
Mbouna et al. Malar J          (2019) 18:359  
https://doi.org/10.1186/s12936-019-2991-8

RESEARCH

Modelled and observed mean and seasonal 
relationships between climate, population 
density and malaria indicators in Cameroon
Amelie D. Mbouna1,2*  , Adrian M. Tompkins2, Andre Lenouo3, Ernest O. Asare4, Edmund I. Yamba5 
and Clement Tchawoua1

Abstract 

Background:  A major health burden in Cameroon is malaria, a disease that is sensitive to climate, environment and 
socio-economic conditions, but whose precise relationship with these drivers is still uncertain. An improved under-
standing of the relationship between the disease and its drivers, and the ability to represent these relationships in 
dynamic disease models, would allow such models to contribute to health mitigation and adaptation planning. This 
work collects surveys of malaria parasite ratio and entomological inoculation rate and examines their relationship with 
temperature, rainfall, population density in Cameroon and uses this analysis to evaluate a climate sensitive mathemat-
ical model of malaria transmission.

Methods:  Co-located, climate and population data is compared to the results of 103 surveys of parasite ratio (PR) 
covering 18,011 people in Cameroon. A limited set of campaigns which collected year-long field-surveys of the 
entomological inoculation rate (EIR) are examined to determine the seasonality of disease transmission, three of the 
study locations are close to the Sanaga and Mefou rivers while others are not close to any permanent water feature. 
Climate-driven simulations of the VECTRI malaria model are evaluated with this analysis.

Results:  The analysis of the model results shows the PR peaking at temperatures of approximately 22 °C to 26 °C, 
in line with recent work that has suggested a cooler peak temperature relative to the established literature, and at 
precipitation rates at 7 mm day−1, somewhat higher than earlier estimates. The malaria model is able to reproduce 
this broad behaviour, although the peak occurs at slightly higher temperatures than observed, while the PR peaks at 
a much lower rainfall rate of 2 mm day−1. Transmission tends to be high in rural and peri-urban relative to urban cen-
tres in both model and observations, although the model is oversensitive to population which could be due to the 
neglect of population movements, and differences in hydrological conditions, housing quality and access to health-
care. The EIR follows the seasonal rainfall with a lag of 1 to 2 months, and is well reproduced by the model, while in 
three locations near permanent rivers the annual cycle of malaria transmission is out of phase with rainfall and the 
model fails.

Conclusion:  Malaria prevalence is maximum at temperatures of 24 to 26 °C in Cameroon and rainfall rates of approxi-
mately 4 to 6 mm day−1. The broad relationships are reproduced in a malaria model although prevalence is highest at 
a lower rainfall maximum of 2 mm day−1. In locations far from water bodies malaria transmission seasonality closely 
follows that of rainfall with a lag of 1 to 2 months, also reproduced by the model, but in locations close to a seasonal 
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Background
Malaria is a life-threatening disease caused by parasites 
that are transmitted through the bites of infected mos-
quitoes [1]. Globally the disease is present and endemic 
in tropical regions where the climate and hydrological 
conditions are suitable for the vector survival and devel-
opment of the parasite. In Cameroon, malaria has always 
been and still remains a major health problem [2]. It is 
a major endemic illness and the leading cause of mor-
bidity and mortality in the country. Children aged 0 to 5 
and pregnant women are the most vulnerable category 
with a total of 22% of morbidity and mortality risk [3, 4]. 
Moreover the 2000–2010 national health report precise 
that the disease was responsible for medical consulta-
tion (40–45%), morbidity (50%), deaths in children under 
five (40%), deaths in health institutions (30 to 40%), days 
spent in hospital (57%) and sick leave (26%) in the coun-
try [2, 5].

Intervention strategies have recently been increased 
by the national programme to fight malaria, in the form 
of free distribution of insecticide-treated mosquito nets 
(ITNs) and free consultation and treatment of uncom-
plicated malaria in children under 5  years [2]. The high 
incidence of malaria in Cameroon is not surprising due 
to the presence of the three key vectors: namely Anophe-
les gambiae, Anopheles funestus and Anopheles arabiensis 
across the country [6, 7]. In terms of species distribu-
tion, Hamadou et  al. [8] found that An. gambiae alone 
accounts for 90%, with the remaining 10% made up of An. 
funestus and An. arabiensis.

As in other sub-Saharan African countries [9–13], 
there is a spatio-temporal variation in malaria trans-
mission across ecological zones in Cameroon (namely, 
the Soudano-Sahelian zone, the Adamaoua plateau, the 
Savannah-forest, the south equatorial forest, the western 
plateau and the costal zone [14]). The peak transmission 
period is related to the key periods of rainfall with a delay 
of 1 or 2 months for the vector/parasite cycles to amplify, 
as temperatures are usually within the range that support 
both mosquito survival and parasite development [15, 
16]. During the monsoon season, temporary transient 
ponds and puddles become abundant, and can serves as 
potential breeding habitats for malaria vectors [11]. Tem-
peratures are important for regulating the intensity of 
transmission however, as they impact the life cycles and 
mortalities rate of the vector as well as the sporogonic 
cycle of the parasite [17].

While the broad relationships between climate and 
malaria transmission are broadly under-stood, the exact 
nature of is still uncertain. Regarding the temperature 
relationship, earlier work [17] suggested that falciparum 
transmission increased above a threshold of approxi-
mately 18  °C to peak at a temperature of around 28 to 
32  °C, decreasing thereafter due to the higher mortal-
ity of the adult vector. Ermert et al. [18] highlighted the 
large uncertainty of vector mortality at warm tempera-
tures, while more recently, incorporation of new data and 
knowledge of the temperature sensitivity larvae stages of 
the vector has led to the suggestion that the transmission 
peak in fact occurs at considerably cooler temperatures 
[19–21].

In view of this uncertainty, the first aim of this work is 
to relate the malaria prevalence as measured by the para-
site ratio (PR) gathered from a large number of field sur-
veys to the mean climate in each locations in the months 
preceding the field survey, using data mostly gathered 
in the period before the large scale up of interventions. 
While such an analysis can reveal broad time-averaged 
relationships between malaria and climate, it cannot 
inform on the seasonality of the disease. Firstly, the prev-
alence is a time-integrated metric of the disease due to 
slow natural clearance times, with immune individuals 
often having low background parasite counts continu-
ously in endemic areas [22, 23], and additionally field PR 
surveys are isolated in time. A better metric for season-
ality is the transmission rate, as measured by the ento-
mological inoculation rate (EIR), the number of infective 
bites per person per unit time. A newly released database 
of EIR is thus utilized [24], which contains year-long 
records of monthly EIR measurements in order to be 
able to examine the seasonality of disease transmission in 
Cameroon.

Many previous studies have shown how vicinity to 
breeding sites could be a key determinant of hazard of 
exposure to the disease [25–28], but few have studied 
how water proximity may alter the seasonality of dis-
ease transmission. Away from permanent water bod-
ies, one expects the disease transmission to track the 
occurrence of seasonal rains closely, as these provide 
the temporary breeding sites preferred by the vector 
An. gambiae [29, 30], but with a temperature-deter-
mined delay of 1 to 2  months due to the “spin-up” 
amplification of the vector and parasite life cycles [27, 
31]. Vicinity to breeding sites that may form near the 

river the seasonality of malaria transmission is reversed due to pooling in the transmission to the dry season, which 
the model fails to capture.
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edges of permanent water bodies, such as lakes, may 
reduce the seasonal variation of transmission, or may 
even reverse the relationship altogether in the case of 
river systems that are either intermittent or perennial 
but subject to large seasonal flow variations, and that 
may form large-scale pooling during their transition to 
the dry season [32].

In addition to climate, differences in population density 
contribute to the observed variability in malaria transmis-
sion intensity between rural, peri-urban and urban set-
tings [33], due to land use patterns, density of households, 
access to social and health services and the dilution effect 
[34]. Thus, analysis are also made on how population 
density may influence the malaria diagnostics. If the cli-
mate and population link to malaria can be represented in 
dynamical models [35–37], these models can act as useful 
tools to understand how climate trends, extreme seasonal 
anomalies or variability associated with, for example, the 
El Nino southern oscillation, may potentially affect trans-
mission and such models could possibly be used for miti-
gation or adaptation decision support. The second aim of 
this paper is to use the malaria-climate-population analy-
sis to evaluate gridded simulations of malaria transmis-
sion made with dynamical malaria model that accounts 
for both population density and climate.

Methods
Study area and climate data
The study is conducted in Cameroon situated in cen-
tral Africa within 1.5–13° N and 8–17° E with others 
neighbouring countries (Fig.  1). The country climate 
is influenced by the Harmattan and the Atlantic Mon-
soon winds. Cameroon is characterized by two climatic 
domains: the tropical climatic domain that stretches to 
the north, extending into the Sahel zone (~ 8° to 13° N) 
[38, 39] and the humid equatorial domain that covers the 
rest of the country (~ 1.5° to 8° N).

The equatorial domain is characterized by heavy rain-
fall events, with increasing temperatures and a degrading 
vegetation as one moves far from the Equator [40]. It pre-
sents two rainy seasons with abundant rainfall that can 
reach 2200  mm  year−1 and two dry seasons with aver-
age temperature of 25° C [41]. The tropical area, which is 
usually recognized with high temperatures (up to 33 °C) 
and low rainfall (maximum of 1500 mm year−1), presents 
one rainy and one dry season [38, 41]. The mean rainfall 
and temperature of Cameroon and neighbours countries 
from 1985 to 2006 shows higher rainfall intensity in the 
western and coastal part of the country and increasing 
mean temperature moving north towards the Soudano-
Sahelian zone (Fig. 1).

Fig. 1  Map of Cameroon and neighbouring countries showing mean 
rainfall and temperature from 1985 to 2006. a Rainfall (mm/day); b 
temperature (°C)
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Malaria data
Two malaria indicators are used in this study. The para-
site ratio (PR) expresses the pro-portion of individu-
als infected at a given point in time [42]. A publicly 
available database of parasite ratio is obtained from the 
Malaria Atlas Project (MAP) programme [43]. The pub-
lic PR database consists of data collected by individuals 
researchers or organizations and published in literature, 
which were collected within the MAP programme. Since 
there is no continuous measurement of PR, the available 
PR data with georeferenced coordinates are used. The 
location of the PR surveys is given in Fig. 2, which shows 
that the majority of surveys are located in the west or the 
far north, ant east of the country. In total, 103 surveys are 
used, with a total of 18,011 people tested in these sur-
veys, with the survey dates ranging from 1985 to 2006.

All database entries have been quality controlled in 
terms of data collection methodology and geographical 
location to ensure continuity across the 20-year collec-
tion period. In addition to climate, population density 
and vicinity to water, many other factors may influence 
malaria transmission such as socioeconomic condi-
tions, conflict, breakdown in health services, population 
movements and interventions, which are challenging to 
account for, not least due to lack of availability of data. 
As long as these factors are not correlated with spatial 
or temporal variability of climate, they will act as a form 
of noise in the analysis, increasing scatter in the climate-
malaria relationships, but not obscuring them completely 

if climate is a significant driver of malaria variability. This 
is also the case for data inaccuracies and uncertainties in 
both the climate due to instrument error and sampling 
uncertainty [44] and health records. One complication 
might be if these facts lead to slow trends over the period, 
but this would most likely be associated with ramping 
up of interventions (climate trends are captured in the 
analysis) and this period predates the large-scale up of 
interventions that occurred in Cameroon that could con-
found the climate-malaria relationship. In addition, there 
have been entomological studies but none found changes 
is vector distribution during this period, and we assume 
that such changes would thus not have affected the mean 
climate-malaria relationships.

The second malaria indicator is the entomological 
inoculation rate (EIR), which measures the number of 
infected bites received per person for a given period of 
time [43], and as such is an indicator of the malaria trans-
mission intensity. It is often calculated as the product 
of the human biting rate (HBR) and the sporozoite rate. 
HBR represents the number of bites per person per day, 
while the sporozoite rate is the fraction of vector mosqui-
toes that are infectious [45]. A new database of monthly 
EIR values has been constructed from various sources 
for all Africa by Yamba et al. [24], with the emphasis on 
long term field studies lasting at least a year in order to 
be able to study the seasonality of malaria transmission. 
For Cameroon, the database has recorded 16 sites with 
validated data presented in the following Table 1.

The rarity of long-term, continuous monthly EIR 
records that allow the analysis of seasonality, necessitates 
the use of data from 30  years ago, but we reiterate that 
this has the advantage that recent upscaling of (some-
times seasonal) interventions does not obfuscate the 
analysis. The availability of data for only 2 years in time 
precludes any analysis of longer terms changes in season-
ality that may be associated with climate warming which 
could potentially be significant [57]. The EIR data sites 
are highlighted on Fig. 2 below.

VECTRI malaria model
The VECToR borne disease model of ICTP (VECTRI) 
is an open source gridded distributed dynamical model, 
that couples a biological model for the vector and para-
site life cycles, to a simple compartmental Suceptible-
Exposed-Infectious-Recovered (SEIR) representation of 
the disease progression in the human host. The model 
runs using daily time step temperature and rainfall data, 
but also accounts for the population density which is 
important for the calculation of daily biting rates [37]. 
The model incorporates several parameterizations 
schemes for larvae, adult vector and parasite develop-
ment rates, which are both temperature sensitive, as are Fig. 2  Map highlighting all the studies locations
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the larvae and adult vector daily survival. Larvae sur-
vival, especially in the early development stages, is also 
impacted negatively by intense precipitation through the 
inclusion of a flushing effect [58]. The model also allows 
for over-dispersive biting rates and incorporates a sim-
ple treatment of host immunity [59]. Another feature of 
the model is that it also includes a simple treatment of 
rain-driven pond formation and loss through evaporation 
and infiltration [29, 60, 61]. The model allows the user to 
specify a permanent water breeding fraction but this is 
not used in the experiments reported here. VECTRI sim-
ulates several parameters that help in assessing malaria 
incidence. Among them are the parasite ratio and ento-
mological inoculation rate.

In this study, the model is integrated for 22  years 
(1985–2006) with a 3-year spin-up period at 0.03° × 0.03° 
resolution. Mean daily precipitation data are obtained 
from Famine Early Warning Systems Network ARC 
vesion 2 (FEWS-ARC2) [62], available at a spatial resolu-
tion of 0.1° × 0.1°. The daily gridded 2 m temperature data 
is taken from the ECMWF ERA-Interim reanalysis data 
at 0.75° × 0.75° spatial resolution [63], which are then sta-
tistically downscaled to the model resolution assuming a 
lapse rate of 6.5 K km−1 to adjust to the high resolution 
topography. For each grid cell point, population den-
sity is obtained from AFRIPOP [64], again interpolated 
to the model resolution using conservative remapping. 
AFRIPOP database links informations on contempo-
rary census data across Africa using geographical longi-
tude and latitude position points. After the integration is 
complete, the nearest grid cell to each field survey loca-
tion is extracted for comparison. When the comparison 

to climate variables is made, for each field survey of PR, 
the average rainfall and temperature from the preceding 
2 months are used, in order to account for the observed 
lag of 1 to 2  months between malaria and rainfall and 
the fact that PR is a time-integrated and thus smoothed 
quantity that reflects climatic conditions over the preced-
ing period [27]. For the time series analysis of EIR, com-
parisons are made directly to the time series of climate 
variables for the observed period. As the precise days of 
surveys were not usually available, only the month, then 
there is an uncertainty in the lag of 2 weeks.

Results
Parasite ratio evaluation
The spatial maps of PR (Fig.  3) reveals a very heteroge-
neous landscape of malaria prevalence, particularly in 
the observed surveys, but also in the model. It should be 
recalled that the surveys are taken during different years 
and periods of the year, thus some of the variations are 
simply due to changes in the meteorology between sur-
vey times. Other factors such as interventions and pop-
ulation movements will also impact prevalence, but will 
not be reflected in the model simulations. Concerning 
the model, some regional biases stand out clearly. For 
example, the model produces PR values around 0.5 in the 
drier and warmer north east of the country, indicating 
conditions that are borderline between meso and hyper-
endemic, while the prevalence in the observations is far 
lower, indicating that the model is too sensitive to low 
rain rates.

To examine the mean relationship between PR and cli-
mate in more details, the survey and model results are 

Table 1  Sites of EIR data points used in Cameroon

Site Location Longitude Latitude Period References

1 Sanaga village 11.52 4.92 April 1989–March 1990 [46]

2 Mbebe 10.12 3.38 April 1989–March 1990 [47]

3 Nkol-bikok 11.52 3.87 March 1989–February 1990 [15]

4 Nkol-bisson 11.44 3.86 April 1989–March 1990 [15]

5 Limbe 9.19 4.02 August 2001–June 2002 [48]

6 Tiko 9.35 4.07 August 2001–June 2002 [48]

7 Likoko 9.3 4.39 October 2002–September 2003 [49]

8 Essuke-camp 9.31 4.1 October 2004–September 2005 [50]

9 Ebogo 11.47 3.4 April 1991–March 1992 [51]

10 Simbock 11.3 3.5 January 1999–December 1999 [52]

11 Koundou 12.12 3.9 June 1997–May 1998 [53]

12 Ekombite 11.83 3.12 January 2007–December 2007 [54]

13 Nsimalen-Ekoko 12.12 3.82 April 1991–March 1992 [55]

14 Nsimalen-Nkol-mefou 11.58 3.62 April 1991–March 1992 [55]

15 Nsimalen-3 11.55 3.72 April 1991–March 1992 [55]

16 Ndogpassi 10.08 3.48 January 2011–December 2011 [56]
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divided into bins according to the two key climatic driv-
ers of mean rainfall and temperature (Fig.  4). The field 
studies show the prevalence as measured by PR increases 
to a broad maximum from 22 to 26  °C. Prevalence then 

falls off but in still non-zero in the locations with mean 
temperatures above 30oC. The relationship with tem-
perature is not smooth, as expected due to the fact that 
climate is only one of many external factors that impact 
the prevalence from location to location. The model pro-
duces a much sharper response to temperature, with low 
prevalence in the 18–21  °C range, and the peak trans-
mission occurring around 26  °C with prevalence far 
higher than reported in the survey exceeding 80%. The 
response in PR to precipitation is more distinct in the 
model than observations. The observations reveal an 
increase in PR with increasing rainfall to a local maxi-
mum at 7 mm day−1. After the peak, PR decreases with 
increasing rainfall with the exception of the two bins of 
11–13  mm  day−1. The model instead peaks at a lower 
rainfall rate of 2  mm  day−1, reducing thereafter, again 
with the exception of the second last, high rainfall bin.

The PR ratio is compared to population density 
assigned to three classes of rural (0 to 250 inhabitants 
per km2); peri-urban (250 to 1000 inhabitants per km2); 
and urban (> 1000 inhabitants per km2) according to Hay 
et  al. [65]. The results are shown on Fig.  5. PR reduces 
with increasing population density, but with the rela-
tionship much stronger in the model relative to observa-
tions, a trait that was also observed by Tompkins et  al. 
[37] when comparing EIR as a function of population to 
the survey data compiled by Kelly-Hope et al. [33]. Thus, 
the model appears to overestimate malaria prevalence in 
rural locations and underestimate it in urban centres.

Seasonal EIR evaluation
The seasonal changes in monthly EIR for both model and 
observations during the study period for the sixteen loca-
tions as well as rainfall are presented in Fig. 6. The EIR in 
the model follows the patterns in rainfall in the studies 
locations with EIR lagging rainfall peaks by 1 to 2 months 
in each case. It is also the case for the survey data except 
in Ekombitie where the value are higher all year long. In 
certain locations like Sanaga village, Mbebe or Simbock, 
EIR seasonality is reversed, with peaks EIR values occur-
ring during the relatively dry periods.

Discussion
The temperature and rainfall sensitivity of the prevalence 
data is broadly in line with earlier works [66–68]. Favour-
able temperature ranges that support Plasmodium falci-
parum transmission via Anopheles species, is generally 
between 18 and 33 °C [69]. Simple models of the temper-
ature impact on the proportion of female adult vectors 
surviving long enough for the parasite to complete the 
sporogonic cycle and permit transmission suggest that, 
transmission should peak at temperatures of approxi-
mately 28 to 32  °C [70]. Although these calculations are 

Fig. 3  Observed (a) and simulated (b) monthly mean parasite ratio 
values for 36 sites in Cameroon. The PR values represent the average 
of all the points located within the same coordinates
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Fig. 4  Observed and simulated parasite ratio, function of rainfall (mm/day) and temperature (°C) over Cameroon. Panels plots present how parasite 
ratio fluctuates with ranges of rainfall and temperature for observations and simulations. The bars indicate uncertainty, which for the observations 
is based on a statistical test on the proportion given the total number of people surveys in each bin. For the model the uncertainty measure is the 
standard deviation of the survey locations in each bin. a Observed data, b VECTRI model
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sensitive to the form of the adult mortality curve used 
and the temperature relationship with malaria remains 
poorly constrained. More recently suggestions have been 
made that, accounting for the temperature sensitivity 
of the vector larvae stages, results in a cooler peak tem-
perature of around 25 °C [19]. Analysis of malaria indica-
tors in Uganda and Rwanda reveals the peaks of malaria 
transmission occurring at 28  °C and 26  °C, respectively 
[71]. In the Zomba district in Malawi, a study found 
that malaria spread is at peak when temperature is at 
24  °C [72]; while in the whole country cases monotoni-
cally increased with temperature to the maximum tem-
perature sampled of 28 °C [12]. In Cameroon, the analysis 
reveals that the prevalence measured in surveys is max-
imum in the 22 to 26  °C range, although there is a gap 
in the survey sampling in the 27 to 31  °C range, and a 
warmer peak temperature cannot be precluded. The 
model similarly produces peak PR at 26  °C, in approxi-
mate agreement with the survey data and previous work.

The precipitation relationship is more complex, with 
PR maximized in survey data at 7  mm  day−1. Usually 
moderate rainfall events are suitable for immature mos-
quitoes to complete the aquatic development stage, and 
emerge as adults [58]. Intense rains may cause flood-
ing and flush out larvae from the habitats leading to a 
decrease in mosquito density [58, 73]. The survey data 
appears to be in good agreement with previous stud-
ies. In Botswana, cases peaked a rainfall rate of approxi-
mately 4  mm  day−1, in Malawi the peak occurred at a 
high value of just over 6 mm day−1 [12] while in Uganda 
and Rwanda, highest cases numbers are associated with 
rainfall between 4 to 6 mm day−1 and 4 to 8 mm day−1, 
respectively [71].

No model will be able to reproduce such prevalence 
survey data perfectly, a model is necessarily a gross-sim-
plification of reality. Even considering the climate-sensi-
tive life-cycle processes that are accounted for, the model 
parameters are spatially and temporally homogeneous. 
For example, the hydrological parameters that determine 
the pond creation and subsequent loss through evapora-
tion and infiltration are spatially constant, the tempera-
ture offset of breeding sites relative to the air temperature 
also. Moreover, many processes and factors that affect 
prevalence are not accounted for at all in the model, 
population movements are neglected, as are those of the 
vectors, no information on interventions is used, and the 
model for transmission in the host is extremely simple, 
neglecting superinfection and incorporating a very sim-
ple treatment of immunity. It could be argued that the 
data is not available to improve many of these aspects. 
That said, it is encouraging that the model at least man-
ages to reproduce the underlying climate sensitivities 
revealed in the survey data.

Concerning the population sensitivity, PR in the sur-
vey data reduces as population density increases. This 
agrees with previous work [74], for instance, in Burkina 
Faso epidemiological profiles and clinical malaria trans-
mission patterns tend to be high in rural compared to 
urban environments [24]. A review of entomological 
studies conducted across sub-Saharan Africa countries 
demonstrated that the higher number of annual Plasmo-
dium falciparum EIR were reported in rural populations, 
where population density < 100 inhabitants per km2. 
However,

low EIR were measured in urban areas where popula-
tion density > 1000 inhabitants per km2 [33]. This sen-
sitivity is also apparent in the model, but the model 
appears to exaggerate the effect, tending to be higher 
relative to observations for rural settings, while under 
predicting PR in urban centres. For example, one sur-
vey was conducted in central Yaoundé by Quakyi et  al. 
[75], with a prevalence of 0.5 to 0.6 revealed in the sam-
pled population of 231 people. The population density in 
this location exceeds 9000 people km−2 and at such high 
densities the model fails to sustain transmission. One 
key process in such central urban locations is likely to be 
population movements, neglected in the model at pre-
sent, with many of the cases likely to be imported. Other 
factors also impacts differences between rural and urban 
areas which are challenging to include in the model, for 
example, urban zones are associated with low transmis-
sion due to factors such as limited availability of breed-
ing sites, improved environmental conditions, easy access 
to control interventions, housing types and among oth-
ers [76]. For instance, Cameroon National Malaria Con-
trol Programme reported that bed nets are more used in 

Fig. 5  VECTRI and observed parasite ratio as a function of population 
density
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Fig. 6  Observed (a), simulated (b) monthly mean entomological inoculation rate and c rainfall maps for the 16 EIR sites in Cameroon
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urban than rural zones [77]. Most of these latter social 
and environmental impacts would act to increase dis-
parities between rural and urban transmission, thus the 
crucial importance of mobility cannot be overlooked. In 
addition, the fact that the model neglects superinfection 
will also act to exaggerate the population density impact. 
In the model’s simple SEIR approach, once an infective 
bite results in successful transmission event, the host 
moves to an exposed state. The impact of large inocula-
tions of multiple strains when many infectious bites are 
recorded is not included, thus that individuals enhanced 
capacity to further transmit the disease is neglected. This 
would lead to the model overestimating the population 
dilution effect.

In the survey data for the 16 EIR-sites, the EIR closely 
follows the seasonality of rainfall with a lag of approxi-
mately 1  month. The EIR maximizes in April, May and 
June while the second peak is observed in October, 
November and December. The observed seasonal vari-
ability of EIR agrees with variability in reported malaria 
cases, with high case numbers observed during and 
after rainy seasons [77]. In Nkoteng for example, Cohuet 
et  al. [78] showed that malaria transmission intensity 
reaches its peak in April during the rainy season. In a 
related study in Niete (South Cameroon), Bigoga et  al. 
[79] found a lower EIR during dry season (1.09 ibp−1n−1) 
compared to rainy season (2.3 ibp−1n−1). Similarly, 

comparing Simbock and Etoa districts, Quakyi et al. [75] 
found similar difference between rainy and dry seasons 
but a high disparity was observed for Etoa. They meas-
ured 1.9 ibp−1n−1 and 1.2 ibp−1n−1 for wet and dry sea-
sons, respectively for Simbock and 2.4 ibp−1n−1 and 
0.4 ibp−1n−1 for Etoa during the wet and dry season, 
respectively.

The survey data for EIR in Sanaga villages, Mbebe, and 
Simbock contrasts strongly, and produces a seasonality 
of EIR which appears to be completely out of phase with 
the rainfall, with EIR at a maximum during the dry sea-
son, precisely January to March (for Sanaga villages and 
Mbebe) and (for Simbock), behaviour that VECTRI was 
unable to capture. One possible explanation for this dis-
parity could be linked to their geographical situation and 
local hydrology. Simbock is located at about 100 m from 
the Mefou river creating a permanent swamp [52], while 
Sanaga villages and Mbebe are situated in the vicinity of 
the Sanaga river as presented on Fig. 7.

Rivers can and do support vectors at ponds formed 
at their edges, in particular An. funestus, and indeed 
the forested locations typical of these sites have identi-
fied Anopheles nili, An. gambiae and An. funestus as key 
malaria vectors [47]. Anopheles nili usually breeds among 
the grass on the edges of the river and can be a key driver 
of malaria transmission in such environments [46]. How-
ever, when such river systems are not managed, their 

Fig. 6  continued
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impact on breeding sites can sometimes be enhanced 
during the dry season when flow is restricted and a large 
increase in the availability of standing pools can occur, 
constituting a proliferation of ideal breeding sites for 
Anopheles vectors [32, 80, 81]. The Sanaga river par-
ticularly undergoes a strong seasonal cycle in discharge, 
with flow at a minimum in February to April, with just a 
small fraction of the peak discharge during these months 
[82]. Thus, it seems in Sanaga villages and Mbebe, peak 
in malaria is associated with the minimum in the Sanaga 
river flow, and an enhancement in ponding. As this ver-
sion of VECTRI does not account for permanent breed-
ing site associated with river systems, with enhanced 
ponding in low flow periods, it is not able to reproduce 
the seasonal cycle in EIR here.

Conclusion
The relation between climate and two common malaria 
indicators of parasite ratio (PR) and entomological inoc-
ulation rate (EIR) were examined in Cameroon, using a 
comprehensive of survey data for PR and others sur-
veys for EIR that enabled the seasonality of transmission 
intensity to be examined. While many factors can impact 
malaria transmission, the established boards relation-
ships of malaria climate drivers were apparent in the.

survey data, with PR increasing with temperature until 
a peak within 22–26  °C and thereafter reducing, with 
peak prevalence occurring at rainfall rates at 7 mm day−1. 
The analysis also confirmed previous research regarding 
the impact of population density, with PR higher in rural 
areas relative to urban areas.

The seasonal cycle of the EIR revealed very contrast-
ing behaviour between peri-urban sites, and rural sites 
situated closely by the Sanaga or the Mefou river. In the 
peri-urban sites, the EIR seasonality closes follows that 

of the rainfall, with maxima lagging rainfall peaks by 1 to 
2 months. Instead, in rural ones the EIR seasonality is out 
of phase with rainfall and peaks in March–April when 
the Sanaga discharge is at its annual minimum, indicating 
a strong role for the pooling in the river-bed in providing 
seasonal breeding sites for vectors.

The malaria model is able to reproduce some of these 
broad traits of the malaria transmission indicators, with 
a similar relationship between PR and the mean tempera-
tures, while the prevalence peaks at a lower value of rain-
fall. The model also reproduces the reduction in PR with 
increasing population. In general, the model produces a 
too high contrast between areas of high and low trans-
mission relative to the surveys, indicating that a mixing 
effect, most likely in the form of human migration pat-
terns is lacking in the model in addition to the lack of 
superinfection. The model is able to reproduce the sea-
sonality of the EIR only in the locations where transmis-
sion intensity closely follows temporary breeding sites 
resulting directly from rainfall, and it cannot produce 
the dry season peak in the locations near the Sanaga 
river where breeding sites occur due to low rain flow 
and Mefou river as well. Thus, while there are numerous 
simplifications and neglected processes in the model, it 
would appear that the coupling of the malaria transmis-
sion scheme with a model to represent human popula-
tion movements [83], and the improved representation 
of breeding sites due to semi-permanent features such 
as rivers, lakes and dams should be a priority. In general, 
the model produces infectious biting rates that exceed 
those observed, and it is likely that, if the model is to be 
used to aid operational decisions in Cameroon, the use 
of machine learning techniques to calibrate the model 
parameters more effectively will be required, such as that 
recently introduced in Tompkins et al. [44].

Fig. 7  Sanaga villages and Mbebe locations, situated at the vicinity of the Sanaga river
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