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Abstract 

Background:  Malaria is a major public health problem in the China–Myanmar border region. The genetic structure 
of malaria parasite may affect its transmission model and control strategies. The present study was to analyse genetic 
diversity of Plasmodium falciparum by merozoite surface proteins 1 and 2 (MSP1 and MSP2) and to determine the 
multiplicity of infection in clinical isolates in the China–Myanmar border region.

Methods:  Venous blood samples (172) and filter paper blood spots (70) of P. falciparum isolates were collected from 
the patients of the China–Myanmar border region from 2006 to 2011. The genomic DNA was extracted, and the msp1 
and msp2 genes were genotyped by nested PCR using allele-specific primers for P. falciparum.

Results:  A total of 215 P. falciparum clinical isolates were genotyped at the msp1 (201) and msp2 (204), respectively. 
For the msp1 gene, MAD20 family was dominant (53.49%), followed by the K1 family (44.65%), and the RO33 fam‑
ily (12.56%). For the msp2 gene, the most frequent allele was the FC27 family (80.93%), followed by the 3D7 family 
(75.81%). The total multiplicity of infection (MOI) of msp1 and msp2 was 1.76 and 2.21, with a prevalence of 64.19% 
and 72.09%, respectively. A significant positive correlation between the MOI and parasite density was found in the 
msp1 gene of P. falciparum. Sequence analysis revealed 38 different alleles of msp1 (14 K1, 23 MAD20, and 1 RO33) and 
52 different alleles of msp2 (37 3D7 and 15 FC27).

Conclusion:  The present study showed the genetic polymorphisms with diverse allele types of msp1 and msp2 as 
well as the high MOI of P. falciparum clinical isolates in the China–Myanmar border region.
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Background
Malaria is still one of the most important life-threatening 
parasitic diseases in tropical and subtropical areas. There 
were approximate 219 million malaria cases and 435,000 
deaths in the world in 2017 [1]. In Southeast Asia, the 
Greater Mekong Subregion (GMS) is one of the high 

malarious areas, with the co-existence of different spe-
cies and emergence of drug-resistant parasites. In Yun-
nan Province, the most high malarious endemic region in 
China, annual incidence has decreased from 196/100,000 
in 2006 to 0.7/100,000 in 2016, where indigenous malaria 
transmission is mostly concentrated in Yingjiang County 
that is adjacent to the Kachin State of Myanmar [2]. In 
addition, the malaria cases are also clustered on small 
spatial scales along the China–Myanmar border, which 
may be related to climatic, environmental, and ecologi-
cal factors favoring vector survival [3, 4], as well as to the 
high malaria endemicity in the adjacent Kachin State of 
Myanmar.
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Genetic diversity of the parasites provides useful infor-
mation on the parasite populations and control efforts 
against malaria. Polymorphic genetic markers of P. fal-
ciparum include the merozoite surface protein 1 (MSP1) 
and MSP2 that have been used to evaluate the genetic 
diversity of malaria parasites [5–10]. Based on the 
sequence analysis of P. falciparum isolates from different 
endemic areas, the msp1 gene is divided into two allelic 
types of MAD20 and K1, whereas the highly polymorphic 
block 2 is represented by three allelic types of K1, RO33 
and MAD20 [11]. In contrast, the msp2 gene is grouped 
into two different allelic types of 3D7 and FC27 [12–14]. 
These two polymorphic markers have been used to study 
the P. falciparum population in northeastern Myanmar, 
suggesting a highly diverse parasite population [15]. Due 
to the dramatic changes of the malaria situation in Yun-
nan Province, China, in recent years, this study aimed 
to investigate the genetic diversity of the P. falciparum 

populations along the China–Myanmar border region 
using two polymorphic markers MSP1 and MSP2.

Methods
Collection of clinical parasite samples
This study was approved by the Ethical Review Board 
of Yunnan Institute of Parasitic Diseases, China. A total 
of 242 P. falciparum clinical samples were collected 
from malaria patients attending local hospitals along 
the China–Myanmar border during 2006–2011. These 
patients came from Laza, Nawei, Mangdong, and Nan-
kajiang in Myanmar, and Tengchong, Yingjiang and 
Mengla in Yunnan Province, China (Fig. 1). All patients 
were diagnosed with P. falciparum infection by Giemsa-
stained blood smears and microscope examination at the 
local hospitals, and further confirmed by a nested PCR 
[16]. Two hundred and fifty microlitres of finger-pricked 
blood was spotted on the 3  mm Whatman filter paper 
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Fig. 1  Map of the China–Myanmar border region showing the sampling sites that indicated with red star. The map was prepared by using the 
website of https​://map.baidu​.com/

https://map.baidu.com/
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(GE Healthcare, USA), dried, and stored at 4 °C until fur-
ther analysis.

PCR amplification
Genomic DNA of parasite was extracted from the filter 
paper by using the QIAamp® DNA Mini Kit (Qiagen, 
Germany). The msp1 and msp2 genes were genotyped by 
a nested PCR using allele-specific primers as described 
elsewhere [17]. The PCR products were analysed on 2% 
agarose gel electrophoresis and stained with GoldView 
(Shanghai, China), whose size was determined using the 
standard DNA ladder marker (Toyobo, Japan).

The PCR products were sequenced and deposited 
in the GenBank with accession numbers MG004320–
MG004381 for the K1 type, MG004447–MG004517 for 
the MAD20 type, and MG004518–MG004527 for the 
RO33 type of msp1; MG004219–MG004319 for the 3D7 
type and MG004382–MG004446 for the FC27 type of 
msp2.

Multiplicity of infection
Multiplicity of infection (MOI) was defined as the largest 
number of alleles at each locus, and single infection was 
that with only one allele per locus at all of the genotyped 
loci [15, 18].

Statistical analysis
All statistical analyses were conducted with the software 
Statistical Package for Social Sciences (SPSS) version 
23.0. The frequencies of the different combinations of 
alleles in seven studied areas were assessed by Kruskal–
Wallis test, and normally distributed continuous data 
were evaluated by analysis of variance (ANOVA). The 
Spearman’s rank correlation coefficient test was calcu-
lated to assess relationships between MOI and parasite 
densities or ages in these patients, respectively. The dif-
ference was considered statistically significant when P 
value was less than 0.05.

Results
General characteristics of included patients
A total of 242 malaria patients were enrolled into this 
study during 2006–2011. Among these patients, there 
were 200 patients who were confirmed by a nested PCR 
to be infected with P. falciparum, 14 patients infected 
with Plasmodium vivax, and 15 patients co-infected 
with P. falciparum and P. vivax, and 13 patients excluded 
from the study as the genomic DNA from these patients 
were not successfully extracted (Fig.  2). All the P. falci-
parum clinical isolates (215 patients) were included in 
this study. Of these, 65 patients were from Yunnan prov-
ince, China, and 150 from Myanmar. Sixty-eight patients 

Fig. 2  The procedure of samples from fieldwork to laboratory detection
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were children under 19 years, 11 patients were more than 
49 years old, and other 136 patients were between 19 and 
49 years old.

Allelic polymorphism of msp1 and msp2
Among 215 P. falciparum clinical isolates, 201 (93.49%) 
and 204 (94.88%) samples were genotyped at the msp1 
and msp2, respectively. For msp1 gene, the MAD20 fam-
ily was dominant (53.49%) and included 7 different band 
sizes (120–280  bp), followed by the K1 family (44.65%) 
that included 9 different band sizes (150–320  bp), and 
the RO33 family (12.56%) that contained 3 different band 
sizes (150–200  bp) (Table  1, Fig.  3). The alleles with a 
high frequency for MAD20, K1 and RO33 were 180  bp 
(30.38%), 180 bp (30%) and 150 bp (64.10%), respectively. 

For msp2 gene, the FC27 family (80.93%) showed the 
higher number of alleles, with 8 different band sizes 
(250–700 bp) (Table 1, Fig. 3), followed by the 3D7 fam-
ily (75.81%) that included 9 different band sizes (400–
760 bp). The most frequent alleles of FC27 and 3D7 were 
700 bp (19.56%) and 550 bp (28.22%), respectively.

The total rate of MOI for msp1 and msp2 was 64.19% 
and 72.09%, respectively. The alleles of P. falciparum 
clinical isolates were K1 (30.23%), MAD20 (39.07%), 
RO33 (8.84%), K1 + MAD20 (11.63%), KI + RO33 

(0.93%), MAD20 + RO33 (0.93%), K1 + MAD20 + RO33 
(1.86%) for msp1 and FC27 (19.07%), 3D7 (13.95%), 
FC27 + 3D7 (61.86%) for msp2, respectively, while none 
of above-mentioned combination alleles of msp1 (such 
as K1 + MAD20, KI + RO33, MAD20 + RO33, and 
K1 + MAD20 + RO33) were be found in the isolates 
from Tengchong of Yunnan and Nankajiang of Myanmar 
(Table 1 and Fig. 4). There were a statistical difference in 
prevalences of the K1, MAD20, and RO33 families and 
their different MOI of msp1 (X2 = 14.478; P = 0.025) or 
FC27, 3D7, and FC27/3D7 alleles of msp2 (X2 = 30.617; 
P = 0.000) between the seven studied areas.

The MOI distribution of allelic families across different 
parasite density and age groups
Almost all patients were detected to have multiclonal 
infections, with a mean MOI of 1.76 ± 0.85 for msp1 
and 2.21 ± 1.29 for msp2. The MOI values of msp1 
and msp2 for each parasite density and age groups are 
summarized in Tables 2 and 3. There was a significant 
positive correlation between the MOI and parasite 
density for msp1 (Spearman’s rank coefficient = 0.208; 
P = 0.002) (Additional file  1: Table  S1), but no posi-
tive correlation for msp2 (Spearman’s rank coeffi-
cient = − 0.040; P = 0.564) was found. Additionally, no 

Table 1  Prevalence of msp1 and msp2 allelic types in the China–Myanmar border region

Allelic types Mengla, 
Yunnan

Tengchong, 
Yunnan

Yingjiang, 
Yunnan

Laza, 
Myanmar

Nawei, 
Myanmar

Nankajiang, 
Myanmar

Mangdong, 
Myanmar

Total

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)

n = 28 n = 16 n = 21 n = 77 n = 26 n = 19 n = 28 n = 215

msp1

 K1 10 (35.71) 5 (31.25) 5 (23.81) 16 (20.78) 9 (34.62) 7 (36.84) 13 (46.43) 65 (30.23)

 MAD20 11 (39.29) 9 (56.25) 10 (47.62) 28 (36.36) 8 (30.77) 7 (36.84) 11 (39.29) 84 (39.07)

 RO33 0 1 (6.25) 0 15 (19.48) 1 (3.85) 1 (5.26) 1 (3.57) 19 (8.84)

 K1/MAD20 7 (25.00) 0 2 (9.52) 8 (10.39) 6 (23.08) 0 2 (7.14) 25 (11.63)

 KI/RO33 0 0 0 2 (2.6) 0 0 0 2 (0.93)

 MAD20/RO33 0 0 0 2 (2.6) 0 0 0 2 (0.93)

 K1/MAD20/
RO33

0 0 3 (14.29) 1 (1.3) 0 0 0 4 (1.86)

 Negative 0 1 (6.25) 1 (4.76) 5 (6.49) 2 (7.69) 4 (21.05) 1 (3.57) 14 (6.51)

 Multiclonal 
isolates

22 (78.57) 12 (75.00) 13 (61.90) 51 (66.23) 12 (46.15) 3 (15.80) 25 (89.29) 138 (64.19)

 Mean MOI 1.83 ± 0.59 1.94 ± 0.68 2.01 ± 1.28 1.82 ± 0.94 1.44 ± 0.58 1.15 ± 0.40 1.98 ± 0.51 1.76 ± 0.85

msp2

 FC27 1 (3.57) 2 (12.5) 11 (52.38) 21 (27.27) 1 (3.85) 2 (10.53) 3 (10.71) 41 (19.07)

 3D7 3 (10.71) 0 0 8 (10.39) 6 (23.08) 12 (63.16) 1 (3.57) 30 (13.95)

 FC27/3D7 23 (82.14) 13 (81.25) 9 (42.86) 43 (55.84) 19 (73.08) 3 (15.79) 23 (82.14) 133 (61.86)

 Negative 1 (3.57) 1 (6.25) 1 (4.76) 5 (6.49) 0 2 (10.53) 1 (3.57) 11 (5.12)

 Multiclonal 
isolates

26 (92.86) 14 (87.50) 19 (90.48) 52 (67.53) 21 (80.77) 3 (15.79) 20 (71.43) 155 (72.09)

 Mean MOI 3.27 ± 0.99 3.29 ± 1.20 2.57 ± 1.21 1.86 ± 1.03 2.63 ± 1.51 1.13 ± 0.38 2.21 ± 1.08 2.21 ± 1.29
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Fig. 3  Prevalence of msp1 and msp2 alleles classified by fragment length (in base pairs) from allele-specific nested-PCR in different regions of the 
China–Myanmar border region

Fig. 4  Multiplicity of infection of msp1 and msp2 alleles in different regions of the China–Myanmar border region
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Table 2  Distribution of msp1 and msp2 allelic types of P. falciparum among different age groups in the China–Myanmar 
border region

Allelic types Age group (years) Total

< 9 9–19 19–29 29–39 39–49 ≥ 49 n (%)

n (%) n (%) n (%) n (%) n (%) n (%)

n = 11 n = 57 n = 70 n = 40 n = 26 n = 11 n = 215

MSP-1

 K1 4 (36.36) 17 (29.82) 23 (32.86) 9 (22.5) 11 (42.31) 1 (9.09) 65 (30.23)

 MAD20 2 (18.18) 21 (36.84) 33 (47.14) 13 (32.5) 10 (38.46) 5 (45.45) 84 (39.07)

 RO33 0 (0) 7 (12.28) 2 (2.86) 6 (15) 1 (3.85) 3 (27.27) 19 (8.84)

 K1/MAD20 4 (36.36) 4 (7.02) 5 (7.14) 8 (20) 3 (11.54) 1 (9.09) 25 (11.63)

 KI/RO33 0 (0) 1 (1.75) 0 (0) 1 (2.5) 0 (0) 0 (0) 2 (0.93)

 MAD20/RO33 0 (0) 1 (1.75) 0 (0) 1 (2.5) 0 (0) 0 (0) 2 (0.93)

 K1/MAD20/RO33 0 (0) 1 (1.75) 2 (2.86) 0 (0) 1 (3.85) 0 (0) 4 (1.86)

 Negative 1 (9.09) 5 (8.77) 5 (7.14) 2 (5) 0 (0) 1 (9.09) 14 (6.51)

 Multiclonal isolates 4 (36.36) 7 (12.28) 7 (10) 10 (25) 4 (15.38) 1 (9.09) 33 (15.35)

 Mean MOI 1.87 ± 0.77 1.88 ± 0.80 1.80 ± 0.90 1.74 ± 0.84 1.44 ± 0.57 1.73 ± 1.18 1.76 ± 0.85

MSP-2

 FC27 1 (9.09) 12 (21.05) 10 (14.29) 13 (32.5) 2 (7.69) 3 (27.27) 41 (19.07)

 3D7 2 (18.18) 8 (14.04) 7 (10) 5 (12.5) 8 (30.77) 0 (0) 30 (13.95)

 FC27/3D7 8 (72.73) 34 (59.65) 48 (68.57) 20 (50) 16 (61.54) 7 (63.64) 133 (61.86)

 Negative 0 (0) 3 (5.26) 5 (7.14) 2 (5) 0 (0) 1 (9.09) 11 (5.12)

 Multiclonal isolates 8 (72.73) 34 (59.65) 48 (68.57) 20 (50) 16 (61.54) 7 (63.64) 133 (61.86)

 Mean MOI 2.06 ± 1.23 2.09 ± 1.14 2.45 ± 1.29 2.16 ± 1.24 2.04 ± 1.39 2.28 ± 1.72 2.21 ± 1.29

Table 3  Distribution of  msp1 and  msp2 allelic types of  P. falciparum among  different parasite densities  in the  China–
Myanmar border region

Allelic type Parasite density (no. of parasites/µl of blood) Total

< 500 500–1000 1000–2500 2500–10,000 10,000–100,000 ≥100,000 n (%)

n (%) n (%) n (%) n (%) n (%) n (%)

n = 11 n = 22 n = 44 n = 66 n = 61 n = 11 n = 215

msp1

 K1 4 (36.36) 9 (40.91) 18 (40.91) 18 (27.27) 14 (22.95) 2 (18.18) 65 (30.23)

 MAD20 5 (45.45) 8 (36.36) 17 (38.64) 29 (43.94) 22 (36.07) 3 (27.27) 84 (39.07)

 RO33 0 (0) 0 (0) 2 (4.55) 3 (4.55) 8 (13.11) 6 (54.55) 19 (8.84)

 K1/MAD20 2 (18.18) 5 (22.73) 2 (4.55) 9 (13.64) 7 (11.48) 0 (0) 25 (11.63)

 KI/RO33 0 (0) 0 (0) 0 (0) 0 (0) 2 (3.28) 0 (0) 2 (0.93)

 MAD20/RO33 0 (0) 0 (0) 0 (0) 0 (0) 2 (3.28) 0 (0) 2 (0.93)

 K1/MAD20/RO33 0 (0) 0 (0) 0 (0) 3 (4.55) 1 (1.64) 0 (0) 4 (1.86)

 Negative 0 (0) 0 (0) 5 (11.36) 4 (6.06) 5 (8.2) 0 (0) 14 (6.51)

 Multiclonal isolates 2 (18.18) 5 (22.73) 2 (4.55) 12 (18.18) 12 (19.67) 0 (0) 33 (15.35)

 Mean MOI 1.32 ± 0.68 1.52 ± 0.73 1.67 ± 0.68 1.91 ± 0.86 1.80 ± 0.95 2.02 ± 0.83 1.76 ± 0.85

msp2

 FC27 0 (0) 1 (4.55) 5 (11.36) 17 (25.76) 16 (26.23) 2 (18.18) 41 (19.07)

 3D7 1 (9.09) 5 (22.73) 10 (22.73) 6 (9.09) 3 (4.92) 5 (45.45) 30 (13.95)

 FC27/3D7 10 (90.91) 15 (68.18) 26 (59.09) 41 (62.12) 38 (62.3) 3 (27.27) 133 (61.86)

 Negative 0 (0) 1 (4.55) 3 (6.82) 2 (3.03) 4 (6.56) 1 (9.09) 11 (5.12)

 Multiclonal isolates 10 (90.91) 15 (68.18) 26 (59.09) 41 (62.12) 38 (62.3) 3 (27.27) 133 (61.86)

 Mean MOI 1.32 ± 0.68 1.52 ± 0.73 1.67 ± 0.68 1.89 ± 0.86 1.80 ± 0.95 2.02 ± 0.83 2.21 ± 1.29
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significant correlation between age and MOI (Spear-
man’s rank coefficient = − 0.12; P = 0.08 for msp1 and 
Spearman’s rank coefficient = 0.007; P = 0.917 for msp2) 
was found. Furthermore, there was a significant differ-
ence of the MOI for the msp1 gene among the groups 
with different parasite densities (F = 2.588; P = 0.028), 
while no significant difference for msp2 (F = 0.245; 
P = 0.942) or for the MOI of msp1 (F = 0.443; P = 0.818) 
and msp2 (F = 0.433; P = 0.825) among groups with dif-
ferent ages were found. 

Sequence analysis of MSP1 and MSP2
A total of 38 different alleles of msp1 were used for 
sequence analysis, including 14 for K1 family, 23 for 
MAD20, and 1 for RO33 (Additional file  2: Figure S1, 
Additional file  3: Figure S2). All K1-type alleles were 
found to have a 24-amino acid sequence: SPSSRSNTL-
PRSNTSSGASPPADA at the 5′-end and 10-amino acid 
sequence: NEEEITTKGA at the 3′-end. The central var-
iable region always started with SAQ and terminated 
with SGT containing the difference number of tripep-
tide repetition, such as SAQ, SGP, and SGT. The diver-
sity of MAD20 family was also caused by differences in 
repetitions of SGG, SVA and SVT, but the central vari-
able region always started with SKG or SGG and ended 
with SVA. Only one amino acid sequence type of amino 
acids LKDGANTQVVAKPAGAVSTQSAKNPPGAT-
VPSGTASTKGAIRSPGAANPSD was identified in the 
RO33 family. A total of 37 alleles of 3D7 and 15 alleles 
of FC27 in the msp2 gene were detected by sequence 
analysis of the block 3 region (Additional file  4: Fig-
ure S3, Additional file  5: Figure S4). The central vari-
able region of 3D7 family included diverse amino acid 
repeat motifs that contained the different combinations 
of three amino acids: S, A, and G. The 3D7 family con-
sisted of 12 different amino acids repeats and the 17 
single amino acids.

The full sequences of 3D7 family were compared to 
the reference 3D7 (GenBank accession number X53832) 
(Additional file 4: Figure S3), showing deletion of 10 or 11 
amino acids PKG(K/N)G(E/G/K/Q)VQ(E/K/P)(N/P/S) 
or PKG(K/N)G(E/G/K/Q)VQ(E/K/P)(N/P/S)N in the 
reference 3D7, which was common in field isolates from 
China–Myanmar border region. The dominant genotype 
of FC27 family was found to have one 32-amino acid 
ADTIASGSQSSTNSASTSTTNNGESQTTTPTA, fol-
lowed by a conserved sequence ADTPTAT(E/K), and a 
two type of tandemly repeated units, SNSPSPPITTTE 
or SNSRSPPITTTE, repeated from two up to five times. 
All FC27 family had a 10-amino acid SSSSGNAPNK at 
the 5′-end and 3-amino acid AP(N/K) or 6-amino acid 
APNAP(K/N) at the 3′-end (Additional file 5: Figure S4).

Discussion
The genetic diversity of P. falciparum may affect the 
model of transmission and control strategies for the 
parasite. The pathogenicity, antigen specificity and anti-
malarial drug sensitivity of P. falciparum can be associ-
ated with their malarial genetic structure [19, 20]. The 
genetic polymorphism analysis of P. falciparum field iso-
lates is necessary and might shed light on the develop-
ment of control strategies and effective vaccines against 
P. falciparum.

In the present study, a high genetic diversity of msp1 
and msp2, including 19 different PCR products for msp1 
(7 MAD20, 9 K1 and 3 RO33) and 17 for msp2 (8 FC27 
and 9 3D7) was found in the P. falciparum population 
in the Myanmar-China border regions. Two PCR prod-
ucts of msp1 are similar to that in Thailand and western 
Cambodia [17, 21]. Allele typing for msp1 showed that 
MAD20 (115/215, 53.49%) was the predominant allelic 
type in studied areas, which is consistent with the situa-
tions in Thailand, Myanmar, Vietnam, Colombia, Equato-
rial Guinea, and Yunnan Province, China [15, 22–27]. On 
the contrary, the K1 family is the most frequent genotype 
in Laos, Peru, India, Pakistan, Tanzania, Malaysia, and 
Senegal [28–35]. Allele typing for msp2 also showed the 
highest prevalence of FC27 (174/215, 80.93%) and 3D7 
(163/215, 75.81%), which is consistent with these situa-
tions in Benin [36]. However, 3D7 is the most frequent 
in Thailand, Myanmar, Colombia, Malaysia, Senegal, 
India, Equatorial Guinea and Pakistan [16, 21–23, 26, 30, 
32, 34, 35, 37, 38]. The overall multiplicity of infection 
(MOI) of msp1 and msp2 was 1.76 and 2.21, respectively. 
They were similar to those of Thailand and Laos [17, 28], 
higher than Malaysia, India and Senegal [31, 35, 38], but 
lower than Ethiopia [39]. The difference may result from 
the different geographical areas, intensity of malaria 
transmission and studied populations.

The present study identified 38 alleles of msp1, includ-
ing 14 for the K1 family, 23 for the MAD20 family, and 
1 for the RO33 family. This genetic diversity of msp1 in 
P. falciparum isolates resulted from the different num-
bers of tripeptide repeat that includes the SAQ, SGP and 
SGT for K1 and SGG, SVA and SVT for MAD20, which 
is consistent with the previous studies [15, 22, 28, 30, 
40]. Similarly, msp2 also showed a high genetic diver-
sity, with 37 alleles for the 3D7 family and 15 alleles for 
the FC27 family. This study showed a highly complicated 
amino acid repeat motifs in the central variable region 
of 3D7 alleles that contained the different combinations 
of S, A and G. There were 4 different continual amino 
acids repeats, including GASGSA (repeat numbers 2 
to 4) [41], GGSGSA (repeat numbers 3 to 9) [41–43], 
GAVASAGS (repeat numbers 2 to 3) [44] and GAGAV-
AGS (repeat numbers 3), as well as 2 single amino acid 
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that including GGSA and GAGASAGN, which have also 
been reported in other studies [14, 41–45]. Several new 
continual amino acids repeats and single amino acid were 
also found in this study, including the continual amino 
acids repeat GAGASGSA (repeat numbers 2), GAG​AGA​
VAGS (repeat numbers 2 to 3), GASGSASGSA (repeat 
numbers 4 to 5), GAVASAGSRD (repeat numbers 5 to 7), 
GAG​AGA​GAVAGS (repeat numbers 2 to 3), PAT (repeat 
numbers 2 to 6) at the central variable region followed 
by poly-threonine stretch (repeat numbers 4 to 13) and 
the intermittent amino acids repeat GAG​AGA​SGSA, 
GAGASGSAGSGD, GAG​AGA​GASGSA, as well as the 
above-mentioned single amino acid except for GGSA at 
the 3′-end. As reported in previous studies on parasites 
from Papua New Guinea, Cameroon, Myanmar and 
China [14, 22, 41, 44], the sequences of the FC27 family 
of P. falciparum isolates in the China–Myanmar border 
region are conserved at the 3′ and 5′-end, but varied in 
the number of repeats on SNSPSPPITTTE or SNSRSP-
PITTTE in the central region.

Conclusion
The findings of this study have demonstrated that P. fal-
ciparum clinical isolates in the China–Myanmar border 
region had a high genetic polymorphism in the msp1 and 
msp2 genes as well as a high multiplicity of infection, sug-
gesting the highly complex population structure of the 
parasite.
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