots) and P. 
ovale wallikeri (yellow dots) cases according to countries in which infec-
tions were most likely acquired.
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