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Abstract 

Plasmodium falciparum resistance against artemisinin has not emerged in Africa; however, there are reports of the 
presence of polymerase chain reaction-determined residual submicroscopic parasitaemia detected on day 3 after 
artemisinin-based combination therapy (ACT). These residual submicroscopic parasites are thought to represent 
tolerant/resistant parasites against artemisinin, the fast-acting component of the combination. This review focused on 
residual submicroscopic parasitaemia, what it represents, and its significance on the emergence and spread of arte-
misinin resistance in Africa. Presence of residual submicroscopic parasitemia on day 3 after treatment initiation leaves 
question on whether successful treatment is attained with ACT. Thus there is a need to determine the potential public 
health implication of the PCR-determined residual submicroscopic parasitaemia observed on day 3 after ACT. Robust 
techniques, such as in vitro cultivation, should be used to evaluate if the residual submicroscopic parasites detected 
on day 3 after ACT are viable asexual parasites, or gametocytes, or the DNA of the dead parasites waiting to be cleared 
from the circulation. Such techniques would also evaluate the transmissibility of these residual parasites.
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Background
Artemisinin-based combination therapy (ACT) is one 
of the major malaria control tools that have played a 
significant role in the reduction of malaria incidences 
globally [1–3], with some areas such as Zanzibar reach-
ing the elimination stage [4]. Plasmodium falciparum 
resistance against artemisinins has however, emerged in 
parts of Southeast Asia (SEA) threatening the long-term 
use of ACT [5–7]. The resistance is associated with poly-
morphisms at propeller domain of the Kelch 13 protein 
encoded by the P. falciparum pfk13 (or k13 for short) 
gene of the parasite, and is expressed phenotypically as 

a prolonged microscopy-determined parasite clearance 
time [7, 8]. However, the pfk13 gene mutations linked to 
resistance to artemisinins in SEA are not found in Africa, 
thus an in vivo microscopy-determined asexual parasites 
clearance time remains a reference method for the sur-
veillance of resistance [9].

Resistance to anti-malarial drugs has often threatened 
malaria elimination efforts and historically has led to the 
resurgence of malaria incidences and deaths particularly 
in children < 5  years of age in sub-Saharan Africa (SSA) 
[10, 11]. Despite the recent case reports [12, 13], no arte-
misinin resistance has been confirmed in Africa [14–16]. 
Nevertheless, polymerase chain reaction (PCR)-deter-
mined residual submicroscopic parasitaemia has been 
reported on day 3 after case management using ACT in 
different parts of Africa [17–21]. Importantly, it is not 
well understood whether these residual submicroscopic 
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parasites represent a viable resistant parasite population 
[19, 21, 22], and what role they play in determining treat-
ment outcomes, transmission dynamics and spread of 
artemisinin resistance [17, 19].

The World Health Organization (WHO) has 
approved five artemisinin-based combinations, includ-
ing artemether–lumefantrine, artesunate-amodiaquine, 
artesunate-sulfadoxine–pyrimethamine, artesunate–
mefloquine and dihydroartemisinin-piperaquine [23]. 
Artemether-lumefantrine is the most widely used ACT 
medicine in Africa [24]. This review focused on the cur-
rent knowledge on the prevalence and significance of day 
3-PCR determined residual submicroscopic parasites 
following treatment with ACT on malaria transmission 
dynamics and spread of artemisinin resistance. Published 
reports on the treatment of uncomplicated P. falcipa-
rum malaria using artemether-lumefantrine, artesunate-
amodiaquine, artesunate–sulfadoxine-pyrimethamine, 
dihydroartemisinin-piperaquine and a new drug artesu-
nate-pyronaridine [25], were included in the review.

Parasite clearance time following ACT​
The major characteristic of ACT is its ability to rap-
idly clear asexual P. falciparum parasites [26–29]. 
ACT consists of fast acting artemisinin derivatives and 

slow-acting non-artemisinin partner drugs [26, 28, 29] 
(Table  1). The artemisinin component rapidly clears a 
large biomass of malaria parasites achieving parasite 
reduction on the order of 108-fold reduction within 
3 days, before the long-acting partner drug has cleared 
the residual parasitaemia [26, 30, 31]. Artemisinins act 
on asexual parasites from early young ring stages to 
mature trophozoites, rapidly clearing the parasites [30]. 
The accelerated clearance of young ring-stage para-
sites prevents further maturation and sequestration of 
trophozoites, which is associated with the severity of 
the infection [29, 31]. The rapid parasite clearance rate 
therefore, not only optimize the therapeutic benefits, 
but also protects both components of the combina-
tion and minimizes the risk of emergence and spread 
of resistant parasite populations [10]. ACT also act on 
young gametocytes, reducing gametocytes carriage 
and thus diminishes the transmission potential of the 
treated infection [29, 32]. However, parasite clearance 
following treatment with anti-malarial drug is influ-
enced by various host, parasite and drug factors [33, 
34].

Table 1  Artemisinin-based combination therapies used in Africa

Artemisinin-based 
combination therapy

Artemisinin 
component

Partner drug Partner drug target Presence of persistent 
submicroscopic 
parasites on day 3 
after treatment

Validated marker 
of drug resistance

Artemether-lumefan-
trine

Artemether Lumefantrine Interferes with haem 
detoxification

Yes [17, 19–21, 25, 86] pfmdr1 N86, 184F, D1246
Amplification of pfmdr1 

copy number
pfcrt K76
Haplotype CVMNK [24, 48, 

87, 88]

Artesunate-amodi-
aquine

Artesunate Amodiaquine Interferes with haem 
detoxification

Yes [89] pfmdr1 86Y, Y184, 1246Y
pfcrt 76T
Haplotype SVMNT [24, 87]

Artesunate–sulfadoxine-
pyrimethamine

Artesunate Sulfadoxine
Pyrimethamine

Inhibits two enzymes 
involved in folate 
biosynthesis pathways. 
Sulfadoxine inhibits 
dihydropteroate 
synthase (dhps), 
and Pyrimethamine 
inhibits dihydrofolate 
reductase (dhfr) [90, 
91]

Yes [90] pfdhfr 51I, 59R, 108 N
pfdhps 437G, 540E [24, 

90, 91]

Dihydroartemisinin-
piperaquine

Dihydroartemisinin Piperaquine Not well understood but 
linked to inhibition 
of haem degradation 
pathways

Yes [17] Plasmepsin II and III ampli-
fication [24, 88]

Artesunate-pyronaridine 
(Registered and in use 
in some countries [23])

Artesunate Pyronaridine Interferes with haem 
detoxification

Yes [25] pfcrt 76T [24]
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Prolonged parasite clearance time as a measure 
of artemisinin resistance
Parasite clearance time is a robust measure of efficacy 
of anti-malarial drugs [35]. Prolonged parasite clearance 
time following treatment with chloroquine, sulfadoxine-
pyrimethamine and mefloquine was shown previously to 
be a first indicator of resistance against the drugs [36, 37]. 
Prolonged clearance time following ACT is, therefore, 
viewed as first evidence of reduced susceptibility of the 
parasites to artemisinin and possibly preceding the clini-
cally significant resistance [5, 31, 33, 35]. The proportion 
of patients with parasitaemia on day 3 following ACT is a 
routine indicator in monitoring P. falciparum sensitivity 
to artemisinin and its derivatives [23, 38], rather than the 
long-acting partner drug [29]. Partial artemisinin resist-
ance can either be suspected or confirmed. Suspected 
resistance to artemisinin is described as an increase 
in parasite clearance half-life to ≥ 5  h, as evidenced 
by ≥ 10% cases with microscopy-determined parasites on 
day 3 after initiation of treatment with an artemisinin-
based combination [23, 39], or high prevalence of pfk13 
mutants [9, 23, 39]. The confirmed artemisinin resistance 
occurs when there is a combination of delayed parasite 
clearance and pfk13 resistance-validated mutations for 
the same patient [38]. Importantly, there is no evidence 
of full artemisinin resistance; nevertheless, partial arte-
misinin resistance may facilitate the selection for the 
partner drug resistance. On the other hand, the classical 
drug resistance is when a parasite that normally would 
have been cured by a treatment regimen survives, multi-
plies and is transmitted to a new host [33]. Interestingly, 
in Africa microscopy-determined parasite clearance time 
is rapid following ACT, with very few patients having 
parasitaemia on day 3 [19, 35, 40–42]. However, clear-
ance slopes in infections in SSA are likely to underesti-
mate inherent resistance of parasites due to greater host 
immunity in high-transmission settings [43]. Presence of 
residual submicroscopic parasitaemia on day 3, therefore, 
provides the early warning signs of the emergence of P. 
falciparum resistance against artemisinin-based combi-
nations in Africa (Table 1).

Residual submicroscopic parasitaemia on day 3 
after ACT​
The PCR-determined submicroscopic parasites are those 
that are below the detection limit of a standard light 
microscopy, but can be detected by a much more sensi-
tive tool, the PCR [44]. Residual PCR-determined sub-
microscopic malaria parasites include both asexual and 
sexual parasites remaining days after initiation of anti-
malarial treatment. ACT has continued to achieve rapid 
microscopy-determined parasitological clearance across 
SSA, with a majority of treated patients being cleared 

of asexual parasites within 48  h of treatment initiation 
[3, 35, 45–47]. More precisely, over 90% of patients are 
being microscopically parasite negative by day 2 and 99% 
by day 3 post-initiation of ACT [35, 46, 47]. The PCR 
on the other hand, has revealed the presence in SSA of 
P. falciparum genotypes that are probably more likely to 
survive ACT at submicroscopic level (Table 1), and prob-
ably contribute to an onward transmission and subse-
quent patient recrudescence [17, 19–21, 48]. Studies in 
Angola [20], Kenya [17], Tanzania [18, 21], and Uganda 
[19] have reported substantial proportions of individuals 
treated with artemisinin-based combination, with resid-
ual submicroscopic parasitaemia between days 3 and 7. 
Whereas a study in Angola has reported an increase, over 
time, in the proportion of patients with residual submi-
croscopic parasitaemia on day 3 [20], a study in Tanzania 
reported an increase followed by a decline in the propor-
tion of patients with residual parasitaemia across years of 
surveillance [21]. Several submicroscopic parasite sub-
populations have also been observed in Tanzania with 
no known pfk-13 resistance-associated mutations, how-
ever, they clear as slowly as parasites in Cambodia, which 
are labeled drug resistant and do harbour the mutations 
[43]. Interestingly, these parasites in Tanzania with simi-
lar prolonged clearance as those in Cambodia were from 
a study conducted in 2006 at a time when artemether-
lumefantrine was not yet adopted as first-line treatment 
in Tanzania, and thus were probably naive of the drug 
[21, 43]. Nevertheless, after nearly two decades of a wide-
scale use of ACT in Africa, the combination therapy has 
remained efficacious despite the presence of residual 
submicroscopic parasitaemia on day 3 [3, 16, 17, 19–21]. 
The questions remaining to be answered are, therefore, 
what are the factors other than parasite tolerance/resist-
ance that may determine the presence of residual submi-
croscopic parasitaemia after ACT and whether residual 
PCR-determined submicroscopic parasitaemia repre-
sents viable asexual parasites.

Factors associated with the presence of residual 
submicroscopic parasitaemia
Apart from drug susceptibility, several factors affect the 
clearance of microscopy-determined parasitaemia fol-
lowing treatment with anti-malarial drugs leading to a 
large variation in clearance rates of sensitive and resist-
ant parasite strains [9]. Parasite clearance as a predictive 
value for artemisinin resistance is influenced by factors 
including pre-treatment parasitaemia, parasite strains, 
parasite developmental stage, host immunity, partner 
drug efficacy, sample size, quality of microscopy, and the 
pharmacokinetic/pharmacodynamics profile of the dif-
ferent artemisinin derivatives and the partner drugs [9, 
34, 35]. For instance, following anti-malarial treatment 
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individuals with low pre-treatment parasitaemia clear 
parasitaemia more rapidly than those with higher para-
sitaemia. On the other hand, the burst of mature schiz-
onts releases thousands of merozoites into the circulation 
increasing parasitaemia level in the peripheral blood [34]. 
Furthermore, sequestration of trophozoites to the inner 
vessels starting at around 18  h of the 48-h asexual life 
cycle leads to a sudden decline in the level of parasitae-
mia in the peripheral blood.

Likewise, the same factors that affect the clearance 
rate of microscopy-determined parasitaemia have also 
shown to influence the presence of day 3 residual submi-
croscopic parasitaemia. Studies in Kenya and Tanzania 
have shown the association of the presence of residual 
submicroscopic parasitaemia on day 3 after initiation 
of ACT with higher pre-treatment microscopy-deter-
mined asexual parasitaemia, anaemia, age < 5  years, and 
fever at baseline [17, 21]. Of the factors, host immunity 
plays a critical role in the clearance of parasites, includ-
ing resistant P. falciparum infections. In areas of intense 
transmission, acquired immunity develops at a relatively 
young age, and is a key determinant of the anti-malarial 
therapeutic response [35]. Partially immune individuals 
may, therefore, experience some response to drug treat-
ment even if they are infected by drug-resistant parasites. 
For instance, a study in Mali has shown older children to 
be able to more effectively clear resistant parasites than 
younger children [49]. Similarly, following anti-malar-
ial treatment, immunity is the primary determinant of 
clearance rate [50]. However, other studies have found 
no association between baseline characteristics and the 
presence of residual submicroscopic parasitaemia on day 
3 [19].

The pharmacodynamics and pharmacokinetics of the 
drugs may also play a significant role in the clearance 
rate of malaria parasites. The fast acting component 
artemisinin, has a half-life of 1-2 h, clearing rapidly from 
the body [26, 28]. Thus, a 3-day ACT regimen provides 
anti-malarial activity for two asexual parasite cycles and 
results in a reduction of parasitaemia in the infected indi-
vidual by a factor of about 100 million parasites, but this 
still leaves up to 100,000 parasites for the long-acting 
partner drug to remove, variably assisted by the immune 
response [29]. Of note, the day 3 residual submicroscopic 
parasites are assessed at the time when the fast-acting 
artemisinin derivatives have already been cleared from 
the body; therefore, the long-acting partner drug is vir-
tually acting alone. The day 3 PCR-determined residual 
parasites might therefore, be representing a remaining 
fraction of parasitaemia to be cleared by the long-acting 
partner drug after the short-acting artemisinin compo-
nent has already been cleared. The observation is sub-
stantiated by the presence of residual parasitaemia in a 

study conducted in 2006 in Bagamoyo, Tanzania, using 
artemether-lumefantrine, at a time when the combination 
therapy was not a first-line treatment policy in the coun-
try [18, 21, 43]. At that time most of the parasites were 
carrying P. falciparum multidrug resistance-1 (mdr1) 
86-Tyrosine (Y) and P. falciparum chloroquine resist-
ance transporter (crt) 76-Threonine (T) alleles, but were 
known to be sensitive to artemether-lumefantrine [21]. 
Malaria prevalence at the time was also high in the study 
area, therefore, the partial immunity against malaria 
could be acquired at a very young age, and the study was 
conducted in children aged 6  months to 10  years [18]. 
The nearly equal proportions of submicroscopic parasi-
taemia on day 3 between children aged < 5 years and the 
older children in the Bagamoyo study [21], probably indi-
cates the influence of other factors for the presence of 
residual parasitaemia on day 3, including selective immu-
nity whereby some parasite populations are not affected 
by both the acquired immunity and drug effect [43]. 
Nonetheless, even though the above-mentioned factors 
are found to influence the presence of submicroscopic 
parasitaemia on day 3, more studies are needed to evalu-
ate the viability of the detected residual asexual parasites.

Efficacy of ACT in relation to day 3 residual 
submicroscopic parasitaemia
Failure to rapidly clear the asexual parasite biomass by 
the fast-acting artemisinin component of the combina-
tion is thought to cause more parasites to be exposed to 
the long-acting partner drug alone increasing the risk 
of selection to the partner drug [38]. Prolonged parasite 
clearance increases the chances of more resistant asexual 
parasites to differentiate into gametocytes and then be 
transmitted after mosquito bite. Despite the presence of 
substantial proportion of submicroscopic parasitaemia 
on day 3 after ACT, in Africa the various combination 
therapies have remained highly efficacious [3, 16, 51], 
with the PCR-corrected efficacy reported to be above 
90% in the surveyed areas [17, 19–21, 47, 52]. Similar bet-
ter treatment outcomes are reported in Myanmar and 
Vietnam despite the presence of prolonged clearance 
half-life of more than 5 h, ≥ 10% of ACT-treated patients 
with microscopic-determined asexual parasites, selection 
of pfk13 [53, 54], and residual submicroscopic parasitae-
mia twice as much as those with microscopy-determined 
parasitaemia [53]. It is, therefore, clear that delayed par-
asite clearance does not necessarily lead to treatment 
failure [38]. However, in Kenya the PCR-detected sub-
microscopic parasitaemia on day 3 was statistically sig-
nificantly associated with PCR-adjusted recrudescence 
[17], but the significant association occurred after the 
standard WHO guideline for differentiation of recrudes-
cence from new infection was modified [55]. Importantly, 
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treatment failure rates following ACT outside the Great 
Mekong Sub-region occurs in the absence of artemisinin 
resistance, and are mainly due to partner drug resist-
ance [56], although a cross-resistance cannot be ruled 
out. Treatment failure rate equal to or above 10% should 
prompt a change in the national anti-malarial treatment 
policy [38].

Selection of markers of drug resistance in residual 
submicroscopic parasites
Molecular markers of drug resistance are among the 
tools widely used for surveillance of drug sensitivity [57, 
58]. Specific polymorphisms within the P. falciparum 
multidrug resistant (pfmdr1) and P. falciparum chloro-
quine resistance transporter (pfcrt) genes are widely used 
as markers for surveillance of ACT resistance in Africa 
[59–65], where pfk13 mutations are present but their 
variants differ from those in SEA and their correlation 
with artemisinin resistance has yet to be substantiated 
[14, 15, 35, 66]. Both pfmdr1 and pfcrt resistant haplo-
types are saturated in the parasite population following 
years of wide-scale use of ACT, and are being detected 
both at baseline and in residual submicroscopic para-
sites detected on day 3 following ACT [21] (Table 1). Five 
pfmdr1 amino acid positions asparagine (N)-86, tyrosine 
(Y)-184, serine (S)-1034, N1042, and aspartic acid (D)-
1246 influence susceptibility to lumefantrine, quinine, 
artemisinins and mefloquine [11]. Selection of pfmdr1 
haplotypes NFD (N86Y, F184Y and D1246Y) has been 
consistently observed after artemether-lumefantrine 
treatment in Africa, and is associated with decreased 
parasite susceptibility to the arylaminoalcohol quinolone 
long-acting partner drugs, including lumefantrine [59]. 
On the other hand, selection of haplotype YYY is linked 
to decreased sensitivity to 4-aminoquinoline drugs, such 
as chloroquine and amodiaquine [59]. Amplification of 
pfmdr1 copy numbers is associated with reduced sus-
ceptibility to artemisinins, lumefantrine, and mefloquine 
[11]. Likewise, selection of pfcrt haplotypes influence sus-
ceptibility to the commonly used partner drugs in Africa, 
lumefantrine and amodiaquine [11, 61]. The pfcrt 76T 
is associated with amodiaquine tolerance [11], whereas 
lysine (K)-76 reduces susceptibility to lumefantrine [21, 
60, 61, 67].

While some studies have indicated evidence of sta-
tistically significant within-host directional selection 
of pfmdr1 NFD and pfcrt CVMNK haplotypes on day 
3 post-ACT [19, 48, 68], other studies have indicated 
the absence of statistically significant directional selec-
tion between at baseline and on day 3 [21] or at baseline 
and among recurrent infections [69] over time of both 
pfmdr1 and pfcrt haplotypes. Random fluctuation for 
instance, of pfcrt is observed between day 0 and day 3, 

from T76 to K76 or mixed infection K76T; or from K76 
to mixed infection K76T or 76T; or from mixed infec-
tion K76T to K76 or 76T and vice versa [21]. Similarly, 
there has been fluctuation of pfmdr1 from 86Y to N86 
or mixed infection N86Y; or from N86 to 86Y or mixed 
infection N86Y; or from mixed infection N86Y to N86 
or 86Y and vice versa [21]. The lack of directional selec-
tion in some study areas is partly probably due to satura-
tion of the parasite population, particularly with pfmdr1 
N86 and pfcrt K76 in these areas [21, 60]. Importantly 
however, the pfcrt CVMNK and pfmdr1 NFD haplo-
types found in African residual submicroscopic parasites 
have not been directly linked to microscopy-determined 
delayed parasite clearance time in SEA parasites [70]. On 
the other hand, carriage of CVMNK prior to treatment 
is associated with risk of parasite recurrence on days 28 
or 42 for AL, whereas the presence of NFD haplotype is 
not associated with risk of recrudescence [48]. However, 
a study in Tanzania has indicated the absence of asso-
ciation between both baseline and on day 3 selection of 
pfmdr1 and pfcrt with recurrent infection [21]. It is worth 
noting that the markers of drug resistance are established 
when drug resistance has already developed [58].

No artemisinin resistance has been detected in Africa, 
and there is only partial artemisinin resistance in SEA. 
This might explain the lack of association between mark-
ers of drug resistance and treatment outcomes. Adequate 
clinical and parasitological response is observed in SEA 
after ACT despite the presence of parasites with pfk13 
mutations [53, 54]. Therefore, while molecular markers 
of drug resistance are very important for the surveillance 
of anti-malarial resistance, it should be understood that 
they are not often predictive of clinical resistance [31]. 
However, the potential to detect emerging trends of drug 
resistance before outright clinical failure makes molecu-
lar markers useful tools [31].

Viability of residual submicroscopic asexual 
parasites
The asexual parasite is the only stage of the malaria para-
site responsible for pathogenesis and treatment failure. 
The asexual parasites can also under certain circum-
stances differentiate into a transmissible gametocyte 
stage. After ACT, a fraction of patients may continue to 
harbour viable microscopy-determined parasites that 
persist as chronic infections [19]. These tolerant or resist-
ant asexual parasites that survives the anti-malarial drug 
pressure may also differentiate into gametocytes and be 
transmitted to the mosquito vector, where they replicate 
and expand the tolerant/resistant parasite population. 
However, the recent observation of residual submicro-
scopic parasitaemia 3 days after initiation of a full course 
treatment with an artemisinin-based drug combination 
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[19, 71] leads to question whether these residual parasites 
represent viable resistant asexual parasites, which could 
contribute to the spread of anti-malarial drug resistance.

PCR-based detection techniques are more sensitive 
than microscopy [72], being able to detect as little as 2 
parasites per microlitre of blood [44]. PCR uses specific 
primers to detect P. falciparum DNA targets and RNA 
transcripts of 18S rRNA or cytochrome b [73–76], abun-
dantly present in both asexual parasites and gametocytes 
[71]. Gametocytes commonly persist at low concen-
trations for several weeks after ACT or after ACT plus 
primaquine [17, 71]. Post-treatment persistence of 18S 
DNA or RNA in peripheral blood can thus be a conse-
quence of the presence of both trophozoites and game-
tocytes. Thriemer et  al., have shown that patients who 
are qPCR positive for malaria parasites at day 7 are more 
likely to have been carrying gametocytes before treat-
ment and during follow-up [53]. Ring-stage RNA has 
also been employed to assess residual submicroscopic 
parasitaemia, however, the transcripts are not exclusively 
expressed in the ring-stage, and it is not clear whether 
they represent viable asexual ring-stage parasites [19]. 
Other ring-stage markers SBP1, REX1 and PHISTb have 
been used to assess submicroscopic parasitaemia on day 
3 [71]. The SBP1 is most sensitive for asexual ring-stage 
parasites, but is also most intensely expressed in stage V 
gametocytes [71]. On the other hand, REX1 and PHISTb 
markers show high specificity for ring-stage trophozo-
ites, but their specificity is compromised at gametocyte 
densities > 106 gametocytes/μL, and also have lower sen-
sitivity than SPB1 [71]. It is also not clear whether the 
ring-stage trophozoites detected on day 3 by these mark-
ers represent viable malaria parasites or whether mRNA 
transcripts may linger in the circulation after asexual par-
asites have been cleared [71].

Malaria parasite nuclear materials are removed from 
the circulation by the circulating and reticuloendothe-
lial phagocytes [50, 77, 78]. ACT also activate the spleen 
to remove damaged and dead parasites from circulating 
infected erythrocytes through pitting, therefore, facilitat-
ing the rapid clearance of asexual parasites [30, 77–79]. 
Thus, DNA derived from dead parasites circulates for 
less than 48 h [71, 73]; and it is thought that non-viable 
cells are unlikely to give PCR positive signals, therefore, 
PCR analysis of malaria-infected blood accurately reflects 
the presence of live parasites [73]. Conversely, live but 
drug-damaged parasites that would be unable to initiate 
an infection when re-inoculated may also contribute to 
positive PCR signals [50, 71]. It is, therefore, still unclear 
whether the observed residual PCR-determined submi-
croscopic parasitaemia represents viable resistant asexual 
parasite strains, or are drug-damaged parasites waiting to 
be cleared, or are parasites remaining after the clearance 

of the rapid acting artemisinins and will be cleared by the 
long-acting partner drug.

Transmission potential of residual submicroscopic 
parasitaemia
Mature stage V gametocytes, a form of malaria parasite 
that develops from asexual parasites, are the only stage 
responsible for transmission of the infection from human 
to a mosquito vector [80]. Immature stage (I-IV) gameto-
cytes are sequestering away from the peripheral circula-
tion in a manner similar to mature asexual stage parasites 
[81]. Artemisinins acts against young gametocytes, sig-
nificantly reducing gametocytes carriage [31, 32, 82–84], 
but are not potent against mature stage V P. falciparum 
gametocytes. The rapid asexual parasite clearance rate 
exerted by artemisinins also reduces the number and 
window of asexual parasites to differentiate into game-
tocytes, therefore, reducing transmission [29, 30, 32, 82]. 
On the other hand, anti-malarial drug resistance is asso-
ciated with increased treatment failure and gametocytes 
carriage. Residual submicroscopic parasitaemia are also 
thought to be associated with longer duration of game-
tocytes carriage, higher likelihood of infecting mosqui-
toes, a higher parasite burden in the mosquito [17], and 
thus further risk of infecting human hosts [48]. Mosquito 
membrane feeding experiments have also shown that 
patients with residual parasitaemia on day 3 are more 
likely to infect mosquito on the day of experiment (day 
7) than those who have cleared asexual parasites by day 
3 [17]. However, it is not known whether the PCR-deter-
mined parasites on day 3 represent viable asexual para-
sites that would later differentiated into gametocytes and 
are mature enough to be transmitted to mosquito on day 
7, the day of transmission experiment. The development 
and maturation of gametocytes from stage I to V requires 
10-12 days [81, 85], therefore, it is almost impossible for 
the asexual parasites detected on day 3 to differentiate 
into gametocytes and be ready for transmission within 
4 days. Likewise, it is not clear whether viable drug-dam-
aged asexual parasites can differentiate into gametocytes. 
This does also not rule out that the positive transmissions 
occurring on the day of experiment are due to submi-
croscopic gametocytes which were present in surveyed 
individuals prior to the initiation of ACT. It should be 
emphasized that the detected PCR signals based on asex-
ual parasites’ 18 s rRNA are also present in gametocytes 
[71].

Conclusion
Presence of residual submicroscopic parasitemia on day 
3 after treatment initiation leaves question on whether 
successful treatment is attained with ACT. Thus there is a 
need to determine the potential public health implication 
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of the PCR-determined residual submicroscopic parasi-
taemia observed on day 3 after ACT. Robust techniques, 
such as in vitro cultivation, should be used to evaluate if 
the residual submicroscopic parasites detected on day 3 
after ACT are viable asexual parasites, or gametocytes, or 
the DNA of the dead parasites waiting to be cleared from 
the circulation. Such techniques would also evaluate the 
transmissibility of these residual parasites.
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