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Abstract 

Background:  Malaria is a parasitic disease that produces significant infection in red blood cells. The objective of this 
study is to investigate the relationships between factors affecting the penetration of currently available anti-malarials 
into red blood cells.

Methods:  Fifteen anti-malarial drugs listed in the third edition of the World Health Organization malaria treatment 
guidelines were enrolled in the study. Relationship analysis began with the prioritization of the physicochemical 
properties of the anti-malarials to create a multivariate linear regression model that correlates the red blood cell 
penetration.

Results:  It was found that protein binding was significantly correlated with red blood cell penetration, with a nega-
tive coefficient. The next step was repeated analysis to find molecular descriptors that influence protein binding. The 
coefficients of the number of rotating bonds and the number of aliphatic hydrocarbons are negative, as opposed to 
the positive coefficients of the number of hydrogen bonds and the number of aromatic hydrocarbons. The p-value 
was less than 0.05.

Conclusions:  Anti-malarials with a small number of hydrogen bonds and aromatic hydrocarbons, together with a 
high number of rotatable bonds and aliphatic hydrocarbons, may have a higher tendency to penetrate the red blood 
cells.
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Background
Malaria is an infectious disease generated by Plasmo-
dium spp., which continues to be a public health problem 
in Thailand. The 2018 Thai guidelines for the treatment 
of malaria recommend artemisinin-based combination 
therapy as the first-line regimen [1]. Currently, the first-
generation artemisinin derivatives, including artemisinin, 
artemether, arteether, artesunate, and dihydroartemisinin, 
are still widely used [2]. Each derivative penetrates the red 

blood cells differently and has a distinctive ability to kill 
malaria parasites [3, 4]. This study aims to determine the 
factors that confer a different capability to enter the red 
blood cells. Therefore, we selected 15 anti-malarial drugs 
according to the World Health Organization (WHO) 
malaria treatment guidelines for this study [5]. These 
include artemisinin, dihydroartemisinin, artemether, 
arteether, artesunate, chloroquine, mefloquine, pri-
maquine, amodiaquine, piperaquine, quinine, sulfadoxine, 
pyrimethamine, doxycycline, and proguanil. The screening 
procedures here identified the three most influential phys-
icochemical parameters that could affect erythrocyte pen-
etration. Information obtained from this study would be 
beneficial for the development of new anti-malarial drugs 
that are more effective in penetrating red blood cells.
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Methods
Data collection
The WHO’s malaria treatment guidelines recommend 
15 anti-malarial drugs for first-line malaria treatment. 
Structures and molecular weights were mostly retrieved 
from the PubChem database [6, 7]. The structures were 
downloaded in InChI and SMILES formats, which were 

more convenient for molecular descriptor calculation. 
Protein binding, water solubility, and red blood cell to 
plasma drug concentration ratio were gathered from var-
ious sources as shown in Table 1. These parameters were 
converted into numeric data for statistical analysis. The 
charge state properties of drugs and the acid–base char-
acteristics were not explicitly described in the learning 

Table 1  Physicochemical parameters of anti-malarial drugs

RBC, red blood cell

Drug Molecular weight (g/
mol)

RBC ratio LogP [8] Protein binding (%) Water 
solubility 
(mg/L)

Amodiaquine 355.8 [6] 1.313 [7] 5.1792 92 [9] 2.83 [6]

Arteether 312.41 [6] 0.23 [10] 3.2309 78.7 [11] 1700 [12]

Artemether 298.38 [6] 0.28 [10] 2.8408 95.4 [6] 12.1 [6]

Artemisinin 282.34 [6] 0.49 [10] 2.3949 82.5 [13] 51.9 [14]

Artesunate 384.18 [6] 0.71 [10] 2.6024 88 [15] 56.2 [6]

Chloroquine 319.88 [6] 4.8 [16] 4.8106 52.5 [6] 0.14 [6]

Dihydroartemisinin 284.35 [6] 0.52 [10] 2.1867 82 [17] 3160 [18]

Doxycycline 444.44 [6] 0.37 [19] 0.5458 90 [20] 630 [6]

Mefloquine 378.32 [6] 2.8 [21] 4.4479 98 [6] 6.212 [6]

Piperaquine 535.52 [6] 1.5 [22] 5.4241 97 [23] 0 [24]

Primaquine 259.35 [6]] 1 [25] 2.7827 75 [26] 1300 [6]

Proguanil 253.73 [20] 4.9 [27] 2.209 75 [20] 156 [20]

Pyrimethamine 248.71 [6] 0.42 [28] 2.3542 87 [29] 121 [6]

Quinine 324.42 [20] 1.89 [30] 3.1732 70 [20] 334 [20]

Sulfadoxine 310.33 [6] 0.163 [31] 0.8768 90 [32] 296 [20]

Table 2  Molecular descriptors of anti-malarial drugs

Rot, number of rotatable bonds; HBA, number of hydrogen bond acceptors; HBD, number of hydrogen bond donors; AliCarbo, number of aliphatic carbocycles; 
AliHet, number of aliphatic heterocycles; AroCarbo, number of aromatic carbocycles; AroHet, number of aromatic heterocycles; and SatCarbo, number of saturated 
carbocycles

Drug Rot HBA HBD Ali carbo Ali het Aro carbo Aro het Sat carbo

Amodiaquine 6 4 2 0 0 2 1 0

Arteether 2 5 0 1 4 0 0 1

Artemether 1 5 0 1 4 0 0 1

Artemisinin 0 5 0 1 4 0 0 1

Artesunate 4 7 1 1 4 0 0 1

Chloroquine 8 3 1 0 0 1 1 0

Dihydroartemisinin 0 5 1 1 4 0 0 1

Doxycycline 2 9 7 3 0 1 0 1

Mefloquine 2 3 2 0 1 1 1 0

Piperaquine 6 6 0 0 2 2 2 0

Primaquine 6 4 2 0 0 1 1 0

Proguanil 2 2 5 0 0 1 0 0

Pyrimethamine 2 3 3 0 0 1 1 0

Quinine 4 4 1 0 3 1 1 0

Sulfadoxine 5 7 2 0 0 1 1 0
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model, but implicated in the hypothesis as LogP and pro-
tein binding, which were included in the model and sub-
ject to the charge and acid–base characteristics of drugs. 
There is also a possibility of active drug transporters, but 
the information is sparse and limited; therefore, this fea-
ture was not included in the model.

Molecular descriptor calculation
Chemical structure, which is a graphical notation of the 
compound, is complicated to use in mathematical cal-
culations. To make computation feasible, a molecular 
descriptor is created. A molecular descriptor is a numeri-
cal notation associated with the chemical constitution; it 
is used in machine learning for correlation calculations 
for a compound regarding physical properties and bio-
logical activities. LogP, Number of rotatable bonds (Rot), 
number of hydrogen bond acceptors (HBA), number of 
hydrogen bond donors (HBD), number of aliphatic car-
bocycles (AliCarbo), number of aliphatic heterocycles 
(AliHet), number of aromatic carbocycles (AroCarbo), 
number of aromatic heterocycles (AroHet), and num-
ber of saturated carbocycles (SatCarbo) were calculated 
using a python package RDKit [8] as shown in Table 2.

Data analysis
Several independent variables, including physicochemi-
cal properties and chemical descriptors, were retrieved. 
Using all variables to fit the model might lead to over-
fitting. Variables were selected based on relative impor-
tance, which was calculated using the relaimpo package 
in R programming language [33] for each independent 
variable. The relative importance is a comparative score 
among independent variables themselves to rank the 
effect of changing the variables to the right prediction.

An extreme gradient boosting tree regression, a non-
linear regression method from Extreme Gradient Boost-
ing (XGBoost) library [34], was used to describe the 
relationship a drug to its red blood cell to plasma drug 
concentration ratio. A non-linear regression method was 
chosen to challenge with a non-linear property of phar-
macokinetic distribution processes, which might be a 
part of the relationship between physicochemical proper-
ties of the drug and red blood cell distribution. The first 
model was computed using relative-importance-selected 
physicochemical properties as independent variables 
and red blood cells to plasma drug concentration ratio 
as the dependent variable. The model was optimized 
using a black-box optimization method implemented in 
the Optuna framework [35] objected to mean squared 
error (MSE). The optimized model was evaluated using 
a permutation test [36] with five k-fold for 1000 rounds 
before fitting. The fitted extreme gradient boosting tree 
regression model was further analysed using a SHapley 

Additive exPlanations (SHAP) algorithm [37] for unveil-
ing relationship of each independent variable to the 
dependent variable.

A linear regression model was used to describe the 
relationship of molecular descriptors of anti-malarial 
drugs to its protein binding. Before fitting the model, a 
boxplot and a correlation plot were constructed, and 
independent variables were tested for normality using 
the Shapiro–Wilks test. The model was fitted into mul-
tiple linear regression models, as shown in Eq.  1 by lm 
function. The statistical analyses were performed using 
R version 3.4.0 [38]. The second model was trained using 
relative-importance-selected molecular descriptors of 
anti-malarial drugs as independent variables and protein 
binding as dependent variables to elucidate the struc-
tural features and relationships among them. Multiple 
R-squared, adjusted R-squared, and F-statistics were cal-
culated by lm function after the model was fitted.

Equation  1, The multiple linear regression model. Y 
represents an independent variable. β0 represents an 
intercept. βi represents a regression coefficient. ε repre-
sents error.

Results
Study on the relationships between factors influencing 
the red blood cell penetration of anti‑malarial drugs
From the important factors analysis, protein binding, 
logP, water solubility, and molecular weight were consid-
ered as the most important factors and used as a feature 
set for extreme gradient boosting model construction. 
The model was optimized, then the permutation test 
with five-fold validation was performed. The average 
MSE and R-squared were 1.90 and 0.27, with p-0.037 
and 0.009, respectively, showed a statistically significant 
model. From a summary plot from the SHAP algorithm, 
protein binding was shown to be the most important fac-
tor for red blood cell penetration properties prediction. 
The higher value of protein binding impacts lowering the 
drug red blood cell/plasma ratio, as shown in Fig. 1.

Study of the relationships between the molecular 
descriptors affecting protein binding
From the important factors analysis, the number of rotat-
able bonds was the most important, followed by the 
number of hydrogen bond acceptors. Then, testing for 
the cross-validation and statistical significance of the cor-
relation coefficients showed that the number of rotatable 
bonds, hydrogen bond acceptors, aliphatic hydrocarbons, 

(1)Y = β0 +

n∑

i=1

βixi + ε
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and aromatic hydrocarbons were significant factors cor-
related with protein binding as shown in Table 3.

Discussion
Machine learning is a powerful approach that widely 
used in many fields in the sciences for finding valuable 
information from data. The aims of a machine learning 
model development can be both to build a robust predic-
tive model and to explain a relationship of features to out-
comes. To create a predictive model needs a vast dataset 
to be learned by the model. While the anti-malarial drug 
is orphan, so the data of the drug is limited. Thus, the 
objective of this analysis was to investigate features that 
could involve drug-red blood cell partition, not to build a 
robust predictive model due to a limitation of data.

From the extreme gradient boosting regression of 
anti-malarial drugs and their abilities in red blood cell 
penetration, the R-squared was 0.27. Also, the multiple 

linear regression of anti-malarial drugs, and their abilities 
in protein binding Adjusted R-squared was 0.521. These 
could illustrate that the predictive power of the model is 
incompetent. However, we can find the essential feature 
protein binding and some statistically significant chemi-
cal descriptors from the model, which demonstrate the 
relationship of them to the drug-red blood cell partition. 
This conclusion might lead to new potential substances 
that can protect against malaria in the future.

According to the analysis of factors affecting penetra-
tion of 15 anti-malarial drugs into red blood cells, we 
found that protein binding dominantly affects the pen-
etration. Low protein binding causes an increased level 
of free drug in plasma, allowing the drug to distribute 
and penetrate into red blood cells. This finding is con-
sistent with the hypotheses in previous studies of dif-
ferent drugs. A study of cyclosporin A revealed that the 
level of free drug was directly related to the concentra-
tion of the drug in red blood cells, in similar manner to 
another study of phenytoin [39–41]. Moreover, analysis 
of molecular descriptors affecting protein-binding prop-
erty showed that the number of rotatable bonds, hydro-
gen bond acceptors, aliphatic hydrocarbons and aromatic 
hydrocarbons was significantly related to the protein-
binding property of the drug. This property decreased 
with a lack of hydrogen bond acceptors and aromatic 
hydrocarbons; on the other hand, it increased with a lack 
of rotatable bonds and aliphatic hydrocarbons.

Approximately 50% of the protein in plasma is albu-
min. This protein plays an important role in binding to 
unbound drugs in plasma. There are two major bind-
ing sites in the albumin structure. The first site tends 
to fit with large drug molecules, while the other one is 
less flexible and stereo specifically bound to the drug 
[41]. It is implied that the drug with large size and less 

Fig. 1  SHAP value presenting the impact of each feature to drug red blood cell/plasma ratio The feature on the top is the highest important 
feature for the prediction, and spot color is represent feature value. The positive SHAP value shows the impact of the feature on increasing of the 
dependent variable in the prediction

Table 3  Multiple linear regression of  anti-malarial drugs 
and their abilities in protein binding

Protein binding = − 0.047 × Rotatable bond + 0.052 × Hydrogen 
bond acceptor–0.148 × Aliphatic hydrocarbon + 0.183 × Aromatic 
hydrocarbon + 0.185 × Saturated hydrocarbon + 0.599

Residual standard error: 0.083 on 9 degrees of freedom

Multiple R-squared: 0.692, Adjusted R-squared: 0.521

F-statistic: 4.05 on 5 and 9 DF, p-value: 0.033 *

* Significance value at 0.05

Parameters Estimate SE t-value p-value

(Intercept) 0.599 0.098 6.123 0.000174 *

Rotatable bond − 0.047 0.014 − 3.381 0.00811 *

Hydrogen bond acceptor 0.052 0.020 2.584 0.029 *

Aliphatic hydrocarbon − 0.148 0.063 − 2.337 0.044 *

Aromatic hydrocarbon 0.183 0.072 2.517 0.033 *

Saturated hydrocarbon 0.185 0.142 1.297 0.227
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flexibility has higher ability to bind to a protein. In this 
study, a molecule containing a higher number of rotat-
able bonds had less ability to bind to plasma proteins, as 
the molecule was flexible. The number of hydrogen bond 
acceptors is directly related to protein-binding property; 
thus, the fewer hydrogen bond acceptors, the higher the 
red blood cell penetration. The study of Samari et  al. 
found that Van der Waals forces and hydrogen bonds 
were dominant in the binding between amodiaquine 
and albumin in plasma [42]. The results presented here 
are also consistent with a previous study which found 
that drugs with a low tendency to create hydrogen bonds 
had increased penetration into red blood cells [43]. As 
for the number of aliphatic and aromatic hydrocarbons, 
molecules with a high number of aliphatic hydrocarbons 
and a low number of aromatic hydrocarbons would have 
decreased protein-binding property, facilitating penetra-
tion into red blood cells. This concept was mentioned in 
a previous study; a drug containing not more than two 
aromatic hydrocarbons will have more unbound drug in 
plasma than a drug containing more than two aromatic 
hydrocarbons. It will also tend to bypass metabolism in 
the liver, leading to high concentration of the drug in 
plasma [44].

In terms of pharmacokinetics and pharmacodynamics, 
the efficacy of an antimicrobial drug generally depends 
on its concentration and duration of exposure. Likewise, 
the efficacy of artemisinin derivatives was most related 
to its maximum concentration in plasma [23]. More 
unbound drug in the plasma would be a factor that could 
lead to a higher concentration of the drug at the targeted 
site, which for an anti-malarial drug is the red blood cell. 
Accumulation of the drug in red blood cells increased its 
half-life and consequently increased the efficacy of the 
drug actions. In a practical aspect, anti-malarial drugs 
containing higher numbers of rotatable bonds and ali-
phatic hydrocarbons, and lower numbers of hydrogen 
bond acceptors and aromatic hydrocarbons, would have 
less protein-binding property. Therefore, more drug will 
penetrate through the red blood cells, facilitating its 
pharmacodynamic activities.

Conclusions
The most influential physicochemical factor for the 
penetration of anti-malarial drugs into red blood cells 
is protein binding. The less a drug is bound to protein, 
the more it is available in free form, which can penetrate 
into the red blood cell. For molecular descriptors affect-
ing protein binding, drugs with a small number of hydro-
gen bond acceptors and aromatic hydrocarbons, together 
with a high number of rotatable bonds and aliphatic 
hydrocarbons, may have a higher amount of free drug in 
the plasma available to penetrate into the red blood cell.
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