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Abstract 

Background  Effective targeting and evaluation of interventions that protect against adult malaria vectors requires 
an understanding of how gaps in personal protection arise. An improved understanding of human and mosquito 
behaviour, and how they overlap in time and space, is critical to estimating the impact of insecticide-treated nets 
(ITNs) and determining when and where supplemental personal protection tools are needed. Methods for weighting 
estimates of human exposure to biting Anopheles mosquitoes according to where people spend their time were first 
developed over half a century ago. However, crude indoor and outdoor biting rates are still commonly interpreted 
as indicative of human-vector contact patterns without any adjustment for human behaviour or the personal protec‑
tion effects of ITNs.

Main text  A small number of human behavioural variables capturing the distribution of human populations indoors 
and outdoors, whether they are awake or asleep, and if and when they use an ITN over the course of the night, can 
enable a more accurate representation of human biting exposure patterns. However, to date no clear guidance 
is available on what data should be collected, what indicators should be reported, or how they should be calculated. 
This article presents an integrated perspective on relevant indicators of human-vector interactions, the critical ento‑
mological and human behavioural data elements required to quantify human-vector interactions, and recommenda‑
tions for collecting and analysing such data.

Conclusions  If collected and used consistently, this information can contribute to an improved understanding 
of how malaria transmission persists in the context of current intervention tools, how exposure patterns may change 
as new vector control tools are introduced, and the potential impact and limitations of these tools. This article 
is intended to consolidate understanding around work on this topic to date and provide a consistent framework 
for building upon it. Additional work is needed to address remaining questions, including further development 
and validation of methods for entomological and human behavioural data collection and analysis.

Keywords  Insecticide-treated nets, Human-vector interaction, Human-vector contact, Exposure, Residual malaria 
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Background
Insecticide-treated nets (ITNs) have accounted for an 
estimated two-thirds of malaria cases prevented in the 
past decade [1]. However, their effectiveness is limited 

against mosquitoes that feed when people are outdoors, 
or indoors but awake and active. Furthermore, the scale-
up of ITNs can contribute to shifts in species composi-
tion, as well as shifts in vector behaviour (e.g. toward 
early evening and early morning biting, increased out-
door resting and biting, and more frequent feeding upon 
animals) which may further attenuate vector control 
impact [2–4].
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Quantifying and characterizing gaps in personal pro-
tection against mosquitoes, defined as the proportional 
reduction of biting exposure an individual experiences 
as a direct result of personal use of a protection meas-
ure, requires information on the behaviours of vectors 
and humans, as well as when and where they intersect. 
Methods for factoring spatiotemporal interactions 
between vectors and humans into biting exposure esti-
mates were developed as early as the late 1960s and early 
1970s [5–7]. A number of more recent articles have also 
underscored the importance of including human behav-
iour when investigating biting risk, and the value of bio-
logically meaningful coverage indicators [8–10]. Despite 
the importance of human behaviour to understanding 
malaria transmission dynamics, relatively few studies 
have investigated it [11, 12].

A review of published literature between 2000 and 
2017 identified fewer than a dozen studies in sub-Saharan 
Africa that integrated entomological and human behav-
ioural data to enable more meaningful interpretation 
[11, 12]. Likewise, a systematic review and meta-analysis 

of mosquito feeding behaviour identified a surprising 
absence of data on human location and sleeping pat-
terns needed to quantify risk of mosquito biting [12]. The 
review identified 250 data sets measuring mosquito bit-
ing time across Africa but only 22 of these data sets had 
documented human location, only seven documented 
human sleeping patterns, and only three had collected 
necessary human and vector data in the same time and 
place [12].

Crucially, calculation methods for weighting exposure 
estimates according to human location can alter inter-
pretations when compared to those suggested by ento-
mological observations alone [13–16]. For example, for 
a mosquito population that feeds both indoors and out-
doors, the overwhelming majority of exposure events for 
an unprotected person may still occur indoors if mosqui-
toes actively seek blood throughout the night when most 
people are asleep inside their houses (Fig. 1).

Despite their utility, such quantitative indicators of 
when and where interactions between humans and vec-
tors occur remain under-utilized, and no clear guidance 
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Fig. 1  Example of directly measured and behaviour-adjusted estimates of human exposure to malaria vectors from Asembo, western Kenya 
in 2011. Mosquito biting data was collected using human landing catches from June through July 2011 and human behavioural data was collected 
using a cross-sectional survey conducted from July through August 2011 [52]. Series A shows the proportion of the human population (1) 
outdoors (2) indoors and awake, and (3) indoors and asleep throughout the night, overlaid with directly measured indoor and outdoor biting 
rates for Anopheles arabiensis. Based on biting density alone, the estimated percentage of vector bites occurring indoors = 63%. Series B integrates 
vector and human behaviour data to show behaviour-adjusted cumulative exposure to vector bites for an unprotected individual. The percentage 
of vector bites occurring indoors for an unprotected individual 

(

πI, u

)

 = 97% and the percentage occurring while asleep indoors for an unprotected 
individual 

(

πS,u

)

 = 84%
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is available on what data should be collected, what indi-
cators should be reported, or how they should be calcu-
lated. Further, what little methodological literature exists 
is somewhat scattered, with inconsistent definitions and 
notation in different reports at different development 
stages of the methodology [11].

Beyond the implications for personal protection from 
mosquito bites, such numerical estimates for gaps in 
practically-achievable personal protection are also cru-
cial determinants of how well ITNs function to control 
vector populations due to mosquito contact with the 
insecticides applied to them [3, 8, 17, 18]. The strong 
preferences for human blood that make some African 
Anopheles such efficient malaria vectors also render them 
vulnerable to population control with insecticidal per-
sonal protection measures like ITNs [2, 3, 8, 19]. Reduced 
vector population abundance, survival rate, feeding fre-
quency and human-feeding probability, underpin equita-
ble community-level mass effects that account for much 
of the benefits of widespread ITN use [2, 20, 21]. Success-
ful suppression of a vector population depends directly 
upon the extent of personal protection ITNs provide for 
two reasons:

1.	 The degree of personal protection not only influences 
rates of human exposure to mosquitoes but also rates 
of mosquito exposure to the active ingredients of 
ITNs [22].

2.	 Personal protection is often what motivates end users 
of ITNs and drives utilization rates once access is 
provided [23].

However, vector population suppression is a much more 
complex phenomenon and is also limited by other vec-
tor behaviours such as feeding on animals [2, 24, 25], 
early exit from houses [26], and physiological resist-
ance to insecticides [27, 28], none of which is within the 
scope of this article. Instead, this article focuses specifi-
cally on how best to measure and interpret behavioural 
determinants of personal protection in the field. Building 
on existing approaches in the literature, this article pre-
sents an integrated perspective on relevant indicators of 
human-vector interactions, the critical entomological 
and human behavioural data elements required to quan-
tify human-vector interactions, and recommendations 
for collecting and analysing such data.

Methods for measuring human‑vector interaction
Indicators of human‑vector interaction patterns
Human-vector indicators can provide a clearer picture 
of where (indoors or outdoors) and when (time of night) 

exposure to malaria vectors occurs by accounting for 
human location and intervention use throughout the 
night. Relevant indicators include:

1.	 The proportion of vector bites occurring indoors 
for an unprotected individual 

(

πI ,u

)

 , which repre-
sents the maximum possible personal protection any 
indoor intervention could provide.

2.	 The proportion of vector bites occurring indoors 
during sleeping hours, for an unprotected individual 
(πS.u) , which represents the maximum possible per-
sonal protection any intervention targeting sleeping 
spaces could provide.

3.	 The proportion of all vector bites prevented by using 
an ITN 

(

P∗

S

)

 , which represents the protection pro-
vided against vector bites to someone using an ITN 
during sleeping hours.

4.	 The proportion of remaining exposure occurring 
indoors for a protected user of an ITN 

(

πI ,p

)

 , which 
represents how much remaining (residual) exposure 
occurs indoors for an individual who uses an ITN. 
This indicator is particularly useful for understand-
ing where malaria transmission is occurring once 
high coverage with ITNs is achieved and the relative 
merits of adding supplemental interventions that act 
indoors and/or outdoors in that context.

5.	 The population-wide mean personal protection 
against biting exposure provided by community-level 
coverage of humans with ITNs 

(

P∗

S,C

)

 , which repre-
sents the community average level of personal pro-
tection, accounting for the proportion of people who 
use an ITN each night while asleep. This summary 
indicator is particularly useful for adjusting field 
measurements of mosquito biting rates to account 
for this community-wide mean level of personal pro-
tection.

While indicators 3–5 focus on the personal protection 
provided by ITNs, similar indicators may be calculated 
for mosquito-proofed housing, and other personal pro-
tection measures such as repellents or treated clothing. 
All indicators, when possible, should be disaggregated 
by vector species and by human population groups (e.g. 
by sex and age categories) as behaviour can vary across 
these species and groups. Equations for calculating 
population-level indicators of human-vector interaction 
are presented in Box 1 and an example using vector and 
human behaviour data from Asembo, western Kenya 
is used to comparatively illustrate these indicators in 
Fig. 2.
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Box 1: Equations for calculating summary indicators 
of human‑vector interaction patterns
In order to maintain consistency and enable easy com-
parison with field-relevant literature, the following 
notation provides an updated, harmonized, and clari-
fied version of that most commonly used in published 
articles quantifying human-vector interactions. How-
ever, examples of alternative notation for conceptually 
similar parameters can be found in the mathematical 
modeling literature and are also valid. In the nota-
tion presented here, “π” refers to the average propor-
tion of human exposure to vector bites that occurs 
under a certain condition. The first subscript is used to  

indicate the location of bites (I = indoors; O = out-
doors; S = sleeping space). The second subscript is 
used to indicate whether the indicator is referring to 
someone who is protected by an ITN (p) during sleep-
ing hours or unprotected throughout the night (u). The 
following equations are intended to reflect a twenty-
four-hour period to account for mosquito biting activ-
ity and human behaviours over the course of a full day, 
although for practical purposes hours of full daylight in 
which Anopheles malaria vectors in most settings are 
inactive may be assumed to be negligible. An Excel® 
spreadsheet template is provided to calculate these 

a b

c

a b

c

58%

58%

Fig. 2  Example of indicators calculated using vector and human behaviour data from Asembo, western Kenya in 2011 [52]. Series A shows 
the behaviour-adjusted estimates of exposure to Anopheles arabiensis bites for an unprotected individual. Series B shows behaviour-adjusted 
estimates of exposure to vector bites for an ITN user. ITNs were assumed to prevent approximately 94% of bites while in use based on reference 
estimates from experimental hut trials. The percentage of all vector bites prevented by using an ITN 

(

P∗S

)

 = 79% and the proportion of remaining 
exposure occurring indoors for a protected user of an ITN 

(

πI,p

)

 = 87%. Series C shows the population-wide mean exposure to vector bites. In this 
site the proportion of the population that reported using an ITN while asleep the previous night was 74% (arrows). Therefore, the population-wide 
mean personal protection against biting exposure given the reported community-level coverage of people using an ITN 

(

P∗S,C

)

 is 58%. An Excel file 
demonstrating how these indicators were calculated is included as Additional file 1
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indicators from raw data using the examples presented 
in Figs. 1 and 2 (See Additional file 1).

1. Proportion of vector bites occurring indoors for 
an unprotected individual 

(

πI ,u

)

 [52, 54–56]: This is 
an indicator of the maximum possible protection any 
indoor intervention could provide and is expressed 
as the number of bites received indoors over a 24-h 
period divided by the total number of bites received 
indoors and outdoors over the same 24  h period. It 
is calculated as the sum of the measured indoor vec-
tor biting rates (BI) for each one-hour time period (t) 
over a 24-h period weighted by the estimated propor-
tion of humans indoors (I) at that time, divided by the 
total location weighted exposure (Eq.  1 denomina-
tor), i.e. itself plus the sum of the outdoor biting rates 
weighted by the proportion of humans outdoors (O, 
where O = 1–I) at each time over the same 24-hour 
period:

It may sometimes be useful to instead express this 
summary indicator as its complement, the proportion 
of bites occurring outdoors for an unprotected indi-
vidual (πO,u) [19]:

2. Proportion of vector bites occurring while asleep 
for an unprotectedindividual 

(

πS,u

)

 [16, 52–54, 56]: 
An indicator of the maximum possible protection any 
intervention targeting indoor sleeping spaces could 
provide. It is expressed as the number of vector bites 
received while asleep indoors divided by the total 
number of bites received indoors and outdoors during 
a 24-h period. It is calculated as the sum of the indoor 
vector biting rates (BI) for each 1-h time period (t) 
over a 24-h period weighted by the estimated propor-
tion of humans sleeping (S) indoors at that time, by 
the sum of the indoor and outdoor biting rates respec-
tively weighted by the proportions of humans indoors 
and outdoors at each time over the same 24-h period:

 One important limitation of this calculation is that 
it assumes all sleeping spaces are indoors, which may 
not be the case in all settings.

3. Proportion of all vector bites directly prevented 
by using an ITN 

(

P∗

S

)

 [43, 48, 51, 55]: An indicator of 

(1)πI ,u =

∑24
t=1 BI ,t It

∑24
t=1 BI ,t It + BO,t Ot

(2)πO,u = 1− πI ,u

(3)πS,u =

∑24
t=1 BI ,t St

∑24
t=1 BI ,t It + BO,t Ot

the de facto protection provided against all indoor 
and outdoor bites by using an ITN, allowing for 
non-use while awake and active. It is calculated as 
the product of the proportion of exposure occur-
ring indoors while asleep and the personal protec-
tion against bites provided by an ITN while in use 
(ρ). Data on personal protection provided by an 
ITN while in use can be obtained from standard-
ized experimental hut trials, in which it is referred 
to as feeding inhibition. Feeding inhibition is defined 
as the percentage of mosquitoes that are prevented 
from taking a blood meal out of all mosquitoes that 
would otherwise do so inside an experimental hut 
[83]. Weighting these estimates of personal pro-
tection while in use (ρ) by the patterns of relevant 
human and mosquito behaviours, the proportion of 
all vector bites prevented by using an ITN may be 
calculated as follows:

4. Proportion of remaining exposure occur-
ring indoors for a protected user of an ITN 

(

πI ,p

)

 
[54–56]: An indicator of how much of the remain-
ing exposure occurs indoors for an individual who 
uses an ITN and where supplemental tools should 
be targeted (i.e. indoors, outdoors, or both). It is cal-
culated by adjusting the estimate of πI ,u to allow for 
the indoor personal protection provided by using an 
ITN: 

It may sometimes be useful to instead express this 
summary indicator as its complement, the proportion 
of bites occurring outdoors for an ITN user πo,p :

5. Population-wide mean personal protection 
against biting exposure provided by observed level 
of ITN use (C) in the community 

(

P∗

S,C

)

 : While ITNs 
can feasibly be used during sleeping hours, not all 
members of a population can or do use an ITN. This 
is an indicator of the population-wide mean level of 
personal protection provided by current levels of ITN 
use. Calculated simply as the product of the propor-
tion of human population using an ITN each night 

(4)P∗

S = ρπS,u =
ρ

∑24
t=1 BI ,t St

∑24
t=1 BI ,t It + BO,t Ot

(5)

πI ,p =

(

∑24
t=1 BI ,t It

)

− ρ

(

∑24
t=1 BI ,tSt

)

(

∑24
t=1 Bo,t Ot + BI ,t It

)

− ρ

(

∑24
t=1 BI ,tSt

)

(6)πO,p = 1− πI ,p
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and the overall personal protection provided by an 
ITN, allowing for the attenuating effects of exposure 
occurring when the user is active outside the net.

Critical data elements
Measuring human exposure to malaria vectors requires 
timed estimates of indoor and outdoor vector densi-
ties as outlined below and representative estimates of 
the human population indoors and outdoors, awake and 
asleep, and using personal prevention measures, over the 
full period of vector feeding activity. Given the poten-
tial variation in both vector and human behaviour, it is 
important to capture this data across seasons when pos-
sible. It is also helpful to know the approximate level of 
personal protection, in terms of bite prevention, pro-
vided by an ITN during the times when it is used. Such 
entomological estimates of personal protection are typi-
cally expressed as proportional blood feeding reduction, 
defined as the percentage of mosquitoes that are pre-
vented from taking a blood meal out of all mosquitoes 
that would otherwise do so inside an experimental hut. 
Suitable estimates for commonly-used products may be 
obtained from published experimental hut studies, ide-
ally from the nearest and most relevant settings with 
similar vector populations [29]. Human behavioural data 
should include representative estimates of the proportion 
of the human population indoors versus outdoors, sleep-
ing versus awake, and under the protection of an ITN 
throughout the night. In other words, where people are, 
whether they could feasibly use an ITN, and whether they 
are using an ITN. When possible, such human behaviour 
data should ideally be collected in a disaggregated format 
that is linkable to de-identified individual human study 
participants. This format allows aggregation into esti-
mates for the mean proportion of the human population 
indoors, sleeping, and under the protection of an ITN 
at each time of the night, but also allows for assessment 
of the epidemiological importance of behavioural differ-
ences between individuals. A summary of recommended 
data elements is included in Box 2.

(7)P∗

S,C =
ρ

∑24
t=1 BI ,tCt

∑24
t=1 BI ,t It + BO,tOt

= ρπS,pC

Box 2: Summary of critical entomological 
and human‑behavioural data elements for quantifying 
the distribution of human exposure to malaria vectors 
across times of the night and indoor versus outdoor 
locations
Entomological data:

•	Local and directly comparable measurements of 
indoor and outdoor biting rates for individual vector 
species, separately for each hour over the full period 
of feeding activity.

•	Reference estimates for the personal protection pro-
vided by ITNs while actually being used, expressed in 
terms of proportional human blood feeding reduc-
tion.

Human behavioural data:

•	Local estimates of the proportions of the human 
population who are indoors versus outdoors for each 
hour of the night.

•	Local estimates of the proportions of human popula-
tion who are asleep or trying to sleep versus awake 
and active, for each hour of the night.

•	Estimate of proportion of human population using an 
ITN for each hour of the night.

Considerations for entomological data collection
Indoor and outdoor biting rates can be assessed through 
human landing catches (HLC) [30] or an alternative 
method verified to reproduce representative exposure 
density distributions by capturing host-seeking mosqui-
toes. While HLC has been traditionally referred to by 
entomologists as the “gold standard” method, it should 
not be undertaken lightly as a default method and may 
not be permitted in some contexts for ethical reasons, 
such as where arboviral transmission may occur. Before 
any alternative method can be considered adequate for 
surveying human exposure patterns it must first be com-
pared with HLC to determine equivalence indoors versus 
outdoors, over the course of the night, across settings, 
and across seasons (Box 3).

None of the validation steps described in Box 3 is par-
ticularly difficult and a range of under-utilized alter-
natives to HLC exist that could be suitable [30, 31]. 
Although no exposure-free method has yet been iden-
tified that completely satisfies all the requirements 
described in Box 3, only slight discrepancies are observed 
between HLC and some of the latest electric grid (EG) 
trap prototypes [32, 33]. However, some limitations and 
uncertainties remain regarding the performance and 
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reliability of EGs [34] and they have the potential to be 
somewhat laborious and hazardous to use in practice. 
More practical and reliable exposure-free alternatives 
to HLC requiring no electrical power source would be 
desirable in terms of convenience, scalability and safety. 
New double net trap designs, including a miniaturized 
version developed and applied to survey human exposure 
patterns indoors and outdoors, are emerging that might 
address this need once evaluated against the criteria in 
Box 3 [35].

One of the most commonly used methods for surveying 
malaria vector densities, the Centers for Disease Control 
and Prevention (CDC) light trap was originally designed 
for indoor use, generally catches fewer mosquitoes out-
doors, and can have variable outdoor sampling efficiency 
between studies, seasons, and mosquito species [30]. It is, 
therefore, not suitable for comparing indoor and outdoor 
biting densities and thus not recommended for measur-
ing the entomological indices described in Box 2.

An important priority for future research in this 
area should be the specific adaptation of safe, conveni-
ent methods for measuring the entomological met-
rics described in Box  2 and evaluating those mosquito 
trapping methods in terms of the performance criteria 
detailed in Box 3. In the meantime, investigators relying 
on EGs, double net traps, or any other alternative, should 
include such assessments in their study designs as an 
essential internal quality assurance component of their 
studies.

Collections should be carried out for all hours of vec-
tor feeding activity. This is referred to simply as “night” 
for the purposes of malaria vectors, although this may 
include early evenings and mornings. Ensuring that the 
fringes of mosquito activity are captured, which may 
require 14 h of collection or more in some locations, will 
improve accuracy of the measures of human-vector inter-
actions and correct interpretations of data [19]. Given the 
importance of even minor fractions of outdoor exposure 
that may occur before dusk and after dawn to sustaining 
residual malaria transmission [3, 12, 15, 36], surveying 
even low levels of biting activity during these early and 
late stages of mosquito activity cycles is critical.

It is also important to be able to disaggregate biting rate 
profiles for individual vector species within taxonomic 
groups and complexes, many of which differ in their time 
of biting, preference for indoor or outdoor biting, and 
efficiency as vectors. This is especially important where 
the individual vector species contribute differentially 
to overall malaria transmission and also have different 
biting behaviour profiles as may be observed between 
Anopheles gambiae sensu stricto, Anopheles arabiensis 
and Anopheles funestus [4, 37, 38]. It is therefore impor-
tant that the results of morphological or molecular 

identifications of individual specimens can be linked to 
the field data detailing where, when, and how they were 
captured [39]. While this may sound obvious, it is not the 
case for most malaria vector behaviour data. Indeed, only 
three published estimates for any of the summary indica-
tors described in Box 1 unambiguously relate to a single, 
clearly identified species, rather than mixture of species 
within a complex or group [13].

Mosquito densities are variable across nights and loca-
tions, and the distribution across indoor and outdoor 
environments often changes according to season and 
micro-climatic conditions [40–42]. Mosquitoes may also 
shift host-seeking behaviours as an adaptive response to 
insecticidal pressure from indoor interventions [43]. There-
fore, ensuring sufficient replicates across locations and sea-
sons is key to establishing long-term trends in behaviour 
patterns of local mosquitoes.

Indoor and outdoor mosquito collections are generally 
carried out in the peri-domestic setting, inside and directly 
outside of homes, which may not accurately reflect expo-
sure to malaria vectors when people are away from home. 
Therefore, in some contexts, collections should be consid-
ered in additional locations of interest within the commu-
nity where people may be at risk of exposure, for instance 
forest camps, as well as among migrant and mobile popula-
tions [44, 45].

In addition to indoor and outdoor mosquito collec-
tions, estimates of human vector interactions require an 
estimate of personal protection provided by ITNs while in 
use. Context-specific, local measurements of biting reduc-
tion achieved by ITNs, mosquito-proofed housing, or other 
relevant protection measures are neither necessary nor 
realistic to expect for every setting. For most commonly 
used ITN products, reference estimates are available from 
several experimental hut evaluations across tropical Africa 
and Asia, although these may vary between products, loca-
tions and species. The most geographically and ecologically 
relevant of these published values can be used in the calcu-
lations described in Box 1, albeit with the caveat that vari-
ability may arise from context-dependent differences in the 
condition of these products under conditions of use in the 
real world.

In addition to the critical data elements outlined in Box 2, 
when possible, the environmental characteristics within 
each house used for indoor human landing catches, par-
ticularly in terms of repellents, irritants and physical barri-
ers that reduce mosquito densities in the house should also 
be captured. In addition to any behaviour-modifying active 
ingredients used for ITNs and IRS, structural features such 
as closed eaves, complete ceilings, and screened windows, 
and wall surface substrate need to be carefully considered 
when collecting and interpreting data [46]. Additional vari-
ables that may influence biting patterns include habitual 
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cooking locations, house size, and type of livestock present 
indoors and outdoors. While these fine details may not be 
necessary for population-level or district-level recommen-
dations envisaged here, they can help to identify important 
sub-groups within the population, which may require spe-
cific recommendations.

Box 3: Criteria for validating alternative methods 
to human landing catches for quantitative assessments 
of human patterns of exposure to mosquito bites
A method should ideally meet all criteria. If there are 
variances, they must be measured and adjusted for to 
achieve the necessary equivalency.

Relative performance compared to HLC must be 
consistent indoors and outdoors. Note however, 
that because the derived metrics of human exposure 
are expressed and used as proportions, the method 
does not need to have equivalent absolute efficiency. 
If an alternative method is more (or less) efficient 
indoors than outdoors when compared to HLC, the 
method will yield correspondingly biased estimates 
of where human exposure occurs. As an example, in 
particular setting it may be acceptable if an alternative 
method catches only 30% of the number of mosqui-
toes obtained by HLC with the same sampling effort in 
the same times and places, so long as that relative effi-
ciency is 30% indoors and 30% outdoors. Lessons may 
be learned from early efforts to develop customized 
EGs for this purpose; initial prototypes had higher rela-
tive efficiency outdoors than indoors [84], so further 
prototypes were developed to address these shortcom-
ings [32, 33] and some discrepancies remain [34].
Those indoor and outdoor relative capture rates 
must remain constant throughout the night. In sim-
ple terms, if both relative capture efficiencies average 
30% over the course of the night, this needs to reflect 
steady estimates of 30% throughout the night. If instead 
this reflects the mean of an unstable device with 40% 
relative sampling efficiency at the start of the even-
ing that declines to 20% by the following morning, the 
method will yield correspondingly biased estimates of 
when human exposure occurs. This criterion is of par-
ticular relevance to battery-powered traps [30]. Impor-
tant lessons may be learned from early efforts to evalu-
ate commercially-available electrocuting grids for this 
purpose; this approach failed because relative capture 
efficiency faded as battery charge drained over the 
course of the night [84, 85].
The capture method should have consistently den‑
sity-independent sampling efficiency relative to 
HLC. It is essential that a method is proven to satisfy 

this criterion, so that it can be reliably applied across a 
range of locations and seasons without compromising 
reliability or utility for comparing results. For example, 
if a method has a sampling efficiency of 30% relative to 
HLC when vector densities are low, it should also be 
30% at high vector densities rather than tail off to 20% 
(or increase to 40%) as capture bags fill with mosqui-
toes, batteries drain faster, or human operators become 
overwhelmed. While this has not yet proven an issue 
for purpose-built electrocuting grids [84], the same 
cannot be said for CDC light traps [86].

Considerations for human behavioural data collection
Different methods have been used to estimate the pro-
posed human-behavioural data elements. To date, no 
“gold standard” has been established for collecting this 
data. Examples of methods used to measure human 
behaviour identified in the literature include direct obser-
vation [16, 47–50], providing a digital watch to a house-
hold member and having him/her record information 
for each household member at specified times [51], and 
using survey questions [16, 20, 38, 43, 48, 52–56]. When 
selecting a methodological approach, it is important to 
consider its strengths, limitations, feasibility, as well as 
potential biases in the chosen method. It is also impor-
tant to consider the scale at which it can realistically be 
applied (village, district, or national) and whether it can 
provide individual-level data that can be disaggregated 
and linked to other complementary data such as malaria 
infection status, socioeconomic status, education, and 
other potential risk factors.

Survey questions have to date been the most widely 
used option for collecting the proposed human behav-
ioural data elements. In addition to the standard survey 
questions on ITN use described in the current Roll Back 
Malaria Household Survey Indicators for Malaria Con-
trol [57], information on location and sleeping patterns 
throughout the night can be collected, for example using 
a set of five additional questions asked for each household 
member (Box 4). Variations of the survey questions put 
forward in this paper have been used in previous studies 
[16, 48, 52, 54, 56, 58], including one that triangulated the 
results of survey questions with direct observation data 
[48]. When survey questions are used, the phraseology 
of the questions and locally appropriate translations are 
crucial to ensure a clear understanding by study partici-
pants and accurate responses. Even when implemented 
well, there are a number of limitations associated with 
surveys, including the potential for bias in responses 
[59]. Additionally, using a small set of questions, such as 
those presented in Box  4, requires making assumptions 
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to estimate an individual’s hourly location throughout 
the night, rather than measuring directly for each hour 
or time interval. For an individual who reported using an 
ITN the night before, this approach assumes he or she 
was under the protection of an ITN consistently from the 
time they reported sleeping until the time they reported 
waking up. Therefore, this approach inherently will not 
capture micro-level behaviours such as getting in and 
out of bed or removing an ITN during the night, sleeping 
up against the net, or leaving it partially open during the 
night [60, 61].

Direct observation of human behaviour by mosquito 
collector, household member, or trained data collector 
can provide a high level of detail on human behaviours 
throughout the night, compared to survey questions. 
However, reactivity, described as a change in behaviour 
due to the presence of an observer, must be considered 
[62]. This phenomenon tends to decrease over time sug-
gesting the potential value of multiple nights of observa-
tion or an acclimation period [63, 64]. Certain groups or 
activities may be inherently easier to observe than oth-
ers, which can bias results. If observations are taking 
place in the peri-domestic setting only, it is important to 
consider how time spent away from home will be meas-
ured and recorded. This is particularly important when 
occupations such as fishing, forest work, or migratory 
farming are practiced, as these may result in significant 
exposure to mosquito bites far from people’s homes [44]. 
When possible, data collection should be considered in 
additional locations where people spend significant time 
overnight, such as farm plots [65–67]. Community entry 
is critical to the success of observations. Therefore, prior 
to conducting observations, community leaders and 
household members should be fully briefed on the objec-
tives of the study and the reason for observation. Further, 
observations require adequate supervision to ensure 
data quality, and if data collectors are from outside of the 
study community, a clear security plan to maintain safety 
throughout the night should also be put in place. The 
decision on who will carry out observations may depend 
on a number of factors including available resources and 
security. It is important to consider how the identity of 
the observer (household member, community member, 
or trained data collector) might impact the quality of 
the data as well as the behaviour of household members 
being observed.

There are a variety of platforms for collecting the criti-
cal data elements (Box 2) and programmes can select the 

option that works best for them based on the consid-
erations outlined here. Platforms for collecting critical 
human behavioural data elements include routine ento-
mological monitoring, national surveys, and stand-alone 
research studies. Collecting human behaviour data within 
entomological surveillance sites provides an opportu-
nity to collect vector and human behaviour data within 
the same population sample and to track changes across 
seasons and over time. Many countries now conduct rou-
tine entomological surveillance, which often includes 
monitoring indoor and outdoor biting rates. Collecting a 
small set of human-behavioural variables (Box 2) in con-
junction with ongoing entomological collections could 
provide an opportunity to improve the decision-making 
value of data from these programmatic surveillance plat-
forms; if both types of data can be disaggregated down 
to matching 1-hour periods or disaggregated at least to 
small enough time intervals to intuit the potential for 
indoor interventions to protect community members.

Including a standard set of relevant questions in large-
scale surveys (Box 4), such as malaria indicator surveys, 
provides the opportunity to collect information across a 
broad demographically and geographically representative 
sample, allowing comparison of human behaviour across 
settings without substantively increasing time or resource 
inputs. When using such national-scale survey platforms, 
it may not be possible to ensure the person(s) answering 
the survey questions is knowledgeable about household 
members’ behaviour, which represents a limitation of this 
option. Further, it is difficult to capture seasonal trends in 
human behaviour due to the intermittent, cross-sectional 
design of most large-scale surveys and entomological and 
human behavioural data may not be available from the 
same time and place.

Stand-alone research studies may also include layered 
entomological and human behavioural data, and it can be 
valuable to collect epidemiological data in the same pop-
ulation sample. This data can, and when possible, should 
be collected during epidemiological evaluations of vector 
control tools [26].

There are inherent trade-offs between the level of detail 
that can be obtained and the scale at which a method can 
be implemented. When possible, use of multiple methods 
and method triangulation of the results from such differ-
ent, complementary approaches should be considered to 
mitigate limitations of individual methods.
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Box 4: Suggested survey questions that can be used 
as part of a stand‑alone survey or included as part 
of a national survey
These questions can be asked in addition to standard 
survey questions on ITN use described in the current 
Roll Back Malaria Household Survey Indicators for 
Malaria Control. Defined categorical options should 
be offered as answers. For time-related questions 1, 2, 
4 and 5, options are hour-long time periods starting 
every hour e.g. 18:00 to 19:00, 19:00 to 20:00 etc.

1.	 During what time period did [name] go to sleep 
yesterday?

2.	 During what time period did [name] wake up 
today?

3.	 Did [name] sleep indoors or outdoors last night?
4.	 If [name] slept indoors, during what time period 

did [name] finally go indoors for the evening last 
night?

5.	 If [name] slept indoors, during what time period 
did [name] first go outdoors for the day this morning?

Considerations for statistical analysis and sample size 
calculation
The variability and reliability of these estimates should be 
presented using the 95% confidence interval calculated 
from data sets of adequate sample size, containing multi-
ple observations of human and vector behaviour through 
space and time. It is possible to estimate sample sizes of 
proportions by classifying human behaviour or mosquito 
behaviour into categories. When considering the toolbox 
of vector control interventions that are currently availa-
ble, appropriate classifications for human behaviour may 
be categorised as (1) indoors asleep, (2) indoors awake or 
(3) outdoors. Similarly, after estimating average bedtime 
as a cut off, vector mosquitoes may be classified by the 
proportion of bites that occur (1) indoors before bed, (2) 
indoors after bed (3) outdoors. While this is a simplifica-
tion, it is adequate to allow the calculation of minimum 
sample sizes to precisely detect a specified difference at 
either the individual (household), or village (cluster) level 
provided some information on the variability in human 
and vector behaviour is available a priori to account for 
differences between villages [68]. Other methods com-
monly used for estimating mosquito data are simulation 
based methods, which detect true effect sizes for speci-
fied densities of mosquitoes biting indoors or outdoors 
as well as the expected statistical uncertainties [69]. 
Regardless of the method, data used for the sample size 
calculation should be obtained locally.

Discussion
Ongoing transmission of malaria is a direct result of 
the overlap between human and vector behaviours, 
and intervention access and use. It is essential to look 
at these pieces together for a more complete picture of 
malaria exposure. This information can inform selection 
of appropriate vector control tools for implementation 
in a particular scenario, guide prioritization of interven-
tions in resource-constrained environments, and allows 
for monitoring of temporal changes in performance of 
interventions that may be influenced by human and/or 
vector behaviour. For example, given the Kenya example 
illustrated in Figs.  1 and 2, programmes might wish to 
focus on indoor-oriented interventions to further reduce 
the indoor nighttime exposure to An. arabiensis. With 
increasing resistance to pyrethroids reported among 
malaria vectors throughout sub-Saharan Africa, con-
tinued indoor biting despite high coverage of ITNs may 
indicate a need to distribute piperonyl butoxide (PBO) or 
next generation nets. Likewise, monitoring would pro-
vide insights into to whether the proportion of exposure 
to vector bites occurring outdoors is stable or changing 
over time, as even small increases in outdoor exposure 
have the potential to impact transmission dynamics [12]. 
In other contexts, exposure patterns may point to the 
need for outdoor interventions to protect people when 
outdoors and awake, or to the importance of strengthen-
ing behaviour change interventions to increase ITN use 
during sleeping hours.

Longitudinal data across seasons can highlight the 
impact of seasonal variation in vector and/or human 
behavioural data. For example, in some contexts, people 
may spend more time outside when the weather is hot, 
compared to when the weather is cool or rainy [49, 70]. 
Outdoor sleeping and large-scale socio-cultural events 
may also increase during this time and sleeping patterns 
may differ during planting and harvesting seasons [49, 
70]. ITN use can also vary seasonally due to factors such 
as heat, mosquito density, and perceived malaria risk 
[71]. Disaggregation of these indicators by age and sex 
can help programmes to further target interventions by 
demographic group, where needed. For example, in some 
settings, adolescent and adult males spend more time 
outdoors at night, are more likely to engage in nighttime 
livelihood activities, and more likely to sleep outdoors 
[11, 49, 70, 72]. These socio-demographic factors should 
be considered in combination with biological factors 
such as transmission intensity, vector density, and EIR 
when interpreting the data and considering how addi-
tional interventions could be targeted.
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The approach presented in this paper provides 
improved estimates of biting risk by accounting for the 
availability of human hosts indoors and outdoors as well 
as the protection provided by an ITN or other personal 
protection measures. Beyond biting risk, there are wide-
ranging applications for this approach. The key param-
eter values estimated by considering human-vector 
interaction can be used as input values and/or to validate 
host-vector interaction-based models, with the potential 
to improve their prediction accuracy [9, 73–76]. Trans-
mission modeling integrates metrics that describe mos-
quito and human interaction, net use and IRS coverage, 
to holistically determine the efficacy of vector control 
interventions and the corresponding probable epidemio-
logical impact [75–78]. These models make assumptions 
about the exposure to infectious bites that remains after 
deploying ITNs or IRS to a community that are already 
based on data such as those outlined above. Therefore, 
improving the quality and quantity of these data can help 
refine transmission and statistical model predictions of 
public health impact [1, 79].

Previous work has highlighted the importance of het-
erogeneity in entomological inoculation rates for malaria 
transmission [80] as well as the subsets of humans and 
mosquitoes contributing most to transmission [81]. The 
changes suggested for the collection of routine data that 
are made here will not directly address how heterogene-
ity in exposure risk within and between individuals across 
nights might affect malaria burden or control efforts. 
When possible, the suggested practices for collection of 
routine data should be implemented in a manner that 
allows these indicators to be directly linked to epidemio-
logical outcomes like malaria incidence and prevalence, 
so that the importance of such underlying heterogenei-
ties in exposure risk and intervention suitability can be 
better understood.

Further, while the approach presented here is useful for 
measuring patterns of human exposure to malaria vec-
tors, complementary qualitative data is needed to charac-
terize relevant nighttime activities, sleeping patterns, and 
intervention use in greater depth, to better understand 
groups that may be at higher risk, as well as to identify 
barriers and facilitators to malaria prevention in differ-
ent contexts [49, 70, 82]. This information can be used to 
guide selection and deployment of context-appropriate 
interventions.

Conclusions
Collecting and integrating a minimum set of human 
behavioural data elements–the proportion of the human 
population indoors, asleep, and using an ITN through-
out the night–with hourly indoor and outdoor mosquito 

biting rates can provide a more accurate measure of 
when and where people are at risk and how best to pro-
tect them. This information can help to guide National 
Malaria Control Programmes in deploying interven-
tions targeting specific vector and human behaviours and 
inform target product profiles for new tools [26]. If col-
lected and used consistently, the critical data elements 
and indicators presented in this article can contribute 
to an improved understanding of how malaria transmis-
sion persists in the context of current interventions and 
how exposure patterns may change as new vector control 
tools are introduced, as well as the potential impact and 
limitations of these tools. This article is intended to con-
solidate understanding around work on this topic to date 
and provide a consistent framework for building upon it. 
Additional work is needed to address remaining ques-
tions, including further development and validation of 
methods for entomological and human behavioural data 
collection and analysis.
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