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Abstract 

Background:  Plasmodium falciparum malaria is a public health problem worldwide. Malaria treatment policy has 
faced periodic changes due to emergence of drug resistant parasites. In Sudan chloroquine has been replaced by 
artesunate and sulfadoxine/pyrimethamine (AS/SP) in 2005 and to artemether–lumefantrine (AL) in 2017, due to the 
development of drug resistance. Different molecular markers have been used to monitor the status of drug resistant 
P. falciparum. This study aimed to determine the frequency of malaria drug resistance molecular markers in Southeast 
Sudan.

Methods:  The samples of this study were day zero dried blood spot samples collected from efficacy studies in the 
Blue Nile State from November 2015 to January 2016. A total of 130 samples were amplified and sequenced using 
illumina Miseq platform. The molecular markers included were Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfk13, exonuclease and 
artemisinin resistant (ART‐R) genetic background (Pfmdr2, ferroredoxine, Pfcrt and Pfarps10).

Results:  Resistance markers for chloroquine were detected in 25.8% of the samples as mutant haplotype Pfcrt 72-76 
CVIET and 21.7% Pfmdr1 86Y. Pfdhfr mutations were detected in codons 51, 59 and 108. The ICNI double-mutant 
haplotype was the most prevalent (69%). Pfdhps mutations were detected in codons 436, 437, 540, 581 and 613. The 
SGEGA triple-mutant haplotype was the most prevalent (43%). In Pfdhfr/Pfdhps combined mutation, quintuple muta-
tion ICNI/SGEGA is the most frequent one (29%). Six of the seven treatment failure samples had quintuple mutation 
and the seventh was quadruple. This was significantly higher from the adequately responsive group (P < 0.01). Pfk13 
novel mutations were found in 7 (8.8%) samples, which were not linked to artemisinin resistance. Mutations in ART‐R 
genetic background genes ranged from zero to 7%. Exonuclease mutation was not detected.

Conclusion:  In this study, moderate resistance to chloroquine and high resistance to SP was observed. Novel muta-
tions of Pfk13 gene not linked to treatment failure were described. There was no resistance to piperaquine the partner 
drug of dihydroartemisinin/piperaquine (DHA-PPQ).
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Background
Malaria is a major public health problem in the World. In 
2017, the World Health Organization (WHO) estimated 
that 219 million people got malaria with death amount-
ing to 435,000 mainly in Africa [1]. In the Sudan, 720,879 
cases were reported as confirmed malaria and 1446 were 
reported as deaths in 2017. Plasmodium falciparum is 
the main malaria parasite species responsible for 92% 
of all malaria cases while, Plasmodium vivax represents 
approximately 8% [1].

Malaria treatment policy in Sudan has been changed 
through decades from chloroquine for the uncomplicated 
cases and quinine for complicated cases to sulfadoxine/
pyrimethamine (SP) antifolate drugs to other monothera-
pies which all failed through time until the introduction 
of artemisinin-based combination therapy (ACT) in 2005 
[2–4].

Chloroquine resistance emerged worldwide as early as 
late fifties in Southeast Asia and South America [5]. In 
Sudan, chloroquine resistance started in late 1970s, and 
treatment failure became alarmingly high until the intro-
duction of ACT in 2005 [4, 6, 7].

Single nucleotide polymorphisms (SNPs) in Pfcrt 
and Pfmdr1 genes have been correlated with chloro-
quine resistance for P. falciparum around the world 
[8, 9]. Mutations in these genes have been identified in 
several studies from different parts of the Sudan [7, 10, 
11]. The resistant haplotypes of Pfcrt have been identi-
fied as 72–76 CVIET and Pfmdr1 responsible for chlo-
roquine resistance as 86Y [8, 9, 12]. SP was introduced 
in Sudan for the treatment of malaria in early 1970s as 
a second-line treatment with chloroquine as the first-line 
of treatment [6]. SP has gained excellent reputation as a 
combination therapy that targets two different sites of the 
folate metabolism pathway [13] and, therefore, was the 
first combination therapy used for malaria treatment in 
Sudan. It continued to be used in pregnancy and when 
chloroquine resistance became a problem. However, 
malaria parasites developed resistance to this combina-
tion as well [14]. Previous researches which were done in 
Sudan identified the responsible resistance genes for SP. 
The genes of resistance were mutants of dihydrofolate 
reductase (dhfr 51I, 59R and 108N) and mutants of dihy-
dropteroate synthase (dhps436A, 437G, 540E and 581G) 
of the pyrimethamine and sulfadoxine, respectively 
[14–16].

Artemisinin-based combination therapy became the 
rescue rope for malaria treatment in Sudan where it 
has been introduced in 2005 by using AS/SP [4]. This 

combination together with other control measures 
remarkably reduced the cases of malaria in Sudan during 
10 years period [1]. Again treatment failure to this com-
bination became a public health problem [15, 17] and 
the combination of artemether/lumefantrine as first-line 
of treatment of uncomplicated malaria and dihydroar-
temisinin/piperaquine (DHA-PPQ) as a second-line 
were introduced in March 2017 [17]. Exonuclease gene 
mutation (415G) has been noticed to be associated with 
increased tolerance of piperaquine [18].

Quinine has remained to be the first choice for severe 
malaria and malaria in pregnancy in Sudan. However, 
there are some concerns about decreased efficacy of 
quinine [19]. Mutations in the kelch propeller protein 
gene (k13) have been used as markers for delayed clear-
ance of P. falciparum by artemisinin derivatives. Several 
non-synonymous mutations in the propeller domain 
of the gene have been reported from different parts of 
the world. The identified alleles so far linked to reduced 
clearance of the parasite have been reported earlier [20]. 
Parasite genetic background mutations that allow for 
emergence of Pfk13 mutations have been studied earlier 
[21], including Pfmdr2, ferroredoxine, Pfcrt and Pfarps10.

This research examined the different resistance mark-
ers for P. falciparum malaria from an area of unstable 
malaria transmission in southeastern Sudan. The main 
objective was to examine the resistance situation of all 
previously used drugs like chloroquine and the concur-
rent anti-malarial artemisinin-based combination ther-
apy using molecular drug resistance markers.

Methods
Study area
The study was conducted in two health centres in Dama-
zin, the Capital of the Blue Nile State, Southeastern 
Sudan (location 11.7855° N, 34.3421° E). Malaria trans-
mission is seasonal unstable transmission following 
the rainy season which is July to October [17]. There is 
another minor peak during December to February winter 
months [22].

Study samples and DNA extraction
The samples of this study were dried blood spots (DBS) 
from uncomplicated P. falciparum malaria patients taken 
at day zero. Samples were part of efficacy studies for AS/
SP (n = 63) and DHA-PPQ (n = 67) performed in the 
Blue Nile state between November 2015 and January 
2016, Sudan [17]. The total number of samples was 130 
(123 were from the adequately responsive patients and 7 
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with late parasitological drug failure (LPF) belonging to 
AS/SP group). Among the group of samples for Pfk13 
gene sequencing, 28 were excluded because they were 
reported earlier [23]. The samples were collected after 
obtaining informed written consent from patients or the 
guardians of minor patients. The study received ethical 
clearance from the Federal Ministry of Health, Sudan.

DNA was extracted from 130 samples using QIAmp 
DNA Mini Kit (QIAGEN Inc., Germany) following the 
manufacturer’s instructions. DNA was eluted in 50 µl and 
stored at − 20 °C for use in the PCR assays.

Plasmodium species confirmation
Plasmodium falciparum was identified by microscopic 
examination of Giemsa-stained slides. Furthermore, the 
presence of other Plasmodium species were checked by 
sequencing of two conserved regions of the Plasmodium 
parasite mitochondrial genome [24]. This procedure was 
done to confirm that the samples were only P. falciparum.

Complexity of infection (COI)
Estimation of COI from SNP genotyping data was per-
formed using the programs COIL [25] and Real MCOIL 
[26]. Both programs used the SNP barcode of 101 bi-
allelic unlinked SNPs genotyped by amplicon sequenc-
ing (below). The COI is expressed as an integer, which is 
the estimated number of individual parasites within the 
sample.

Amplicon sequencing
Amplicon sequencing of parasite DNA samples was per-
formed at the Wellcome Sanger Institute, UK for geno-
typing of drug resistance markers (Pfcrt, Pfmdr1, Pfdhfr, 
PfdhPfs, exonuclease, Pfk13 and artemisinin resistance 
(ART-R) genetic background, Pfarps10, ferredoxin, Pfcrt, 
Pfmdr2). Parasite genetic barcodes, and specification 
of the markers will appear in a manuscript in prepara-
tion by Wellcome Sanger Institute. In brief, targets for 
genotyping were identified and multiplex PCR primers 
were designed using a modified version of the mPrimer 
software. Primers were designed to amplify products 
between 190 and 250 bp and were combined into 3 pools. 
Before targeted amplification by PCR, a selective whole-
genome amplification (sWGA) was done on extracted 
genomic DNA to increase the concentration of parasite 
DNA [27]. A two-step protocol was used to first amplify 
the target regions of the parasite genome, followed by 
a second PCR to incorporate sequencing and multi-
plexing adapters. PCR products were size selected and 
pooled into a single volume, and batched samples were 
sequenced in a single Illumina MiSeq lane. Samples reads 
were de-plexed using the multiplexing adapters and indi-
vidual CRAM files were aligned to a modified amplicon 

Pf3D7 reference genome. Genotyping was done using bcf 
tools as well as custom scripts to filter and translate gen-
otypes into drug resistance haplotypes [28]. Sequences 
were deposited in the public repository European Nucle-
otide Archive (ENA) with accession numbers provided as 
Additional file 1.

Data analysis
Allele and genotype data were entered into SPSS software 
v. 20 and frequencies were calculated. A correlations 
between treatment response and SP genotypes was cal-
culated. Chi2 test was used to calculate the significance.

Results
Out of the 130 samples different numbers were success-
fully sequenced for the different genes.

Complexity of infection (COI)
All samples were confirmed to be only P. falciparum 
parasites. Complexity of infection (COI) was detected 
in 39 (32%) isolates, where 34 (28%) contained 2 para-
site clones per sample and 5 (4%) contained 3 clones per 
sample.

Molecular markers for drug resistance
Genotyping of chloroquine resistance gene (Pfcrt) 
showed 31 (25.8%) mutant haplotypes at positions 72–76 
(CVIET) (Table  1). Other mutations of Pfcrt are also 
shown (Table 1).

N86Y mutation of Pfmdr1 was detected in 25 (21.7%) 
samples, while Pfmdr1 Y184F was seen in 89.5% of the 
samples (Table 2).

Table  2 also shows mutations of Pfdhfr N51I which 
was detected in 107 (89.9%) samples, Pfdhfr S108N 
was seen in 116 (97.4%) samples. Alleles of Pfdhps are 
shown in Table  2 as well, where A437G was detected 
in 86 (83%) samples and 79 (76%) samples were K540E. 

Table 1  Prevalence of  Pfcrt haplotypes and  alleles in  P. 
falciparum isolates from Southeastern Sudan

Pfcrt haplotypes/alleles Frequency n = 120

Wild type CVMNK 89 (74.2%)

Mutant type CVIET 18 (15%)

Multiple clones CV[M/I][N/E][K/T] 13 (10.8%)

M74I 31 (25.8%)

N75E 31 (25.8%)

K76T 31 (25.8%)

A220S 35 (29.1%)

Q271E 37 (30.8%)

R371I 35 (29.1%)
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There were no mutations detected in exonuclease 
E415G allele. Pfdhfr genotypes are shown in Table  3 
where double mutations (ICNI) were seen in 69% of 
the samples, while triple mutations were seen in 21% 
(IRNI).

Concerning Pfdhps (Table  3), triple mutations 
(SGEGA) showed the highest frequency (43.2%). All sam-
ples that showed mutation in codon A581 were mutant in 
codon K540E and A437G and samples that were mutated 
in codon K540E were also mutant in A437G.

Combination of Pfdhfr and Pfdhps mutations as seen in 
AS/SP and DHA-PPQ groups are shown in Table 3. The 
highest combined mutation was the quintuple mutation 
(ICNI + SGEGA) was 29.8% followed by the quadruple 
mutation (ICNI + SGEAA) (22.1%). Quintuple mutation 
was detected in 6 of the seven AS/SP drug failure isolates 
while the last one harboured quadruple mutation. A cor-
relation between the adequately responsive group and 
the late parasitological failure group has shown that there 
is a significant association of the quintuple mutation with 
the failure group (P < 0.01).

Pfk13 showed novel non‐synonymous mutations in 
5 samples F375S, K378R, D389N, E433D, N594K and 2 
samples showed synonymous mutations K430K, P443P 
(Table 2).

No mutations were detected in Pfcrt (C72S, H97Q), 
Pfmdr1 (S1034C, N1042D, F1226), Pfdhfr (A16V, 
I164L), (ART‐R genetic background) Pfarps10 (V127M, 
D128Y\H), Pfmdr2 T484I.

Discussion
This is a study of molecular markers for drug resistance 
genes of P. falciparum malaria from the Blue Nile State 
in Sudan. In this study, complexity of infection was 
observed in 32% of the samples indicating high transmis-
sion [29]. Different mutations of Pfcrt indicating resist-
ance have been reported in this study with total of 25.8%. 
However, this percentage is low compared to other areas 
in the country where Pfcrt mutations ranging from 63 
to 100% were reported [7, 11, 16, 30, 31]. Chloroquine 
resistance mutations is not reversible. However, when 
chloroquine pressure is removed sensitive strains domi-
nate [32, 33] so the low percentage may indicate this phe-
nomenon. This percentage of resistance is still high for 
reinstitution of chloroquine which requires resistance 
level not exceeding 10% [34].

Mutation of Pfmdr1 N86Y is also a marker for chloro-
quine resistance (21.7%) is consistent with that of Pfcrt. 
Other reports in Sudan have shown higher levels of this 
mutation [7, 30, 31]. The allele Y184F showed high per-
centage of 89.5%, which favours the use of the first-line 
treatment AL as this mutation increases susceptibility of 
the parasite to lumefantrine [35, 36].

Reported mutations in Pfmdr1 at positions 1034, 1042 
and 1226 affect several anti-malarial drugs such as meflo-
quine, chloroquine, quinine, and halofantrine [36, 37]. 
There are no mutations in these alleles associated with 
resistance to these drugs in this study.

Resistance to amodiaquine is linked with the same 
mutation linked to chloroquine resistance Pfmdr1 at 
positions 86 and 1246 [38, 39]. This needs more verifica-
tion with in vivo studies for use of amodiaquine as a pro-
phylactic drug.

DHFR and DHPS are the enzymes that metabolize 
antifolate drugs and mutations in their genes have been 
reported to cause treatment failure with antifolates 
pyrimethamine and sulfadoxine, respectively [40]. In 
this study, multiple mutations of Pfdhfr and Pfdhps are 
reported (Table  3). Mutant genotype combinations are 
mostly linked to increasing resistance from double to 
quintuple mutations [41]. In this study, quadruple and 
quintuple mutations represent 68%, hextuple mutations 
are also described in this study forming nearly 10%. The 
quintuple mutation (ICNI/SGEGA) is strongly linked 
with the treatment failure group. This finding indicates 
high level of resistance of SP. Earlier reports in Sudan 
have shown that multiple mutations were highly preva-
lent in eastern Sudan [7, 14]. Failure of combination 

Table 2  Prevalence of  Pfmdr1, Pfdhfr, Pfdhps, Pfk13, 
ART‐R genetic background alleles in P. falciparum isolates 
from Southeastern Sudan

Drug resistance marker Mutant alleles Frequency

Pfmdr1 n = 115 N86Y 25 (21.7%)

Y184F 103 (89.5%)

D1246Y 2 (1.7%)

Pfdhfr n = 119 N51I 107 (89.9%)

C59R 35 (30.4%)

S108N 116 (97.4%)

Pfdhps n = 104 S436A 7 (6.7%)

A437G 86 (83%)

K540E 79 (76%)

A581G 45 (43%)

A613T/S 2 (1.9%)

Pfk13 n = 79 F375S 1 (1.3%)

K378R 1 (1.3%)

D389N 1 (1.3%)

K430K 1 (1.3%)

E433D 1 (1.3%)

P443P 1 (1.3%)

N594K 1 (1.3%)

(ART‐R genetic background) n = 114 Ferredoxine D193Y 1 (0.87%)

Pfcrt N326S 8 (7%)

Pfcrt I356T 4 (3.5%)
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therapy AS/SP in Sudan was ascribed to failure of the 
partner drug SP [23] and that combination was replaced 
by AL as the first-line of treatment [17]. This high resist-
ance of SP also means that it cannot be used intermit-
tently for the protection of pregnant women in highly 
endemic areas in Sudan.

Exonuclease gene mutation is one of the markers for 
resistance to piperaquine [18] and is reported to be zero 
in this study. The other markers were not studied. The 
choice of DHA–PPQ as second line of treatment [17] 
is well supported by this evidence. PPQ enjoys the fact 
that it has never been used as a mono-therapy for malaria 
treatment [42, 43].

Artemisinin-based combination therapy has revolu-
tionized malaria treatment. Mutations associated with 
delayed clearance of parasites have been reported from 
Southeast Asia posing a challenge to the rest of the 
world. Close monitoring of mutations in the propeller 
protein k13 gene of P. falciparum parasite is required 

[20]. This study reports 5 non-synonymous and 2 
synonymous random mutations among adequately 
responsive patients to ACT. There was a single non-
synonymous mutation from a subset of the same group 
of patients reported earlier by Abdel Hamid et al. [23]. 
All these mutations were not linked with treatment fail-
ure. Other random mutations not linked to treatment 
failure from different parts of Africa were reported 
[44]. A recent report of molecular markers of resistance 
from different parts of Sudan not including the Blue 
Nile State, has indicated the absence of Pfk13 muta-
tion [16]. However, reports from Uganda and Equa-
torial Guinea have indicated the presence of resistant 
Pfk13 gene mutations in these countries (Pfk13 A675V 
and C580Y respectively) [45, 46]. Another single muta-
tion in the Pfk13 gene which might be associated with 
reduced clearance of parasites was reported from Ethi-
opia [47]. These reports are alarming for the malaria 
control programmes in Africa.

Table 3  Frequency of  genotypes of  Pfdhfr and  Pfdhps among  the  AS/SP and  DAPPQ groups P. falciparum isolates 
from Southeastern Sudan

Drug resistance 
marker

Number of mutations Mutation haplotype DAPPQ
n = 55

AS/SP
n = 49

Total (n 104) n (%)

dhfr None Wild type NCSI 3 (5.45%) 0 (0%) 3 (2.9%)

Double ICNI 40 (72.7%) 32 (65.3%) 72 (69.2%)

NRNI 1 (1.8%) 6 (12.2%) 7 (6.7%)

Triple IRNI 11 (20%) 11 (22.4%) 22 (21.1%)

dhps None Wild type SAKAA 11(20%) 3 (6.1) 14 (13.5%)

Single AAKAA 4 (7.3%) 0 (0%) 4 (3.8%)

SGKAA 4 (7.3%) 3 (6.1) 7 (6.7%)

Double SGEAA 15 (27.3) 17 (34.7%) 32 (30.7%)

Triple SGEGA 21 (38.1) 24 (48.9%) 45 (43.2%)

AGEAA 0 (0%) 1 (2%) 1 (0.96%)

SGEAT 0 (0%) 1 (2%) 1 (0.96%)

dhfr + dhps None Wild type NCSI + SAKAA 1 (1.8%) 0 (0%) 1 (0.96%)

Single NCSI + AAKAA 2 (3.6%) 0 (0%) 2 (1.9%)

Double ICNI +SAKAA 8 (14.5%) 3 (6.1%) 11 (10.6%)

Triple IRNI +SAKAA 2 (3.6%) 0 (0%) 2 (1.9%)

ICNI + AAKAA 3 (5.45%) 0 (0%) 3 (2.9%)

ICNI + SGKAA 0 (0%) 2 (4%) 2 (1.9%)

NRNI + SGKAA 1 (1.8%) 1 (2%) 2 (1.9%)

Quadruple IRNI + SGKAA 2 (3.6%) 0 (0%) 2 (1.9%)

ICNI + SGEAA 14 (25.5%) 9 (18.4%) 23 (22.1%)

NRNI + SGEAA 0 (0%) 1 (2%) 1 (0.96%)

Quintuple IRNI + SGEAA 1 (1.8%) 7 (14.3%) 8 (7.7%)

ICNI + AGEAA 0 (0%) 1 (2%) 1 (0.96%)

ICNI + SGEGA 15 (27.3) 16 (32.6%) 31 (29.8%)

ICNI + SGEAT 0 (0%) 1 (2%) 1 (0.96%)

NRNI I + SGEGA 0 (0%) 4 (8.1%) 4 (3.8%)

Hextuple IRNI + SGEGA 6 (10.9%) 4 (8.1%) 10 (9.6%)
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Mutant alleles of artemisinin resistance genetic back-
ground are shown in very low percentages in this study. 
Mutations of these genes are not directly linked to arte-
misinin resistance. However, they collectively lead to 
Pfk13 gene mutation that can lead to failure of treatment 
[21].

Conclusion
This study has shown that there is moderate resistance to 
chloroquine, very high resistance to SP and novel muta-
tions in Pfk13 gene not linked to artemisinin resistance. 
Absence of exonuclease mutations supports absence of 
PPQ resistance. This study supports the malaria treat-
ment protocol currently used in Sudan.
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