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Abstract 

Background:  Epidemiological surveys of malaria currently rely on microscopy, polymerase chain reaction assays 
(PCR) or rapid diagnostic test kits for Plasmodium infections (RDTs). This study investigated whether mid-infrared (MIR) 
spectroscopy coupled with supervised machine learning could constitute an alternative method for rapid malaria 
screening, directly from dried human blood spots.

Methods:  Filter papers containing dried blood spots (DBS) were obtained from a cross-sectional malaria survey in 12 
wards in southeastern Tanzania in 2018/19. The DBS were scanned using attenuated total reflection-Fourier Transform 
Infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra in the range 4000 cm−1 to 500 cm−1. The spec‑
tra were cleaned to compensate for atmospheric water vapour and CO2 interference bands and used to train differ‑
ent classification algorithms to distinguish between malaria-positive and malaria-negative DBS papers based on PCR 
test results as reference. The analysis considered 296 individuals, including 123 PCR-confirmed malaria positives and 
173 negatives. Model training was done using 80% of the dataset, after which the best-fitting model was optimized 
by bootstrapping of 80/20 train/test-stratified splits. The trained models were evaluated by predicting Plasmodium 
falciparum positivity in the 20% validation set of DBS.

Results:  Logistic regression was the best-performing model. Considering PCR as reference, the models attained 
overall accuracies of 92% for predicting P. falciparum infections (specificity = 91.7%; sensitivity = 92.8%) and 85% for 
predicting mixed infections of P. falciparum and Plasmodium ovale (specificity = 85%, sensitivity = 85%) in the field-
collected specimen.

Conclusion:  These results demonstrate that mid-infrared spectroscopy coupled with supervised machine learning 
(MIR-ML) could be used to screen for malaria parasites in human DBS. The approach could have potential for rapid 
and high-throughput screening of Plasmodium in both non-clinical settings (e.g., field surveys) and clinical settings 
(diagnosis to aid case management). However, before the approach can be used, we need additional field validation 
in other study sites with different parasite populations, and in-depth evaluation of the biological basis of the MIR sig‑
nals. Improving the classification algorithms, and model training on larger datasets could also improve specificity and 
sensitivity. The MIR-ML spectroscopy system is physically robust, low-cost, and requires minimum maintenance.
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Background
Accurate diagnosis of malaria infection in both humans 
and mosquitoes is essential for understanding trans-
mission patterns, estimating epidemiological bur-
den and informing appropriate management of cases. 
WHO’s Global Technical Strategy for Malaria 2016–
2030 (GTS) recommends that surveillance strategies 
should be integrated as core interventions to provide 
better estimates of disease burden, improve resource 
allocation and accelerate progress towards elimination 
[1]. The malERA Refresh Consultative Panel on Tools 
for Malaria Elimination reiterated in 2017 that new 
diagnostic tools are as important as new drugs, vac-
cines and vector control tools [2].

Given health system challenges facing many low-
income, malaria-endemic countries, there is par-
ticular interest in non-immunological point-of-care 
(POC) techniques that could be readily scaled up with 
minimum effort [2]. Equally vital is the need for bet-
ter quantification and identification of asymptomatic 
pathogen carriers in situations of low transmission and 
sub-microscopic parasitaemia [2, 3]. Low-cost mass 
screening tools are also vital for large cross-sectional 
investigations such as national malaria indicator sur-
veys, and for monitoring progress of interventions such 
as insecticide-treated bed nets [4–6], indoor residual 
spraying [7], larviciding [8], and anti-malarial medi-
cines [9].

Malaria diagnosis from human samples currently 
relies on light microscopy with thin and thick blood 
smears [10], polymerase chain reaction (PCR) assays 
[11–13] and a variety of antigen-detecting rapid diag-
nostic tests [14]. As countries approach elimination, 
there is greater need for accurate detection of malaria 
parasites in both symptomatic and asymptomatic indi-
viduals [15]. Microscopy is still commonly used in diag-
nosis to support case management [10]. With highly 
trained and experienced microscopists, it can offer reli-
able results and enable identification and quantification 
of sexual and asexual stages of infections by different 
malaria parasite species (Plasmodium falciparum, Plas-
modium vivax, Plasmodium malariae, and Plasmodium 
ovale, being the most prevalent). However, microscopy-
based diagnosis is labour-intensive and often requires 
more than one highly trained person for confirmation 
of conflicting results [10]. Additionally, this technique 
has low sensitivity in many laboratories and misses 
most low-level parasitaemia cases [16].

PCR, on the other hand, is highly specific and sensi-
tive for malaria parasite detection, but is not widely used 
for primary diagnosis in most malaria-endemic places 
because it is expensive, requires highly skilled personnel, 
and is therefore impractical to implement in rural and 
remote facilities [17]. Furthermore, until the impact of 
treating sub-microscopic parasitaemia on transmission 
is fully understood, WHO has recommended that PCR 
should not be part of routine malaria control or elimina-
tion programmes [18]. It is however capable of identifying 
low-level parasitaemia that are otherwise undetectable by 
other methods, and distinguishing between individual 
parasite species. Recent developments in PCR applica-
tions have signaled the potential of non-invasive malaria 
diagnostic options, such as those relying on DNA detec-
tion in saliva, urine, sweat, and even faecal excreta [19–
21]. Besides, real time PCR assays enable quantitative 
assessments and comparison of infection loads [15], but 
are expensive for most laboratories. A related technology 
is the loop-mediated isothermal amplification (LAMP), 
which is also increasingly used for diagnosis of multiple 
malaria species, and can be conducted at room tempera-
tures without PCR instruments [22].

At present, malaria rapid diagnostic tests (RDTs) 
are the best option for addressing the technical limita-
tions of both light microscopy and DNA-based diagno-
sis. These tests target persistent specific antigens from 
malaria parasites [14, 23, 24] and are quick and deploy-
able at large scale. They also do not require highly skilled 
labour, electricity or sophisticated storage needs. Unfor-
tunately, RDTs can be unreliable in low transmission 
settings, resulting in significant false negative and false 
positive results [25]. Both microscopy and RDTs are 
recommended only when the number of malaria para-
sites exceed 100/µL, and are therefore not applicable for 
measuring low-level parasitaemia or identifying asymp-
tomatic cases [16]. In one example, mass RDT screen-
ing followed by treatment did not result in reduction of 
malaria incidence in the pre-elimination settings of Zan-
zibar, most likely due to poor reliability of the RDTs [26]. 
However, a new rapid lateral flow technique that detects 
specific proteins of the infectious Plasmodium stages, 
i.e., gametocytes, in saliva is showing encouraging results 
in detecting sub-microscopic parasites in children and 
adults [27].

Recent studies have shown that non-molecular tech-
niques such as near-infrared spectroscopy (12,500 cm−1 
to 400 cm−1 frequencies) and mid-infrared spectroscopy 
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(4000  cm−1 to 400  cm−1 frequencies), combined with 
advanced data analysis, could provide cheaper, quicker, 
reagent-free, and potentially simpler options for surveys 
of mosquitoes and mosquito-borne infections. Exam-
ples include detection of endosymbionts such as Wol-
bachia bacteria, and pathogens such as Plasmodium and 
Zika virus in mosquitoes [28–31]. Such approaches have 
also been used for estimating ages of disease-transmit-
ting mosquitoes [32–38], distinguishing between vec-
tor species [32, 38, 39] and assessing their blood-feeding 
histories [40], all of which directly influence malaria 
transmission.

Khoshmanesh et  al. [41] used mid-infrared (MIR) 
spectroscopy combined with partial least-squares (PLS) 
regression to detect early ring stages of laboratory-
cultured P. falciparum with detection limits less than 
1 parasite/µL. To improve this approach, Roy et  al. [42] 
used Plasmodium cultures to spike whole blood obtained 
from six uninfected volunteers, then aliquoted these 
mixtures multiple times to obtain 132 specimens con-
taining different quantities of P. falciparum parasites, 
glucose and urea. Based on PLS regressions analysis of 
MIR spectra from these aliquots, they correctly identi-
fied 98% of specimens with parasitaemia densities above 
0.5% (~ 25,000  parasites/µL). Sensitivity was however 
only 70%, possibly because the model included only a 
small number of negative samples. Although limited to 
laboratory cultures and small number of samples with 
low genetic variability, these studies were the first to 
demonstrate direct potential of MIR for malaria parasite 
detection.

This current study has extended the approach used by 
Khoshmanesh et  al. [41] and Roy et  al. [42], to provide 
the first demonstration of MIR spectroscopy coupled 
with supervised machine learning (MIR-ML) to diag-
nose malaria in human dried blood spots (DBS) obtained 
from field surveys of naturally infected individuals in a 
malaria-endemic community in Tanzania.

Methods
Study area
Samples for this analysis were obtained from a cross-sec-
tional malaria parasite prevalence survey conducted in 12 
administrative wards in Ulanga and Kilombero districts 
in southeastern Tanzania (Fig. 1). Average altitude of the 
area is 270  m above sea level, annual rainfall is 1200–
1800 mm and annual temperatures range between 20 °C 
and 32  °C. Malaria prevalence at the time of the survey 
varied from < 1% in the northernmost urban wards of 
Ifakara town and Mlabani, to > 40% in southern wards of 
Igota and Igumbiro (Swai et al. unpublished). Of all Plas-
modium species, P. falciparum accounts for most malaria 
infections Tanzania [43].

Transmission intensities also vary and were last esti-
mated to be ~ 16 infectious bites/person/year in the 
Ulanga district wards [44], and < 1 infectious bites/
person/year in the Kilombero district wards [45]. The 
dominant vector species is Anopheles funestus followed 
by Anopheles arabiensis [44]. Long-lasting insecticidal-
treated bed nets (LLINs) are the most common preven-
tion tool used in the study with coverage of > 80% [4].

Malaria parasite surveys using RDTs
The parasite survey included 1486 households and 3292 
individuals across the 12 study wards (Fig.  1), and was 
conducted between September 2018 and February 2019. 
Blood samples were taken from finger pricks of house-
hold members of all age groups and both genders, and 
then tested for malaria parasites using RDTs and PCR.

The RDTs (SD BIOLINE malaria Ag P.f/Pan 05FK60) 
were used to screen all individuals and results interpreted 
following manufacturer’s instructions [46]. This RDT 
kit detects P. falciparum and other Plasmodium species 
in whole blood samples [46] by differential detection of 
circulating histidine-rich antigen II (HRP-II) of P. falci-
parum, and common Plasmodium lactate dehydrogenase 
(pLDH) of Plasmodium species [14, 23, 24]. All malaria-
positive specimens were verified by light microscopy, and 
if found positive, the individual was immediately treated 
by a study clinician according to Tanzania national treat-
ment guidelines for malaria [47].

In addition to microscopy and RDTs, DBS specimens 
were collected from all RDT-tested patients regardless 
of test results. Three to four drops of blood were placed 
directly from finger prick onto Whatman 903™ card (GE 
Healthcare Bio-Sciences Corp.) [48]. The DBS specimens 
were dried in open air for 15  min, and stored in zip-
locked plastic bags, with desiccants. The DBS were stored 
at − 20 °C for 2–5 months, after which further tests were 
done, all at once, as described below.

Mid‑infrared scanning of dry blood spots
The DBS collected from individuals for which there had 
been positive malaria test results (n = 147), and a sepa-
rate random selection of specimens from individuals with 
negative results (n = 149) were scanned using a Bruker 
ALPHA Fourier-Transform Infrared (FTIR) spectrometer 
equipped with Platinum ATR and a Platinum diamond 
sampling module [49]. The individual DBS cards were 
placed between the anvil and crystal plate of the spec-
trometer, each time ensuring that the MIR beam directly 
struck the middle of the blood spots (Fig. 2a).

The MIR spectra were captured from 4000 to 500 cm−1 
wave numbers, with spectral resolution set at 5  cm−1. 
Each individual DBS sample was scanned 32 times in 30 s, 
and averaged to obtain a single representative spectrum. 
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The anvil and crystal were cleaned after each specimen 
scan, using velvex tissue soaked in 70% ethanol and dried 
using a clean dry tissue. The spectrometer has an inter-
nal validation unit (IVU) with reference standards, and 
was programmed to conduct automated instrument tests 
for operational and performance qualification. However, 
additional performance and quality checks were done by 
conducting frequent background scans before first sam-
ple scan and after every five specimen scans. Additional 
details of the MIR spectrometer and the scanning process 
have been described elsewhere [38, 40]. All DBS samples 
were scanned at the same time.

Nested PCR assays to confirm malaria infections in the dry 
blood spots
DNA was extracted from the DBS papers and the pres-
ence of any of the malaria parasites (P. falciparum, P. 
ovale, P. vivax and P. malariae) examined using nested 
PCR targeting 18S ssRNA sequences, according to the 

Snounou and Singh protocol [50], with slight modifica-
tion to include primers for Plasmodium knowlesi [51]. 
The first PCR reaction used 10 µl of DNA, amplified with 
rPLU1 and rPLU5 primers targeting fragment lengths 
between 1600 and 1700 bp. The second PCR stage used 
2 µl of the first PCR product, plus species-specific primer 
pairs (rFAL1-rFAL2, rOVA1-rPLU2, rVIV1-rVIV2, 
rMAL1-rMAL2, and Pmk8-Pmkr9) in five different reac-
tions (Additional file  1). Amplification for all reactions 
was done using PCR master mix with total volumes of 
20  µl. The PCR products were analyzed after electro-
phoresis in agarose gel and DNA bands visualized using 
Kodak Logic 100 imaging system.

Data analysis
The OPUS software [52] was used to clean and compen-
sate all spectra for water vapour absorption bands and 
carbon dioxide (CO2) interference bands as described 
in Mwanga et  al. [40] and Gonzalez-Jimenez et  al. [38]. 

Fig. 1  Map showing study villages in Kilombero and Ulanga districts, southeastern Tanzania (courtesy of Alex J Limwagu)
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Fig. 2  Schematic illustration of specific processes of: a collection of blood specimens and preparation of DBS on filter papers, scanning on 
mid-infrared spectrometer, and recording sample spectra; b data splitting, model training, cross-validation and evaluation of performance of final 
model (supervised machine learning process)
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A final dataset of 296 samples, including 123 PCR-con-
firmed Plasmodium-positive and 173 Plasmodium-neg-
ative individuals was considered for further analysis in 
the Python programming language version 3.7 with the 
scikit-learn library [53]. All wave numbers from the spec-
tra were included in the analysis. Supervised machine 
learning algorithms were trained to map spectra to 
known PCR test results, by implementing binary classifi-
cation strategy, and validated on a separate set of spectra 
not used for training (Fig. 2b).

Primary assessment was done against PCR as reference 
because of its high sensitivity and specificity compared to 
RDTs and microscopy [17, 54]. At this proof-of-concept 
stage, it was however not possible to balance the speci-
mens by other variables such as anaemia, gender, age, 
period of storage, or prevailing parasitaemia prevalence 
in the different villages.

The PCR analysis had identified mostly infections of 
P. falciparum occurring singly, though there were also a 
few cases of mixed infections consisting of P. falciparum, 
together with P. ovale. The MIR-based predictions were 
therefore done first by excluding the mixed infections, 
and second, without excluding them.

Classifying DBS samples as positive or negative 
for Plasmodium falciparum, based on PCR test results 
as reference
All samples with mixed Plasmodium species infec-
tions (N = 9) were excluded, so that the remaining data-
set included only P. falciparum positives and a reduced 
number of negative samples (N = 260; Npositives = 114, and 
Nnegatives = 146). As previously described [40], the dataset 
was first partitioned into training set (80%; N = 208) and 
validation datasets (20%; N = 52). The validation set was 
preserved for evaluating prediction accuracies of the final 
model.

The training dataset was subjected to multiple rounds 
of randomly stratified splits into training sets (80%) and 
test sets (20%), to achieve rigorous classification of the 
different malaria-positive and malaria-negative samples. 
To provide a mix of data representation methods and 
allow for both parametric and non-parametric assess-
ment of the data, baseline performances of seven differ-
ent classification algorithms were tested. These included: 
K-nearest neighbours classifier (KNN), logistic regres-
sion (LR), support vector machine classifier (SVM), naïve 
Bayes (NB), random forest classifier (RF), XGBoost clas-
sifier (XGB), and multilayer perceptron (MLP) [53]. All 
code was adapted from https​://githu​b.com/Simon​AB/
Gonza​lez-Jimen​ez_MIRS.

The algorithms were trained on spectral features 
(absorbance of MIR spectra in at different wavenum-
bers) representing malaria-positive and malaria-negative 

DBS samples (Fig. 3). The best-performing classification 
algorithm was optimized by fitting 70 bootstrapped mod-
els, for which the outputs were aggregated to obtain an 
ensemble model with highest accuracy and lowest vari-
ance. Finally, best-performing classifiers were bagged and 
used to compare the predicted labels against true labels 
(Plasmodium positive or Plasmodium negative) using the 
naïve validation set separated at the beginning.

The full analysis was repeated, this time including the 
mixed infections, which had been removed from the ini-
tial model training. This way, the MIR-ML approach was 
evaluated for predicting infection with any of the two 
Plasmodium species (P. falciparum and P. ovale) occur-
ring singly or together in a DBS.

Lastly, based on the previous spectroscopic analysis of 
body fluids [55], and the earlier work by Roy et al. [42], 
Kozicki et  al. [56], Khoshmanesh et  al. [41], putative 
bands possibly responsible for the spectral differences 
between Plasmodium-infected and Plasmodium-free 
specimen were examined. Biochemical compositions 
such as lipids, proteins, carbohydrate and nucleic acids 
were explored from the sensitivity of the candidate MIR 
bands. Prediction coefficients of the best model were 
extracted and plotted its most dominant wave numbers.

Results
Spectral characteristics of dried blood spots 
with and without Plasmodium
Figure  3 shows two averaged spectra obtained from 
DBS confirmed by PCR as Plasmodium positive 
(Npositives = 114) or Plasmodium negative (Nnegatives = 146), 
and the features (or wave numbers) relied upon to predict 
the infection status. The specific biochemical properties 
associated with major peaks in the spectra are shown in 
Table  1. The detectable vibrational modes show a com-
plex of potentially distinctive biochemical characteristics 

Fig. 3  Averaged mid-infrared spectra obtained from dried blood 
spots confirmed by PCR as Plasmodium positive (Npositives = 114) or 
Plasmodium negative (Nnegatives = 146). Assignations of biochemical 
properties of different wavelengths are shown in Table 1

https://github.com/SimonAB/Gonzalez-Jimenez_MIRS
https://github.com/SimonAB/Gonzalez-Jimenez_MIRS
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associated with lipids, proteins, amides, sugars and the 
haem group (Table 1).

Classifying DBS samples as positive or negative 
for Plasmodium falciparum, based on PCR test results 
as reference
In the first analysis, only P. falciparum-infected individu-
als were considered in the category of malaria-positive 
DBS cards, and any mixed infections were excluded. 
Logistic regression (LR) outperformed the other six can-
didate classifiers in accuracy and precision (Fig. 4a). The 
best LR models predicted P. falciparum-infected and 
non-infected individuals with overall accuracy up to 90% 
before optimization (Fig.  4a) and 91.5% after optimiza-
tion (Figs. 4b and 5a). When challenged with the valida-
tion dataset, the optimized model achieved an overall 
accuracy of 92.3%, correctly identifying 92% of PCR-
negative individuals and 93% of PCR-positive individuals 
(Fig. 5b).

The validity of MIR-ML is shown in Table  2. The 
approach was 92.8% sensitive and 91.7% specific. For 
comparison, the validity of the RDTs used in the survey, 
when compared to PCR, is also shown. The RDTs were 
97.6% sensitive and 84.4% specific for detection of Plas-
modium-infected individuals in this study area.

Selection of most dominant spectral features (wave 
numbers) used for distinguishing between Plasmodium 
falciparum positive or negative dried blood spots
The LR coefficients showed the relative importance 
of wave numbers, enabling selection of those most 

responsible in the decision function (prediction of 
malaria positive and malaria negative DBS). Figure  6 
therefore shows the wave numbers with the strongest 
likelihood in predicting the infection status of the indi-
viduals. All the top 20 wave numbers (features) were in 
the fingerprint region of the MIR spectra (1730  cm−1–
883  cm−1) where lipids, amino acids and proteins is 
mostly detected (Table 1).

Predicting PCR test results from MIR spectra 
without excluding mixed infections
In the second analysis, all infected individuals were 
considered regardless of Plasmodium species present. 
Once again, LR was the best model, achieving up to 93% 
accuracy and 95% after bootstrapping. The final model 
achieved 87% overall accuracy for the validation set, cor-
rectly identifying 91% of PCR-negative individuals and 
82% of PCR-positive individuals.

Discussion
This study is an initial demonstration, using field-col-
lected blood specimens, that MIR spectroscopy coupled 
with logistic regression analysis could potentially be har-
nessed for detection of infectious parasitic diseases, in 
this case malaria. Malaria cases were identified by both 
MIR spectroscopy and PCR, then the results were com-
pared. It considered 296 individual samples, to dem-
onstrate potential application of MIR spectroscopy for 
malaria detection. The main finding was that spectral sig-
natures collected from human DBS can be relied upon to 
identify malaria-infected and non-infected specimens.

Table 1  Biochemical properties associated with  peaks in  the  mid-infrared spectra obtained from  dried blood spots 
in Fig. 3

Wave number (cm−1) Vibrational mode Component identification

3600–3000 N–H stretching Amides (proteins, haemoglobin), urea

O–H stretching Alcohols carbohydrates, cellulose

3332 O–H stretching Alcohol cellulose

3293 N–H stretching Amide (proteins, hemoglobin)

3272 O–H stretching Cellulose

3000–2800 C–H stretching Lipids, amino acids, carbohydrates

2894 C–H stretching Cellulose, carbohydrates

1700–1600 C=O stretching Amides (proteins, haemoglobin), urea

1540 N–H bending coupled to C–N stretching Amides (proteins, haemoglobin)

1457 CH3 bending Amino acids, lipids

1400–1310 C–H stretching Lipids, amino acids, carbohydrates

1307 C–N stretching Amides (proteins, haemoglobin)

1165–1110 C–O–C stretching Ethers (cellulose, carbohydrates)

1070–950 C–O stretching Alcohols (cellulose, carbohydrates, amino-acids)

=C–H bending Haem group; haemoglobin

730 C–H bending Lipids, amino acids, carbohydrates
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Validity of this approach was verified by PCR tests, and 
corroborates the earlier evidence by Khoshmanesh et al. 
[41] and Roy et al. [42], who first demonstrated applica-
tions of MIR spectroscopy to detect Plasmodium. Other 
related approaches include the use of surface-enhanced 
Raman spectroscopy (SERS), requiring silver nanopar-
ticles to be added to lysed blood, and magneto-optic 
scanning to detect haemozoin, a waste product of Plas-
modium infection of red cells pigment, haemoglobin [57, 
58]. Both of these approaches have been tested in vitro, 
although Newman et  al. also evaluated the magneto-
optic systems in a small pre-clinical trial with 13 partici-
pants [59].

An important advancement in the work presented 
here is that it has demonstrated the first direct applica-
tion of MIR spectroscopy on field-collected DBS speci-
mens on filter papers. The technique therefore requires 
no additional reagents or pre-processing of samples. 
The samples analysed came from multiple age groups of 
both male and females in villages with varying malaria 
prevalence rates, thereby providing considerable vari-
ability between individual infections. When the final 
optimized LR model was applied to new blood samples 
that had not been exposed to the classifier, they cor-
rectly identified 92% of the malaria-free individuals and 
93% of malaria-infected individuals compared to PCR.

This study adds to the growing evidence show-
ing the potential role of infrared spectroscopy and 

Fig. 4  a Percentage prediction accuracies and precisions for different 
classification models, based on PCR test results as reference. Models 
compared included k-nearest neighbours (KNN), logistic regression 
(LR), support vector machines (SVM), naïve Bayes (NB), XGBoost (XGB), 
random forest (RF), Multilayer perceptron (MLP). Logistic regression 
(LR) was the best performing model; b distribution of per class 
accuracies obtained by final LR classifiers and standard deviation 
from 70 bootstrapped models in predicting PCR test results from 
MIR spectral data. In both figures, accuracy refers to the how high 
the percentage prediction for each individual classification method 
is, while precision implies the statistical variation around those 
predictions

Fig. 5  a Averaged proportions of correct predictions of 
PCR-confirmed Plasmodium falciparum-infected individuals achieved 
during the training of the models; b averaged proportions of correct 
predictions of Plasmodium falciparum-infected individuals achieved 
when the final model is challenged the previously unseen validation 
spectra
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chemometrics in surveillance of mosquito-borne dis-
eases. In a recent study conducted using near-infra-
red rather than MIR spectra, it was possible to detect 
infectious P. falciparum sporozoites in laboratory-
reared and laboratory-infected Anopheles mosqui-
toes with up to 90% accuracy [31]. Earlier studies had 
also demonstrated detection of various pathogens 
such as Wolbachia, Plasmodium and Zika virus in 

different mosquito species [28–31]. Many of these ear-
lier approaches relied on spectroscopy at near-infrared 
(NIR) frequencies (12,500  cm−1 to 400  cm−1) where 
the absorption intensity is due to overtone and combi-
nation bands, which are relatively weak. Spectroscopy 
at MIR frequencies (4000  cm−1 to 400  cm−1) captures 
the fundamental vibrational modes of biological sam-
ples, which are stronger and more information rich 
[38], thereby offering stronger signals than NIR, which 
reflects secondary modes. Advances in data analysis 
and machine learning techniques now make the large 
spectral datasets amenable to processing.

The distinctive features of the MIR spectra may be 
related to the biochemical changes in red blood cells 
following malaria infection [41, 42]. These differences 
may also result from Plasmodium-specific proteins 
present in infected human blood [60], or simply due to 
pathological manifestations of malaria such as anae-
mia, iron deficiency or other inflammatory responses. 
Based on previous analyses of body fluids [55, 56, 61, 
62], and earlier work by Roy et  al. [42], Kozicki et  al. 
[56], Khoshmanesh et al. [41], the spectral bands puta-
tively responsible for the differences between Plasmo-
dium-infected and Plasmodium-free specimens were 
examined (Table  1). Further analysis of the dominant 
spectral wavelengths showed that they were mostly 
in the fingerprint region associated with amino acids, 
carbohydrates, lipids, and proteins (Table 1 and Fig. 6). 
Nonetheless, more detailed analysis beyond this cur-
rent work is still required to examine how variations in 
these specific bands influence the diagnostic capacity of 
this technology.

Bands in the C–H stretching regions are usually 
attributed to lipids synthesized during development of 

Table 2  Performance of  mid-infrared spectroscopy coupled with  logistic regression, and  the  RDT (i.e. SD BIOLINE 
malaria Ag P.f/Pan 05FK60), both  compared to  PCR for  identifying Plasmodium falciparum-infected individuals 
from the validation set

PCR Total % sensitivity % specificity % positive 
predictive 
value

% negative 
predictive 
valuePositive Negative

Mid-infrared 
spectroscopy 
and machine 
learning (MIR-
ML)

 Positive 26 2 28 92.8 91.7 92.8 91.7

 Negative 2 22 24

28 24 52

Positive Negative % sensitivity % specificity % positive 
predictive 
value

% negative 
predictive 
value

SD BIOLINE 
malaria Ag P.f/
Pan 05FK60 
RDT

 Positive 120 27 147 97.6 84.4 86.0 97.2

 Negative 3 146 149

123 173 296

Fig. 6  Plots of 20 most dominant spectral features (wave numbers) 
influencing model prediction of Plasmodium-infection status of the 
dried blood spot specimens. The positive coefficients are those most 
predictive of Plasmodium positive specimens while the negative 
coefficients are those most predictive of Plasmodium-negative 
specimen. All the top 20 features are found in the fingerprint region 
(1730 cm−1–883 cm−1)
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P. falciparum and can change the make-up of infected 
erythrocytes and become detectable in the spectra. On 
the other hand, the region between 1250 and 800  cm−1 
is sensitive to nucleic acid vibrations associated with 
proliferation of Plasmodium-specific ribosomes dur-
ing parasite development and cell invasion [42]. Several 
peaks were observed in this region characteristic of sug-
ars and peptides, consistent with parasite DNA (Table 1 
and Fig.  6). In previous assessments, it was also shown 
that reduced absorbance in the carbohydrate regions at 
1144 cm−1, 1101 cm−1 and 1085 cm−1 are likely associ-
ated with lower glucose content in infected red blood 
cells, since these parasites metabolize glucose faster than 
normal cells [41, 42]. Perhaps the most obvious are the 
different haem vibration regions (Table  1), which show 
higher haemoglobin levels in non-infected than infected 
samples because Plasmodium catabolizes the complex 
haemoglobin protein into constituent lipids and biliru-
bin. By tracking these key characteristics, it is possible 
to predict the infection status of the dried whole blood 
specimen.

This study should be considered only as an initial eval-
uation of the approach, and more studies are required 
before the technology is field-deployable or effective. Fil-
ter papers containing human DBS were scanned and the 
resulting spectra used to train algorithms to predict out-
comes of nested PCR [40]. Comparison was made with 
results of tests considering only P. falciparum and also 
with results of tests considering any species of Plasmo-
dium. In both cases, the technique achieved high accu-
racy in distinguishing between infected and uninfected 
specimen. While this finding indicates that the technique 
could be applicable for diagnosis of different malaria par-
asites, it also highlights the need to improve the approach 
so as to distinguish between different parasite species.

The field survey from which the DBS specimens were 
collected also had RDT data. Relative to PCR as refer-
ence, the RDT results achieved slightly higher sensitiv-
ity (97.6 vs 92.8%) but lower specificity (84.4 vs 91.7%) 
than the MIR spectroscopy approach (Table 2). In previ-
ous studies, the same RDTs achieved sensitivity of 99.7% 
for P. falciparum, and 95.5% for non P. falciparum and a 
specificity of 99.5% for both [46, 63].

Significant improvements and field validation studies 
are still necessary before this technique can be deployed 
for actual screening and diagnosis. One avenue of 
improvement is the availability of more field data to vali-
date this approach as a complementary tool for screening 
malaria, and potentially other blood-borne infections. 
Also, this current study did not include any quantifi-
cation of infection intensities, which will be necessary 
to examine validity in areas of different transmission 
intensities, as well as potential role of this technology in 

malaria elimination settings. Such future studies should 
also include: (a) greater analysis on biological basis of 
the observed signals and how this may be influenced by 
the natural history of malaria infections in humans, or 
its manifestations, such as anaemia; (b) determination of 
whether the method can distinguish between the differ-
ent parasite stages, such as the asexual stages versus the 
sexual stages (i.e., gametocytes); (c) detailed examination 
and characterization of cases incorrectly identified by 
this new approach; and, (d) assessment of parasite detec-
tion thresholds, and factors that may influence it if MIR 
spectroscopy and machine learning are used.

It takes 30  s to scan a single blood spot under MIR 
spectrometer, and the approach is considerably lower 
cost than PCR platforms. The MIR equipment presently 
costs ~ US$29,000 as an initial outlay, but there are no 
extended costs for reagents except for occasional replace-
ment of the desiccants. It takes less than a minute to clean 
the crystal and anvil, position DBS on the crystal and col-
lect the MIR spectra, thus any experienced staff member 
can scan more than 250 specimens per day. Compara-
tively, average PCR systems cost between US$3000 and 
10,000, and require reagents repeatedly. The cost of pro-
cessing a DBS sample can be US$2–4 per unit and regu-
larly takes up to 2 days to get back full results in batches 
typically not exceeding 100 specimens. Assuming a mod-
est analysis of just 5000 samples per year, it would take 
~ 2 years to recover full costs of switching from PCR to 
MIR-ML-based systems and break even. The onward 
costs of servicing are also low as the MIR equipment is 
robust. Compared to PCR, use of MIR-ML could there-
fore potentially be developed into a cost-effective, quick 
and scalable approach. Besides, the same spectra, once 
collected, can be analysed for multiple characteristics, 
potentially making this approach a one-stop system for 
assessing multiple disease indicators with different speci-
men types, such as DBS papers, blood slides, mosquitoes, 
and fluids. It is however not expected that the technology, 
in its current form, can replace current best practices for 
malaria surveillance or diagnostics, without further field 
validation.

One limitation of this current study is that the number 
of samples used was low, totalling only 296 (123 Plas-
modium positive and 173 Plasmodium negative). It is 
expected that the quality of the predictions will improve 
as more data are available to train the models, especially 
if there is variation in localities from where the specimen 
originates, parasite densities, geographical locations, and 
demographics of infected individuals. A related limita-
tion was that it was not possible to balance the Plas-
modium-positive and Plasmodium-negative specimens 
by other variables such as anaemia, gender, age, period 
of storage, or parasitaemia prevalence in the different 
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villages, all of which may influence malaria risk and the 
predictive values of test methods. Future studies should 
therefore test whether these factors can significantly 
influence outcomes of the prediction models.

Conclusions
These results demonstrate that mid-infrared spectros-
copy coupled with supervised machine learning could be 
used to screen for malaria parasites in human dried blood 
spots. This approach has the potential for rapid and high-
throughput screening of Plasmodium infections in non-
clinical field surveys, and possibly for diagnosis in clinical 
settings. However, before the approach can be used, we 
need additional field validation in other study sites with 
different parasite populations, and in-depth evaluation 
of the biological basis of the MIR signals. Improving the 
classification algorithms, and model training on larger 
datasets could also improve specificity and sensitivity. 
The MIR spectroscopy system is physically robust, lower-
cost compared to PCR, requires minimum maintenance, 
and is reagent-free except for occasional replacement of 
desiccants.
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