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Abstract 

Background:  HIV infection is associated with more frequent and severe episodes of malaria and may be the result of 
altered malaria-specific B cell responses. However, it is poorly understood how HIV and the associated lymphopenia 
and immune activation affect malaria-specific antibody responses.

Methods:  HIV infected and uninfected adults were recruited from Bondo subcounty hospital in Western Kenya at the 
time of HIV testing (antiretroviral and co-trimoxazole prophylaxis naïve). Total and Plasmodium falciparum apical mem-
brane antigen-1 (AMA1) and glutamate rich protein-R0 (GLURP-R0) specific IgM, IgG and IgG subclass concentrations 
was measured in 129 and 52 of recruited HIV-infected and uninfected individuals, respectively. In addition, HIV-1 viral 
load (VL), CD4+ T cell count, and C-reactive protein (CRP) concentration was quantified in study participants. Antibody 
levels were compared based on HIV status and the associations of antibody concentration with HIV-1 VL, CD4+ count, 
and CRP levels was measured using Spearman correlation testing.

Results:  Among study participants, concentrations of IgM, IgG1 and IgG3 antibodies to AMA1 and GLURP-R0 were 
higher in HIV infected individuals compared to uninfected individuals (all p < 0.001). The IgG3 to IgG1 ratio to both 
AMA1 and GLURP-R0 was also significantly higher in HIV-infected individuals (p = 0.02). In HIV-infected participants, 
HIV-1 VL and CRP were weakly correlated with AMA1 and GLURP-R0 specific IgM and IgG1 concentrations and total 
(not antigen specific) IgM, IgG, IgG1, and IgG3 concentrations (all p < 0.05), suggesting that these changes are related 
in part to viral load and inflammation.

Conclusions:  Overall, HIV infection leads to a total and malaria antigen-specific immunoglobulin production bias 
towards higher levels of IgM, IgG1, and IgG3, and HIV-1 viraemia and systemic inflammation are weakly correlated 
with these changes. Further assessments of antibody affinity and function and correlation with risk of clinical malaria, 
will help to better define the effects of HIV infection on clinical and biological immunity to malaria.
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Background
Despite the fact that human immunodeficiency virus 
(HIV) infection is largely considered a disease of altered 
intracellular immunity, it has also been shown to have a 
major impact on the B cell compartment. Early on, this 
primarily included observations of high rates of B cell 
lymphomas, hypergammaglobulinemia, and autoanti-
bodies in the setting of HIV infection [1]. Over the years, 
there has been a growing body of evidence that there are 
also alterations in B cell function. HIV infection leads to 
impaired immune responses to vaccines and infections 
including pneumococcal disease [2–6]. Considerable 
research has focused on the mechanism behind these 
impairments in B cell immunity. Diminished T follicu-
lar helper cell support, altered responsiveness to T cell 
stimulation, and intrinsic B cell dysfunction have all been 
considered as a cause of these impairments and recently 
phenotypically exhausted B cells have been described in 
the setting of HIV infection [1, 7–11]. However, these B 
cell phenotypic changes do not fully explain why there is 
clinically impaired B cell immunity, particularly in cases 
where antigen specific antibody responses are main-
tained despite coexisting B cell phenotypic abnormalities, 
as has been described with malaria and HIV coinfection 
[12].

For individuals living in sub-Saharan Africa, the epi-
center of the HIV epidemic, malaria is a major cause of 
morbidity and mortality [13]. Although co-trimoxazole 
prophylaxis has been shown to provide some protec-
tion against malaria [14], interaction between HIV and 
malaria could have a significant impact the health of 
infected individuals in regions with low access to HIV 
care [15, 16]. This is particularly true as malaria endemic 
countries face shortages of co-trimoxazole and public 
health officials consider scaling back its use among peo-
ple living with HIV. Indeed, HIV has been linked with 
increased malaria risk and severity [17, 18].

B cell responses are a key component of adaptive 
immunity to malaria and past studies have associated 
antibodies against pre-erythrocytic and blood stage 
malaria antigens with clinical malaria protection [19–21]. 
The mechanism behind HIV mediated vulnerability to 
malaria is not clear. Overall IgG concentrations to several 
malaria antigens including AMA1 and merozoite surface 
protein (MSP) appear to be maintained if not elevated in 
HIV infection, although there is evidence using serologi-
cal protein microarray assays that the breadth of malaria 
antibody responses may be decreased [12, 22–24]. Simi-
larly, in the population described in this study, malaria 
specific IgG levels to a panel of Plasmodium falciparum 
antigens tended to be higher in HIV infected individuals 
compared to HIV uninfected individuals [12]. Antibody 
effector function is highly dependent on the Fc portion of 

the antibody [25], and understanding the distribution of 
malaria specific antibodies among classes and subclasses 
may lend some insight on the impact of HIV infection on 
antibody function.

To determine whether HIV alters the concentrations of 
malaria specific antibody classes and subclasses, the lev-
els of IgM, IgG and IgG1–4 specific to two P. falciparum 
protein antigens, AMA1 and GLURP-R0, were measured 
in plasma of HIV-infected and uninfected participants 
living in western Kenya. Because both antiretrovirals 
and cotrimoxazole can affect malaria vulnerability, this 
was done at the point of HIV testing. Based on previ-
ous finding that a difference in IgG3:IgG1 ratio is asso-
ciated with persistent clinical malaria risk in both stable 
and unstable malaria transmission areas [26], changes in 
the IgG3:IgG1 ratio between HIV-infected participants 
and uninfected participants was compared. Total IgM, 
IgG and IgG1–4 levels was measured to determine if the 
trends of malaria-specific antibody concentrations were 
mirrored in total (non-malaria specific) immunoglobu-
lin (Ig) concentrations, i.e. was this an antigen specific 
or global phenomenon. Finally, in order to understand 
the influence of markers of HIV immunodeficiency and 
immune activation (HIV-1 VL, CD4+ counts and CRP) 
on malaria-specific antibodies, the concentrations of 
these markers were correlated with these antibody levels.

Methods
Study participants, area and design
This was a cross sectional study designed to evaluate the 
effects of HIV infection on malaria immunity, as previ-
ously reported, at Bondo Sub-County Hospital, Siaya 
county, western Kenya [12]. Bondo District lies between 
an altitude of 0° 26° to 0° 90° and from longitude 33° 58° 
E and 34° 35° W and is among the malaria holoendemic 
regions in Kenya. Patients of 18  years of age or older 
undergoing HIV testing at Bondo Sub County Hospital 
were eligible for recruitment into the study. Exclusion 
criteria included pregnancy, current antimalarial use, 
acute illness (including fever), and chronic illness (other 
than HIV) or medication use that may affect immune 
responses. This study recruited 190 eligible patients (138 
HIV-infected and 52 uninfected participants) who made 
an informed consent to participate. Approximately 40 mL 
venous blood was collected from volunteers into sodium 
heparinized vacutainer. Venous blood was separated 
using density gradient centrifugation (Ficoll Histopaque, 
Sigma-Aldrich, St. Louis, Missouri) to obtain plasma and 
peripheral blood mononuclear cells (PBMCs). Specimens 
were processed within 6 h of collection and plasma and 
PBMCs were stored in − 20  °C freezer and liquid nitro-
gen, respectively. In addition, dried blood spots (DBS) 
were collected for viral load testing. More individuals 
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with HIV infection were enrolled so that the study would 
have the power to detect differences in serologic out-
comes within subgroups of the HIV infected participants, 
specifically individuals with CD4 counts above and below 
200. Approximately one HIV-uninfected participant was 
recruited after every three HIV-infected participants 
throughout collection period. This alternating recruit-
ment pattern was employed so that HIV infected and 
uninfected individuals would be spaced evenly through-
out the collection period of 5 months (from May to Octo-
ber, 2012). Out of the 190 samples collected, antibody 
levels were tested in the first 181 participants enrolled 
(129 and 52 HIV-infected and uninfected, respectively) 
based on specimen and resource availability.

CD4+ T cell count, HIV‑1 viral load, and C‑Reactive Protein 
(CRP) concentration testing
Absolute CD4+ counts were obtained by FACSCount 
system (BD Biosciences, San Jose, CA [27]. This was done 
at the Bondo clinical laboratory which undergoes regular 
internal and external quality control audits as prescribed 
by the Kenyan Ministry of Health. Briefly, 50 µL of whole 
blood was pipetted into tube containing CD4/CD3 rea-
gents conjugated with PE and Cy5 dye (PE-Cy5) fluo-
rescence respectively and vortexed upright for 6  s. This 
was followed by 80 min incubation at room temperature 
before adding 50 µL of fixative solution. This was run on 
a FACSCount system and CD4+ counts for samples were 
obtained using FACSCount CD4 software.

HIV-1 viral load was measured by the Centers for Dis-
ease Control and Prevention (CDC)-Kenya core lab from 
dried blood spots as described using the Abbott m2000rt 
real-time system [28, 29]. Two discs were punched from 
DBS and incubated in 50  mL conical tube containing a 
proprietary Abbott mLysisDNA buffer. This was followed 
by incubation for 2 h at room temperature while mixing 
before conveying it to an Abbott reaction vessel. RNA 
was isolated using the Abbott mSample Preparation 
SystemDNA which utilizes magnetic particles for nucleic 
acid binding, washing and extraction. The extracted 
RNA was amplified on Abbott Optical Reaction Plate 
after mixing the RNA with kit reagents (HIV-1 oligonu-
cleotides, polymerase enzyme, and proprietary activation 
reagent) for amplification with real-time PCR. This kit 
converts viral RNA to cDNA via a thermostable recom-
binant Thermus thermophilus DNA polymerase. The 
target sequence for this assay is in the highly conserved 
pol integrase region of the HIV-1 genome. Each reaction 
contains an internal control, an unrelated RNA product. 
The amplification products were fluorescently detected 
and converted to viral load by the m2000rt real-time ana-
lyser (Abbott Laboratories, Abbott Park, IL) using a set of 
calibrators of known RNA concentration.

CRP concentrations were determined by stand-
ard ELISA per kit instructions as previously reported 
using a human CRP ELISA Kit (Millipore Corporation, 
Darmstadt, Germany) [12, 30, 31]. The stock standard 
(1000 ng/mL) was subjected to 1:100 dilution using wash 
buffer (provided by the manufacturer) to obtain the first 
standard (10 ng/mL) which was subjected to four three-
fold serial dilutions to produce a total of five standards 
with the fifth standard having a concentration of 0.12 ng/
mL. Samples and controls were diluted systematically 
in wash solution to obtain a dilution of 1:4000. Diluted 
standards, controls, and samples (100 µL) were dispensed 
into plate and incubated at room temperature (20–25 °C) 
for 30 min. This was followed by 5 times wash with wash 
solution then 100  µL conjugate solution (anti-human 
CRP antibody) was added and incubated at room tem-
perature for 30 min. The plate was washed again 5 times 
using wash solution after which 100 µL substrate solution 
was added and incubated for 10  min at room tempera-
ture. Stop solution (100 µL) was added and plate reaction 
read at 450 nm (Molecular Devices, Sunnyvale, CA). CRP 
plasma concentrations were calculated as per manufac-
tures instructions. The manufacturer reported intra- and 
inter assay coefficients of variation (CVs) of up to 4.6 and 
6.0%, respectively. Duplicate testing was done with 10% 
of samples with a median inter assay CVs for duplicate 
measurements of CRP was 20.5%. For duplicate samples 
an average value was used for analysis.

Malaria‑specific and total immunoglobulin testing
IgM, IgG and IgG1–4 antibodies against P. falciparum 
antigens apical membrane antigen-1 (AMA1, full length 
ectodomain, 3D7) and glutamate rich protein (GLURP, 
conserved non-repeat N-terminal region, amino acids 
25-514, R0) antigens were tested. AMA1 and GLURP-R0 
are vaccine candidates and were chosen based on antigen 
availability and their association with protection from 
clinical malaria in a number of population-based studies 
in malaria endemic areas [32–37].

A modified ELISA protocol was used as previously 
described [38–41] for testing malaria-specific IgG and 
IgM antibody levels. Briefly, recombinant AMA-1 and 
GLURP0-R0 antigens were diluted in 1xPBS (0.1 µg/µL) 
and 50 µL per well was used to coat 96 well Immunol 4 
(Thermo Labsystems # 3855, US) plates at 4 °C overnight. 
The plates were washed three times with 1× PBS/Tween 
20 and then blocked with 5% Blotto (and Seablock dilu-
ent buffer for IgM ELISA) for 1 h at room temperature. 
The plates were again washed three times with 1× PBS/
Tween 20 followed by addition of 50 µL of tested sam-
ples, negative controls (North American controls, NACs) 
and positive controls (pool of plasma samples from 
Ugandan malaria positive patients) diluted (1:100) in 5% 
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Blotto (and Seablock diluent buffer for IgM ELISA) into 
each well. The plates were then incubated for 2 h at room 
temperature. The plates were washed three times wash 
with 1× PBS/Tween 20. This was followed by adding 50 
µL goat anti-human IgG-Alkaline Phosphatase diluted 
(1:1000) in Blotto (and goat anti-human IgM-Alkaline 
Phosphatase subjected to 1:4000 dilution in Seablock 
diluent buffer for IgM) after another three times washes 
with 1× PBS/Tween 20 and incubated for 1  h at room 
temperature. Wells were washed six times washes with 
1× PBS/Tween 20 and substrate was added for a 30 min 
incubation in the dark. Reaction was stopped by addition 
of 3 N NaOH and OD value read at 405 nm (Molecular 
Devices, Sunnyvale, CA).

For IgG subclass testing, recombinant AMA-1 and 
GLURP0-R0 antigens were diluted in 1xPBS (0.1  µg/
µL) and 50 µL of this solution was used to coat 96 well 
Immunol 4 (Thermo Labsystems # 3855, US) plates at 
4 °C overnight. The plates were washed three times with 
1× PBS/Tween 20 then blocked with blocking buffer 
(PBS/3% BSA) for 1  h at room temperature. Again, the 
plates were washed three times with 1× PBS/Tween 
20. 50  µL of tested samples, negative controls (North 
American controls, NACs) and positive controls (pool of 
plasma samples from Ugandan malaria positive patients) 
diluted (1:100) in diluent buffer (PBS/1% BSA) were 
added to each well. After an overnight incubation at 4 °C, 
the plates were washed three times with 1× PBS/Tween 
20. 50  µL of secondary biotinylated antibodies (mouse 
anti-human IgG 1–4 biotinylated antibodies) diluted 
1:1000 in diluent buffer (PBS/1% BSA) was added and 
incubated for 45  min at room temperature. The plates 
were washed three times wash with 1× PBS/Tween 20. 
Streptavidin conjugated alkaline phosphatase diluted 
1:2000 in diluent buffer (PBS/1% BSA) was added (50 µL/
well) and plates were incubated at room temperature for 
30 min. The plates were washed six times wash with 1× 
PBS/Tween 20. Substrate (50  µL/well) was added and 
plates were incubated in dark for 20  min. Reaction was 
stopped by addition of 3  N NaOH and OD value read 
at 405  nm (Molecular Devices, Sunnyvale, CA). 19% of 
samples were done in duplicate and had a median optical 
density inter- and intra-assay CVs of 9.1 (range 5.3–18.7) 
and 5.1 (range 1.9–18.8), respectively (Additional file  1: 
Table S1).

Optical density (OD) from ELISA tests were exported 
into excel file for the calculation of arbitrary units (AU) 
using ODs obtained from negative controls (North 
American Controls, NACs). NACs were known never 
to have been exposed to malaria based on travel his-
tory. Quantitative antibody levels were expressed in AU 
by dividing test sample’s optical density (OD) by the sum 
of mean OD and 3 standard deviations (SD) of negative 

controls (NACs) as previously described [26]. AU val-
ues ≥ 1 were considered responders or seropositive to the 
respective antigen.

Total immunoglobulin concentrations were tested by 
Bio-Plex Pro using premixed multiplex kit for detecting 
total human immunoglobulins IgG1, IgG2, IgG3, IgG4 
and lgM (Bio-Rad). Total IgG concentration was obtained 
by eBioscience human IgG total ELISA kit (Ther-
moFisher). Preparation and reading of the Bio-Plex and 
ELISA assay kits were done in accordance to manufac-
turer’s instructions. For Bio-Plex assay, 50  µL of diluted 
beads were added into each well followed by two washes 
using 100  µL Bio-Plex wash buffer (provided). The pro-
vided standard was reconstituted by adding 781 µL dilu-
ent solution and subjected to fourfold dilutions to obtain 
a total of 8 standards. Samples and controls were diluted 
in diluent solution (provided) to obtain a dilution of 
1:40,000. 50 µL of vortexed samples, standards, blank and 
controls added into plate. The plate was covered (using 
aluminium foil) and incubated for 1  h at room temper-
ature (RT) while shaking at 850 revolutions per minute 
(rpm). The plates were washed three times with 100 µL 
Bio-Plex wash buffer then 25 µL of detection antibodies 
added and incubated for 30  min at room temperature 
while shaking at 850  rpm in dark. This was followed by 
three times wash with 100 µL Bio-Plex wash buffer then 
50  µL of 1× streptavidin-PE (SA-PE) added and incu-
bated at room temperature for 10 min. Again, the plates 
were washed three times with 100  µL Bio-Plex wash 
buffer followed by suspension of beads in 125  µL assay 
buffer. Reading of the plates was done in accordance to 
manufacturers setting instructions. A standard curve 
was constructed and read off values for tested samples 
obtained as antibody concentration in ng/mL.

Data analysis
Comparisons of antibody levels to AMA1 and GLURP-
R0 (in arbitrary units) by HIV status, CD4+ level (< 200 
vs ≥ 200) and VL (< 10,000 vs ≥ 10,000) and total immu-
noglobulin levels by HIV status were done using the 
Mann–Whitney test, and proportions of individuals with 
antibodies to AMA1 and GLURP-R0 according to HIV 
status were compared using the Chi squared test. Non-
antigen specific immunoglobulin levels are referred to as 
total IgG, IgM or IgG subclass antibodies in this study. 
Correlations of antibodies with CRP, CD4+ counts and 
HIV-1 VL were obtained by the Spearman correlation 
test. Correlation coefficients between 0.1 and 0.3 were 
considered weak correlations as previously described 
[42]. Statistical analyses were done using STATA ver-
sion 14.2 (Stata Corporation, College Station, TX, USA) 
and GraphPad Prism 7.0 (GraphPad Software Inc., CA, 
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USA). For all analyses, p-values ≤ 0.05 were considered 
significant.

Results
Participants’ clinical characteristics
Malaria-specific antibody concentrations were meas-
ured in the first 181 individuals enrolled in the study 
(52 HIV negative and 129 HIV positive) living in Bondo 
Sub-County and obtaining medical care from Bondo 
Sub-County Hospital. Bed net use data was missing for 
3 participants. CD4 data was missing from 1 participant 
secondary to lab equipment outage. Viral load data was 
missing from 1 participant. Average age was 3.8  years 
higher in HIV-infected individuals (p < 0.01, Table 1) [12]. 
There was a similar distribution between the two groups 
in gender and malaria infection status.

Comparison of antibodies in HIV‑infected and uninfected 
individuals
IgM, IgG1 and IgG3 antibody levels to both AMA1 and 
GLURP-R0 were significantly higher in HIV-infected 
participants compared to HIV-uninfected participants 
(p < 0.01, Fig.  1a and b). Total IgG, IgG2 and IgG4 anti-
body levels to AMA-1 and GLURP-R0 were not elevated 
in HIV-infected individuals except for IgG4 against 
GLURP-R0 (p = 0.03, Fig.  1a and b). Correspondingly, 
the proportions of serologic reactivity to AMA1 and 
GLURP-R0, defined as persons with an antibody con-
centration greater than 1 arbitrary unit, were also higher 
for IgM, IgG1 and IgG3 in HIV-infected participants 
compared to HIV-uninfected participants (p < 0.01, 
Table  2). IgG3:IgG1 ratios against both AMA1 and 
GLURP-R0 were higher in HIV-infected as compared to 

HIV-uninfected participants (p = 0.02, Fig.  2). It should 
be noted that these ratios are generated using arbitrary 
units for each subclass, so that a ratio of > 1 does not 
mean that the concentration per mL of blood of IgG3 
is higher than IgG1. For the total immunoglobulin pool 
(not antigen specific), IgG, IgM, IgG1, IgG3 and IgG4 
levels were higher in HIV-infected participants (p < 0.01, 
Fig.  1c), while total IgG2 levels were deficient in HIV-
infected participants (p = 0.009, Fig.  1c). Both malaria-
specific and total antibodies showed similar patterns 
when HIV-infected compared with uninfected partici-
pants (Fig. 1a–c).

Correlation of P. falciparum‑specific antibodies 
with markers of HIV disease severity and immune 
activation
In HIV-infected individuals, total IgM, IgG, IgG1 and 
IgG3 showed weak positive correlation with both HIV-1 
viral load and CRP concentration (rho values 0.21–0.36, 
p < 0.05, Table 5). There was no correlation between CD4 
count and the total immunoglobulin levels (Table  5). 
Similar trends were seen among malaria specific anti-
body concentrations to AMA1 and GLURP-R0 with weak 
correlations of HIV-1 viral load and CRP with IgM and 
IgG1 concentration (Tables  3 and 4). Correlations were 
visualized with scatter plots of malaria-specific antibod-
ies against VL and CRP (Additional file  1: Figure S1). 
Malaria specific IgM and IgG1 levels were not corre-
lated with CD4 counts. Finally, there was no significant 
correlation between IgG3:IgG1 ratios with HIV-1 viral 
load or CD4+ and CRP levels (Tables 3, 4, and 5). Simi-
larly, IgG3:IgG1 ratios against both AMA1 and GLURP-
R0 were not different among those who met CD4 count 

Table 1  Clinical characteristics of study participants according to HIV infection status

p-value comparing HIV-negative vs. HIV-positive participants from Chi square for proportions (female sex, malaria positive, CD4+ counts < 200), and Mann–Whitney 
test for medians (CRP concentrations and age)

Statistically significant differences (p < 0.05) are displayed in italics

IQR interquartile range: 25th percentile–75th percentile
a  N = 51
b  N = 136
c  N = 137

HIV-negative HIV-positive p value

Number of participants (N) 52 138

Age, median (IQR) 24.6 (21.6, 32.2) 29.4 (25.3, 36.2) < 0.001

Female sex, N (%) 25 (48.1) 84 (60.9) 0.11

Malaria Positive, N (%) 3 (5.8) 12 (8.6) 0.55

Bed net use, N (%) 43 (84.3)a 107 (84.3)b 0.99

CRP, g/dL, median (IQR) 0.52 (0.27, 1.15) 4.72 (0.867, 26.12) < 0.0001

CD4, cells/mL, median (IQR) – 301 (180, 476)c –

CD4 < 200, N (%) – 42 (30.7) –

HIV-1 Viral load, copies/mL, median (IQR) – 50,370 (14,546–198,155)c –
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criteria for acquired immunodeficiency syndrome (AIDS, 
CD4+ count < 200) and those with CD4+ counts ≥ 200 
(Additional file 1: Figure S2).  

Discussion
The data presented here demonstrates that HIV-infected 
individuals living a highly malaria endemic region of 
Kenya have higher levels of IgM, IgG1 and IgG3 antibod-
ies to the P. falciparum antigens AMA1 and GLURP-R0 
when compared to HIV-uninfected individuals. This 
same pattern is seen in the total immunoglobulin pool. 
Although both IgG1 and IgG3 levels rise, there is a pro-
portionally larger increase in IgG3 (increased IgG3:IgG1 
ratio) to the malaria antigens in the setting of HIV infec-
tion. Among HIV infected individuals, increases in IgG1, 
IgM and to AMA1 and GLURP-R0 weakly correlate 
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Fig. 1  IgG, IgM and IgG subclass antibody concentration to a P. 
falciparum antigen AMA-1, b P. falciparum antigen GLURP-R0 and c 
total immunoglobulin concentration in study participants, according 
to HIV infection status. p values obtained from Wilcoxon rank-sum 
testing. HIV− N = 52, HIV+ N = 129

Table 2  Proportion of  study participants with  a  reactive 
IgG, IgM or  IgG subclass antibodies to  P. falciparum 
antigens AMA-1 and GLURP-R0, according to HIV infection 
status

Statistically significant differences (p < 0.05) are displayed in italics
a  χ2 test

Recombinant malaria antigens HIV 
negative 
(N = 52)

HIV 
positive 
(N = 129)

p valuea

IgM-AMA1, n (%) 7 (13) 65 (50) < 0.001

IgM-GLURP-R0, n (%) 21 (40) 94 (73) < 0.001

IgG-AMA1, n (%) 41 (79) 115 (89) 0.07

IgG-GLURP-R0, n (%) 24 (46) 71 (55) 0.28

IgG1-AMA1, n (%) 31 (60) 117 (91) < 0.001

IgG1-GLURP-R0, n (%) 14 (27) 90 (70) < 0.001

IgG2-AMA1, n (%) 6 (12) 24 (19) 0.25

IgG2-GLURP-R0, n (%) 12 (23) 30 (23) 0.98

IgG3-AMA1, n (%) 28 (54) 114 (88) < 0.001

IgG3-GLURP-R0, n (%) 42 (81) 124 (96) 0.001

IgG4-AMA1, n (%) 27 (52) 63 (49) 0.71

IgG4-GLURP-R0, n (%) 1 (2) 2 (2) 0.86
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with HIV-1 viral load and CRP level, suggesting that 
HIV viraemia and inflammation may contribute to the 
observed changes. Together, these findings suggest that 
HIV related global inflammation could influence class 
switching for non-HIV antigens, in this case P. falcipa-
rum proteins.

As mentioned previously, clinical observations suggest 
that individuals with HIV are more susceptible to malaria 
infection and disease [18, 43, 44]. Further, existing 
research on immunoglobulin subclass distribution and 
malaria vulnerability in HIV-uninfected individuals sug-
gest that subclass should be considered as a mediator of 
this clinical observation. Specifically, IgG1 and IgG3 con-
centrations to various malaria antigens have been corre-
lated with malaria disease protection [26, 45–47]. While 
direct correlation between protection and antibody levels 
are beyond the scope of this study, it is notable that for 
IgM, IgG1 and IgG3, the median level to malaria proteins 

AMA1 and GLURP-R0 are higher in HIV infected par-
ticipants, a group typically understood to be at increased 
risk for malaria. The presented data is evidence that defi-
ciency of a particular subclass may not be a major driver 
of malaria disease vulnerability in HIV. It is possible that 
an increased class or subclass level could enhance malaria 
vulnerability in HIV. There is not direct evidence of this 
in this study, but increased IgM concentration has been 
implicated in P. falciparum immune evasion, although in 
a non-antigen specific manner, via Fc binding by infected 
red blood cells and rosette formation [48].

It is possible that the conclusions presented here are 
incorrect and malaria specific antibody subclass concen-
tration is important in malaria protection in HIV, but this 
study was unable to detect it based on the study design 
[49–51]. In the literature, the biggest difference in HIV 
mediated malaria susceptibility has been described in 
areas of low malaria transmission [42]. This study was 

Table 3  Correlation of  antibodies to  AMA1 with  viral load (VL), CD4 count and  C-reactive protein (CRP) concentration 
in HIV-infected individuals

Statistically significant differences (p < 0.05) are displayed in italics
a  Spearman correlation test

Marker N IgM Total IgG IgG1 IgG3 IgG3:IgG1

Rhoa p valuea Rhoa p valuea Rhoa p valuea Rhoa p valuea Rhoa p valuea

VL 128 0.31 < 0.01 − 0.19 0.04 0.21 0.02 0.05 0.57 − 0.10 0.28

CD4 128 − 0.12 0.17 0.26 < 0.01 > − 0.01 0.97 0.04 0.64 0.11 0.21

CRP 129 0.22 0.01 − 0.03 0.71 0.20 0.02 0.17 0.052 0.08 0.39

Table 4  Correlation of antibodies to GLURP-R0 with viral load (VL), CD4 count and C-reactive protein (CRP) concentration 
in HIV-infected individuals

Statistically significant differences (p < 0.05) are displayed in italics
a  Spearman correlation test

Marker N IgM Total IgG IgG1 IgG3 IgG3:IgG1

Rhoa p valuea Rhoa p valuea Rhoa p valuea Rhoa p valuea Rhoa p valuea

VL 128 0.21 0.02 0.10 0.28 0.24 0.01 0.14 0.12 − 0.07 0.40

CD4 128 0.02 0.81 − 0.06 0.48 − 0.08 0.39 0.06 0.52 0.11 0.19

CRP 129 0.18 0.047 0.15 0.10 0.25 < 0.004 0.16 0.07 0.03 0.77

Table 5  Correlation of total immunoglobulins with viral load (VL), CD4 count and C-reactive protein (CRP) concentration 
in HIV-infected individuals

Statistically significant differences (p < 0.05) are displayed in italics
a  Spearman correlation test

Marker N IgM Total IgG IgG1 IgG3 IgG3:IgG1

Rhoa p valuea Rhoa p valuea Rhoa p valuea Rhoa p valuea Rhoa p valuea

VL 128 0.36 < 0.0001 0.29 0.001 0.27 0.002 0.21 0.02 0.05 0.61

CD4 128 − 0.12 0.17 0.03 0.70 0.01 0.90 − 0.10 0.26 − 0.14 0.11

CRP 129 0.32 0.0002 0.28 0.002 0.32 0.0002 0.28 0.001 0.08 0.38
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conducted in a highly endemic area for malaria based 
on the hypothesis that the population would have a 
more uniform malaria exposure history [52]. However, it 
is possible that a study in a low transmission area or in 
may reveal significant subclass deficiencies among HIV 
infected individuals.

HIV infected individuals in this study did not have a 
deficiency or imbalance toward malaria specific non-
cytophilic (IgG2 and IgG4) antibodies, as has been seen 
in some populations with low malaria transmission and 
decreased clinical immunity [26]. Total IgG2 deficiency 
was found in this cohort similar as has been previously 
described [53] and interestingly IgG2, which primarily 
targets polysaccharide antigen, is considered important 
in pneumococcal immunity, a major cause of morbidity 
and mortality among people living with HIV in Africa 
[54, 55].

Although the relationship between B cell exhaus-
tion (increased atypical B cells) and sublass production 
is unknown, previously reported findings that malaria 
specific atypical memory B cells are increased in HIV-
infected individuals [12] suggest that these cells should 
be further studied as a source of subclass skewing. In 
the setting of malaria infection alone, Obeng-Adjei et al. 
have described increased Tbet expression in atypical B 
and correlated this with increased skewing to IgG3 sub-
class expression [56]. There is considerable evidence that 
these atypical B cells are present in several diseases with 
a high degree of inflammation—malaria, HIV, autoim-
mune diseases. However, it is not clear if observed B cell 
changes in these diseases are driven by chronic antigen 
stimulation through T cell receptor (TCR) and B cell 
receptor (BCR) signaling pathways, or if non TCR and 
BCR driven signals are important in B cell dysfunction in 
the setting of chronic inflammation. The observation that 
HIV-mediated inflammation is associated with subclass 
distribution among B cells of varying antigen specificity 
is suggestive that a mechanism outside of direct TCR and 
BCR signaling may be playing a role. This hypothesis is 
supported by multiple studies that describe a high degree 
of phenotypic exhaustion in the B cell compartment, 
which indicates that these abnormalities are not purely 
confined to B cells responding to the chronic antigen 
stimulus [9, 12, 49].

Even in mouse studies, the precise mechanisms that 
determine a B cell’s subclass are not clear. One possible 
mechanism to consider based on the presented findings 
stems from a unique aspect of HIV pathophysiology, 
which is directly relevant to B cell responses. T follicular 
helper cells, the primary T cells that drive the germinal 
center responses, are preferentially spared from cytotoxic 
T cell killing of HIV infected cells, leading to expansions 
of Tfh in lymphoid tissue [57]. However, although there 

are expansions of this population, Tfh are also prefer-
entially infected with the HIV virus and have associated 
phenotypic changes [58, 59], and may lead to altered GC 
physiology and consequently class switching. Mecha-
nisms outside of the GC may also be involved. There is 
considerable evidence that antigen-presenting cells have 
altered function in the setting of HIV including increased 
productions of B cell Activating Factor [60]. There is also 
evidence that direct interactions between plasmacytoid 
dendritic cells and HIV gp120 can impair TLR9 based B 
cell IFN-alfa signaling [61].

Conclusions
In conclusion, this study demonstrates that total and 
malaria-specific IgM, IgG1 and IgG3 concentration and 
IgG3:IgG1 ratios are elevated in HIV-infected as com-
pared to HIV-uninfected individuals. Further, some of 
these changes, specifically IgM and IgG1 levels, dem-
onstrate a weak positive correlation with HIV viral load 
and CRP level. This study only investigated the levels of 
antibodies in HIV-infected and uninfected individuals 
at a single timepoint without longitudinal follow up and 
this makes it difficult in interpreting their implication 
with respect to malaria protection or vulnerability. Fur-
ther, this study examined antibody concentration prior 
to antiretroviral treatment and using malaria antigens 
(AMA-1 and GLURP-R0) are highly polymorphic. The 
impact of HIV treatment on subclass destruction should 
be examined and additional malaria antigen should be 
evaluated. Future studies should also investigate the cel-
lular mechanisms leading to elevated antibody levels 
in HIV-infected individuals and whether this elevation 
influences the affinity and effector function of antibodies 
produced targeting non-HIV antigens such as malaria.
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