
Zhao et al. Malar J          (2020) 19:281  
https://doi.org/10.1186/s12936-020-03354-x

RESEARCH

Molecular surveillance for drug resistance 
markers in Plasmodium vivax isolates 
from symptomatic and asymptomatic infections 
at the China–Myanmar border
Yan Zhao1†, Lin Wang1†, Myat Thu Soe2, Pyae Linn Aung2, Haichao Wei1, Ziling Liu1, Tongyu Ma1, 
Yuanyuan Huang1, Lynette J. Menezes3, Qinghui Wang1, Myat Phone Kyaw2, Myat Htut Nyunt4, Liwang Cui3* 
and Yaming Cao1* 

Abstract 

Background:  In the Greater Mekong sub-region, Plasmodium vivax has become the predominant species and 
imposes a major challenge for regional malaria elimination. This study aimed to investigate the variations in genes 
potentially related to drug resistance in P. vivax populations from the China–Myanmar border area. In addition, this 
study also wanted to determine whether divergence existed between parasite populations associated with asympto-
matic and acute infections.

Methods:  A total of 66 P. vivax isolates were obtained from patients with acute malaria who attended clinics at the 
Laiza area, Kachin State, Myanmar in 2015. In addition, 102 P. vivax isolates associated with asymptomatic infections 
were identified by screening of volunteers without signs or symptoms from surrounding villages. Slide-positive 
samples were verified with nested PCR detecting the 18S rRNA gene. Multiclonal infections were further excluded 
by genotyping at msp-3α and msp-3β genes. Parasite DNA from 60 symptomatic cases and 81 asymptomatic infec-
tions was used to amplify and sequence genes potentially associated with drug resistance, including pvmdr1, pvcrt-o, 
pvdhfr, pvdhps, and pvk12.

Results:  The pvmdr1 Y976F and F1076L mutations were present in 3/113 (2.7%) and 97/113 (85.5%) P. vivax isolates, 
respectively. The K10 insertion in pvcrt-o gene was found in 28.2% of the parasites. Four mutations in the two anti-
folate resistance genes reached relatively high levels of prevalence: pvdhfr S58R (53.4%), S117N/T (50.8%), pvdhps 
A383G (75.0%), and A553G (36.3%). Haplotypes with wild-type pvmdr1 (976Y/997K/1076F) and quadruple mutations 
in pvdhfr (13I/57L/58R/61M/99H/117T/173I) were significantly more prevalent in symptomatic than asymptomatic 
infections, whereas the pvmdr1 mutant haplotype 976Y/997K/1076L was significantly more prevalent in asympto-
matic than symptomatic infections. In addition, quadruple mutations at codons 57, 58, 61 and 117 of pvdhfr and 
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Background
Plasmodium vivax is the most geographically widespread 
Plasmodium species and also a cause of severe malaria 
[1–3]. Countries within the Greater Mekong Sub-region 
(GMS) have endorsed an ambitious plan to eliminate 
malaria by 2030 [4]. However, the proportion of malaria 
cases caused by P. vivax infection in Myanmar has 
increased steadily since 2012, especially in border areas 
[5]. Several features of P. vivax, including the formation 
of hypnozoites, the low density of infection, and the early 
production of gametocytes favor continuous transmis-
sion. Plasmodium vivax infections from asymptomatic 
carriers as a potential silent reservoir for transmission 
are common in both high- and low-endemic areas of 
Myanmar [6, 7]. Previous reports of asymptomatic Plas-
modium falciparum infections carrying genes potentially 
associated with drug resistance suggest a possible spread 
of drug-resistant parasites in Myanmar [8, 9]. However, 
surveys of P. vivax drug resistance are scant because most 
drug resistance studies have focused on P. falciparum. 
Thus, monitoring the emergence and spread of P. vivax 
drug resistance, especially among asymptomatic carriers, 
is critical to achieve the goal of malaria elimination in the 
GMS.

Chloroquine (CQ) and primaquine (PQ) combination 
has been the frontline therapy for treating uncompli-
cated P. vivax cases. Plasmodium vivax resistance to CQ 
was first reported by Papua New Guinea in 1989 [10]. 
In the GMS, there have been sporadic reports of effi-
cacy studies suggestive of emergence of CQ resistance 
(CQR) [11–13]. Two recent studies at the China–Myan-
mar border have demonstrated the declining efficacy of 
CQ against P. vivax and the potential emergence of drug 
resistance in this parasite [14, 15]. Although sulfadoxine-
pyrimethamine (SP) was rarely used to treat P. vivax, 
the substantial selective pressure exerted by the drug is 
thought to have continued during treatment of P. vivax 
and P. falciparum mixed-strain infections, resulting in 
the emergence of high-grade antifolate resistance in P. 
vivax populations [16]. Molecular surveillance stud-
ies indicated that P. vivax populations in southwestern 
Yunnan Province of China bordering Myanmar may be 
highly resistant to SP [17]. Because artemisinin-based 

combination therapy (ACT) is also used to treat mixed-
species infections [18, 19], P. vivax may have been under 
similar drug selective pressure as P. falciparum.

Currently, the molecular mechanisms underlying CQR 
remain unknown. It has been proposed that P. vivax CQR 
may involve similar molecular mechanisms as in P. falci-
parum. Multidrug resistance 1 gene (pvmdr1) and puta-
tive transporter protein CG10 gene (pvcg10 or pvcrt-o), 
orthologous to pfmdr1 and pfcrt genes, respectively, have 
been suggested as possible genetic markers for CQR 
[20, 21]. However, the first survey of the pvcrt-o gene in 
clinical isolates including treatment failure cases failed to 
identify an association between in vivo CQR with amino 
acid changes of pvcrt-o, suggesting the mechanism of 
CQR in P. vivax may be different from that in P. falcipa-
rum [22]. The K10 insertion in the first exon of pvcrt-o 
was the most common but also variable in different para-
site populations [20, 23, 24], though it does not appear to 
correlate with CQR. Analysis of pvcrt-o mutant isoforms 
in yeast suggests that at least some pvcrt mutations may 
alter P. vivax sensitivity to CQ [25]. Whereas increased 
expression or copy number of pvcrt-o was correlated with 
in vivo CQR in South America [26, 27], such a correlation 
was not identified in Papua Indonesia, where the level of 
CQR is high [28]. Recently, using a genetic cross and link-
age mapping, upregulated pvcrt expression was identified 
as a mechanism of CQR [29]. In P. falciparum, polymor-
phisms in codons 86, 184, 1034, 1042 and 1246 of the 
pfmdr1gene were reported to be associated with CQR, 
which correspond to respective positions 91, 189, 1071, 
1079 and 1291 in pvmdr1 [21]. In pvmdr1, in vitro stud-
ies identified the Y976F mutation as a possible marker for 
CQR in P. vivax [20, 30], whereas other studies did not 
identify such an association [31–34]. Similarly, whereas 
pfmdr1 gene amplification was associated with resistance 
to mefloquine (MQ) in Thailand [30], increased expres-
sion of pvmdr1 and pvcrt-o was associated with CQR in 
Brazil [26]. Altogether, the roles of pvcrt-o and pvmdr1 
in CQR in P. vivax are still not resolved [35]. Mutations 
in dihydrofolate reductase (pvdhfr) and dihydropteroate 
synthase (pvdhps) have been associated with the altered 
clinical response to SP. F57L, S58R, T61M and S117N 
in pvdhfr are linked to pyrimethamine resistance [19, 

double mutations at codons 383 and 553 of pvdhps were found both in asymptomatic and symptomatic infections 
with similar frequencies. No mutations were found in the pvk12 gene.

Conclusions:  Mutations in pvdhfr and pvdhps were prevalent in both symptomatic and asymptomatic P. vivax infec-
tions, suggestive of resistance to antifolate drugs. Asymptomatic carriers may act as a silent reservoir sustaining drug-
resistant parasite transmission necessitating a rational strategy for malaria elimination in this region.

Keywords:  Plasmodium vivax, Asymptomatic infection, Symptomatic infection, Drug resistance, Molecular markers, 
Northeast Myanmar
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36–39], while S382A/C, A383G, and A553G in pvdhps 
are responsible for sulfadoxine resistance [40]. Mutations 
in the propeller region of P. falciparum kelch 13 (pfk13) 
gene are the main genetic marker for artemisinin resist-
ance [41]. It is logical to determine whether artemisinin 
drugs have imposed similar selective pressure on the 
pfk13 ortholog on chromosome 12 of P. vivax (pvk12) 
[42–44].

Drug resistance affects the fitness and virulence of the 
malaria parasites [45]. This has been demonstrated in P. 
falciparum using in  vitro growth competition [46, 47] 
and inferred from the reversion of resistance-mediating 
mutations to wild type (WT) in parasite populations 
after withdrawal of the drug [48]. Since less fit parasites 
are presumably to produce infections with lower parasi-
taemia, drug resistance may also affect the clinical pres-
entations of the disease. Some mutations in pfcrt and 
pfmdr1 were found to have higher prevalence in children 
with asymptomatic parasitaemia than those with para-
sitaemia and fever [49]. Similarly, in the GMS, pfmdr1 
amplification was more prevalent in subclinical isolates 
than clinical isolates [50]. Under the same premise, muta-
tions mediating CQR in P. vivax may have differential 
prevalence in asymptomatic and symptomatic infections.

To test this hypothesis and to obtain more comprehen-
sive information of polymorphisms in candidate drug 
resistance genes in P. vivax in the China–Myanmar bor-
der area, P. vivax parasites from asymptomatic and acute 
infections were genotyped at the pvmdr1, pvcrt-o, pvdhfr, 
pvdhps and pvk12 genes.

Methods
Study sites and samples
Samples were collected in 2015 in Laiza area of Waing-
maw Township, Kachin State, Myanmar, located at the 
China–Myanmar border. This area has perennial trans-
mission of P. vivax, which has become the predominant 
parasite species, and caused malaria outbreaks in recent 
years [5, 51]. Passive case surveillance (PCS) was con-
ducted at Laiza hospital and clinics serving the camps of 
internally displaced people (IDP), where malaria patients 
presenting with malaria-related signs and symptoms were 
diagnosed by microscopy and treated. Dried blood spots 
(DBS) on filter paper containing 200–300 μL of periph-
eral blood were obtained by a standard finger-prick 
method, and thick and thin blood smears were prepared 
to identify parasite species and estimate parasitaemia.

Parasites were identified microscopically by two expe-
rienced microscopists. Three seasonal cross-sectional 
surveys (CSSs) were carried out in March, July and 
November in two IDP camps and surrounding villages 
through home visits that involved 5371, 4467 and 3997 

participants without any signs or symptoms of malaria, 
respectively. DBS on filter paper were prepared and 
stored at − 20  °C for molecular analysis. At the time 
of the surveys, demographic information was obtained 
using a structured questionnaire. Parasite density was 
calculated by quantifying the number of parasites in 
500 white blood cells (WBCs) on thick blood smears 
assuming 8000 WBCs/µL of blood [52]. This study was 
reviewed by institutional review boards of Pennsylvania 
State University and China Medical University. Written 
informed consent/assent was obtained from all malaria 
patients and participants.

DNA extraction and molecular identification of P. vivax 
mono‑infection
Genomic DNA was extracted from DBS using the 
QIAamp DNA minikit (Qiagen, Hilden, Germany). 
Plasmodium vivax infection was confirmed by nested 
polymerase chain reaction (PCR) targeting the 18S 
ribosomal RNA gene as described previously [53]. 
Then, the P. vivax parasites were genotyped using PCR 
and restriction fragment length polymorphism (PCR/
RFLP) at two polymorphic antigenic markers, mero-
zoite surface protein-3α (msp-3α) [54, 55] and msp-3β 
[56]. Mixed and multiple infections were excluded, and 
only P. vivax monoclonal infections were used for gen-
otyping drug resistance genes.

PCR amplification for pvmdr1, pvcrt‑o, pvdhfr, pvdhps 
and pvk12 genes
Fragments of pvmdr1 (expected amplicon sizes are 
604  bp), pvcrt-o (327  bp), pvdhfr (755  bp), pvdhps 
(1259 bp) and pvk12 (1015 bp), which covered potential 
drug resistance associated mutations, were amplified 
by nested PCR using primers reported from previ-
ous studies [8, 42, 57, 58] (Additional file 1: Table S1). 
All reactions were carried out in a total volume of 
30 μL containing 19.4 μL water, 0.6 μL of each primer 
(10  pM), 1.8  μL of MgSO4 (25  mM), 0.6  μL of KOD-
Plus-Neo DNA polymerase (5  U/μL), 3  μL of dNTP 
mixture (10  mM each), and 3  μL of 10× PCR buffer 
following the manufacturer’s instructions (KOD 401, 
TOYOBO, Japan) with 1.0  μL (5–10  ng) of genomic 
DNA. The primary and nested PCR conditions for the 
five genes were the same: initial denaturation at 98  °C 
for 2 min; 35 cycles of 98 °C for 15 s, 56 °C for 30 s, and 
68 °C for 1.5 min; final extension of 68 °C for 5 min. The 
PCR products were resolved on a 1.2% agarose gel, and 
the sizes of the PCR products were determined using 
a 100-bp DNA ladder (3427A, TaKaRa, Japan). PCR 
products were stored at − 20 °C until sequencing.
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Sequence and statistical analyses
The nested PCR products were purified and sent to 
SinoGenoMax (Beijing, China) for sequencing using 
an ABI 3730XL DNA Analyzer. For sequence accuracy, 
all DNA fragments were sequenced for both strands. 
Nucleotide and amino acid sequences of pvmdr1, pvcrt-
o, pvdhfr, pvdhps and pvk12 were aligned using ClustalW 
implemented in MEGA7.0.26 with the following refer-
ence sequences from the Salvador I strain of P. vivax: 
pvmdr1 (PVX_080100), pvcrt-o (PVX_087980), pvd-
hfr (PVX_089950), pvdhps (PVX_123230) and pvk12 
(PVX_083080). The single nucleotide polymorphism 
(SNP) frequency data were analysed using SPSS Statis-
tics 22.0. Fisher’s exact test, Mann–Whitney U test and 
Student’s t test was used to determine statistical signifi-
cance (P < 0.05). Principal component analysis (PCA) was 
performed with ClustVis online program (https​://biit.
cs.ut.ee/clust​vis/) on the parasites associated with clini-
cal malaria and asymptomatic infections [59]. The gene 
sequences reported in this study were deposited in Gen-
Bank under accession numbers MT425613–MT425921.

Results
Characteristics of study populations
To compare P. vivax parasites present in asymptomatic 
and acute infections, CSSs and PCS were conducted 

in villages/IDP camps and malaria clinics, respectively. 
Microscopic examination of 13,835 blood smears in 
three seasonal CSSs identified, 102 asymptomatic P. 
vivax infections, which are defined as individuals with 
Plasmodium-positive blood smears but without any 
malaria-related symptoms at the time of examination 
and during the preceding week and the following week 
(Fig. 1). Nested PCR analysis excluded 15 negative sam-
ples and one P. vivax/P. falciparum mixed infection. 
Genotyping by PCR/RFLP of msp-3α and msp-3β genes 
further excluded 5 multiclonal infections, leaving 81 P. 
vivax isolates for genotyping drug resistance markers 
(Fig.  1). In addition, 66 clinical P. vivax infections diag-
nosed by microscopy were randomly selected from the 
2015 PCS samples. After excluding 6 multiple infections, 
60 P. vivax monoclonal clinical isolates were used for 
genotyping drug resistance markers (Fig. 1). For the sub-
jects with asymptomatic P. vivax infections, males and 
females were about equally present, and school age chil-
dren were predominant (Table 1). For patients with pat-
ent P. vivax infections, males and females were also about 
equally present, but the age was significantly older than 
those in the asymptomatic group. For those with acute 
malaria, about half of them were febrile (axillary temper-
ature ≥ 37.5 °C) at the time of presentation for care, and 
the majority of them (86.6%) had 1 and 2  days of fever 

Fig. 1  Flow chart of the monoclonal Plasmodium vivax isolates screening from asymptomatic and symptomatic populations

https://biit.cs.ut.ee/clustvis/
https://biit.cs.ut.ee/clustvis/
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history. As expected, parasite density in symptomatic 
patients was significantly higher than that in asympto-
matic infections (P < 0.001, Student’s t test).

Eighty-one asymptomatic and 60 symptomatic samples 
were used for PCR and sequencing analysis of pvmdr1, 
pvcrt-o, pvdhfr, pvdhps and pvk12 genes. The success 
rates were 57/81 (70.4%) pvmdr1, 52/81 (64.2%) pvcrt-
o, 61/81 (75.3%) pvdhfr, 41/81 (50.6%) pvdhps and 55/81 
(67.9%) pvk12 for asymptomatic samples; and 56/60 
(93.3%) pvmdr1, 51/60 (85.0%) pvcrt-o, 55/60 (91.7%) 
pvdhfr, 39/60 (65.0%) pvdhps and 55/60 (91.7%) pvk12 for 
symptomatic samples.

Pvmdr1 and pvcrt‑o genes
Mutations at codons 958, 976, 997 and 1076 in pvmdr1 
were observed in P. vivax isolates. The T958M muta-
tion was fixed in all parasite isolates and were not con-
sidered in analysis. The F1076L was present in 97/113 
(85.8%) parasites, with 52/57 (91.2%) and 45/56 (80.0%) 
in asymptomatic and clinical infections, respectively. In 
contrast, Y976F was found only in 3/56 (5.5%) of clini-
cal isolates (Additional file  2: Table  S2). Four pvmdr1 
haplotypes were identified, including the WT and three 
mutants (976F, 997R and 1076L) (Table  2). The haplo-
type 976Y/997K/1076L was the most prevalent (83.2% 
in total) in both asymptomatic and clinical isolates, with 
a significantly higher prevalence in asymptomatic than 
clinical infections (91.2% vs 75.0%, P = 0.021). In con-
trast, the prevalence of the WT was significantly lower in 
asymptomatic infections than that in clinical infections 
(1.8% vs 16.1%, P = 0.008) (Table 2).

More than 30% isolates carried the K10 insertion in the 
pvcrt-o gene. Mutations at codons 2 and 3 (T2I and I3V) 

were detected in a few clinical isolates but were absent 
in asymptomatic isolates (Additional file  2: Table  S2). 
WT was the most prevalent haplotype (68.0%), followed 
by K10 insertion (28.2%) among all the P. vivax isolates 
(Table 2).

Pvdhfr and pvdhps genes
For all isolates, mutations in pvdhfr at codons 13, 57, 
58, 61, 99 and 117 were present in 2/116 (1.7%), 42/116 
(36.2%), 62/116 (53.4%), 42/116 (36.2%), 31/116 (26.7%) 
and 59/116 (50.9%) isolates, respectively. I13L and F57L 
were absent in the isolates from asymptomatic popula-
tions (Additional file 2: Table S2). The top three mutations 
in clinical isolates were S58R (54.5%), T61M (38.2%) and 
S117T (38.2%), while in asymptomatic populations they 
were S58R (52.5%), S117T (41.0%) and T61M (34.4%), 
F57I (34.4%). Haplotype analysis of pvdhfr for all isolates 
revealed nine distinct allelic forms (Table  2), including 
the WT haplotype, haplotypes carrying a single muta-
tion (99S), double mutations (99S/117T and 58R/117N), 
triple mutations (57I/58R/61M), quadruple mutations 
(57L/58R/61M/117T and 57I/58R/61M/117T), and 
quintuple mutations (13L/57I/58R/61M/117T). A dele-
tion type (13I/57F/58S/61T/99H-117S/173I) was also 
identified. The prevalence of the quadruple mutant 
57L/58R/61M/117T differed significantly in frequency 
between the asymptomatic and clinical isolates (0% vs 
10.9%, P = 0.004). Interestingly, the quadruple mutant 
57I/58R/61M/117T was only observed in isolates from 
asymptomatic populations (Table 2).

For pvdhps gene, eight mutations were identified, 
including S382A/C, A383G, K512M/E, A553G, E571Q 
and A647V. Most of the isolates carried A383G (75.0%) 
and A553G (36.3%), and they were prevalent in both 
parasite populations. The K512M and E571Q muta-
tions were unique in P. vivax isolates from asympto-
matic populations, whereas S382C, K512E and A647V 
only presented in clinical isolates (Additional file  2: 
Table  S2). Haplotype analysis of pvdhps revealed eight 
distinct allelic forms (Table 2), including the WT haplo-
type, and haplotypes carrying a single mutation (383G), 
double mutations (383G/553G and 383G/571Q), tri-
ple mutations (382A/383G/553G, 383G/512M/553G 
and 383G/553G/647V), and quadruple mutations 
(382C/383G/512E/553G). Overall, those harbouring 
a single mutation A383G were the most prevalent hap-
lotype, present in 29/80 (36.3%) of clinical isolates. WT 
at 13/41 (31.7%) was the predominant haplotype in iso-
lates from asymptomatic parasites, followed by the single 
mutant haplotype with 29.3% frequency (Table 2).

Three different tandem repeat variations were found 
in the pvdhfr gene. Type 1 was identical to the Sal I 
reference sequence, type 2 had a H99S mutation, and 

Table 1  Characteristics of asymptomatic and symptomatic 
P. vivax infections

IQR interquartile range

*** Indicates P < 0.001
a  Mann–Whitney U test
b  Fever is defined as axillary temperature ≥ 37.5 °C
c  Student’s t test

Characteristics Asymptomatic Symptomatic

Number (% male) 81 (53.1) 60 (48.3)

Age [median (IQR)]a 14 (11–17) 23 (18–33)***

Fever on day 0 [N (%)]b 0 31 (51.7)

Days with fever [N (%)]

 1 0 26 (43.3)

 2 0 26 (43.3)

 ≥ 3 0 8 (13.4)

Parasites density (parasites/
µL) [mean (range)]c

339 (16–1648) 1485 (64–10,064)***
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Type 3 carried a deletion of six amino acids at positions 
98–103 (THGGDN) (Fig.  2a). Type 1 accounted for 
comparable prevalence in asymptomatic (34.0%) and 
symptomatic (40.0%) infections, respectively. The prev-
alence of Type 3 in asymptomatic isolates was higher 
than that in symptomatic infections, and vice versa for 
Type 2, albeit without statistically significant difference 
(Fig. 2b). Of note, Type 3 carried the S117N mutation 
rather than S117T.

For pvdhps sequences, six different tandem repeat 
variations were identified with a variable number of tan-
dem repeat unit G (E/D) (A/G/S) KLTN. Type 1, identi-
cal to the Sal I reference strain, was the most common 
in both asymptomatic (65.9%) and clinical (82.1%) infec-
tions. Other five types had different deletion or insertion 
of tandem repeat unit in different amino acids positions 
(Fig. 3a). Type 3 and Type 4 were found in both types of 
isolates. For other infrequent variants, Type 2 and Type 5 

only presented in asymptomatic populations, while Type 
6 was just observed in clinical isolates (Fig. 3b).

Pvk12 gene
Sequencing of pvk12 gene from 110 parasite isolates did 
not detect any mutations (data not shown).

PCA
This study further examined whether parasites popula-
tions from the symptomatic and asymptomatic pools 
were divergent at these potential resistance markers. 
There were 23 isolates of each population, for which all 
five genes were successfully sequenced. PCA of P. vivax 
isolates using combined SNPs in pvmdr1, pvcrt-o, pvd-
hfr and pvdhps from all 46 samples (Additional file  3: 
Table S3) showed that parasite populations from asymp-
tomatic and symptomatic parasite populations clus-
tered together (Fig.  4), indicating similarity of the two 

Table 2  Prevalence of pvmdr1, pvcrt-o, pvdhfr and pvdhps haplotypes in asymptomatic and symptomatic infections

The difference in the major haplotypes between asymptomatic and symptomatic infections was calculated by Fisher’s exact test. * P < 0.05, ** P < 0.01, *** P < 0.001
a  Mutant amino acids are shown in boldface
b  For pvmdr1, the fixed T958M was not considered
c  For pvcrt-o, _ indicates no K10 insertion

Genes (codons) Haplotypesa # of haplotypes/# of sequenced isolates (%)

Asymptomatic Symptomatic Total

pvmdr1 (976/997/1076)b YKF 1/57 (1.8) 9/56 (16.1)** 10/113 (8.8)

FKF 0 (0.0) 3/56 (5.4) 3113 (2.7)

YRF 4/57 (7.0) 2/56 (3.6) 6/113 (5.3)

YKL 52/57 (91.2) 42/56 (75.0)* 94/113 (83.2)

pvcrt-o (2/3/K10 insertion)c TI_ 37/52 (71.2) 33/51 (64.7) 70/103 (68.0)

TIK 15/52 (28.8) 14/51 (27.5) 29/103 (28.2)

TV_ 0 (0.0) 1/51 (2.0) 1/103 (1.0)

IIK 0 (0.0) 3/51 (5.9) 3/103 (2.9)

pvdhfr (13/57/58/61/99/117/173) IFSTHSI 1/61 (1.6) 0 (0.0) 1/116 (0.9)

IFST-SI 14/61 (23.0) 7/55 (12.7) 21/116 (18.1)

IFSTSSI 13/61 (21.3) 17/55 (30.9) 30/116 (25.9)

IFSTSTI 1/61 (1.6) 0/55 (0.0) 1/116 (0.9)

IFRT-NI 11/61 (18.0) 9/55 (16.4) 20/116 (17.2)

IIRMHSI 4/61 (6.6) 0 (0.0) 4/116 (3.6)

ILRMHTI 0 (0.0) 7/55 (10.9)*** 7/116 (6.0)

IIRMHTI 17/61 (27.9) 13/55 (23.6) 30/116 (25.8)

LIRMHTI 0 (0.0) 2/55 (3.6) 2/116 (1.7)

pvdhps (382/383/512/553/571/647) SAKAEA 13/41 (31.7) 7/39 (17.9) 20/80 (25.0)

SGKAEA 12/41 (29.3) 17/39 (43.6) 29/80 (36.3)

SGKGEA 8/41 (19.5) 11/39 (28.2) 19/80 (23.8)

SGKAQA 2/41 (4.9) 0 (0.0) 2/80 (2.5)

AGKGEA 3/41 (7.3) 2/39 (5.1) 5/80 (6.3)

SGMGEA 3/41 (7.3) 0 (0.0) 3/80 (3.8)

SGKGEV 0 (0.0) 1/39 (2.6) 1/80 (1.3)

CGEGEA 0 (0.0) 1/39 (2.6) 1/80 (1.3)
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populations. Analysis of SNPs from each gene separately 
showed similar results (data not shown 3). It is notewor-
thy that only five haplotypes were identified from the 23 
asymptomatic samples, indicating high prevalence of cer-
tain haplotypes.

Discussion
In Myanmar, CQR in P. vivax was reported as early as in 
the 1990s [12, 13]. Drug resistance in P. falciparum and 
P. vivax isolates of asymptomatic malaria carriers has 
also been reported in high- and low-endemic regions of 
Myanmar [8, 9]. Recently, along the China–Myanmar 
border, the therapeutic responses of P. vivax malaria to 
CQ treatment were declining [14, 15]. Thus, this study 
compared the potential markers for CQR and antifolate 
resistance in asymptomatic and symptomatic P. vivax 
infections from this region.

The molecular mechanisms underlying CQR are not 
well understood, but mutations in pvmdr1 and expres-
sion of pvcrt-o were implicated. For pvmdr1, the Y976F 
mutation has been reported in P. vivax isolates from 
many malaria-endemic regions around the world [60–
64], and is associated with a decrease in in  vitro sensi-
tivity to CQ [20]. In this study, the Y976F mutation was 
relatively rare, with 5.5% detected only in samples from 

symptomatic infections. This prevalence was much lower 
than that found in Cambodia (89%) [65] and Thailand 
(8–25%) [62]. The T985M mutation is fixed in all para-
site populations in Asia and it is not associated with 
CQR. Similarly, F1076L has not been found to be associ-
ated with CQR both in vivo and in vitro drug assays [66]. 
In this study, F1076L reached high prevalence of 85.8%, 
which was concordant with previous reports from other 
Asian areas including India, Thailand and Myanmar [23, 
60, 61]. The frequency of F1076L mutation in asympto-
matic infections in Laiza township was twice as much 
as that in Shwegyin township of Myanmar [8]. The sin-
gle mutation haplotype 976Y/997K/1076L was the most 
prevalent at the China–Myanmar border, similar to a pre-
vious report from India [60], but differed from a report 
from Yunnan, China, which showed WT as the dominant 
[67]. These geographical variations in pvmdr1 gene may 
suggest different drug selection pressure imposed on P. 
vivax population in these Asian countries.

The role of pvcrt-o in CQR is controversial. Analysis 
of pvcrt-o isoforms in yeast suggest that a single amino 
acid substitution (S249P) slightly increased CQ trans-
port [25], indicating a mild form of CQR. Other studies 
found that lysine (K) insertion at position 10 of pvcrt-o 
gene may be associated with CQR [20, 23]. This study 
observed a prevalence of 34% of K10 insertion in the 
pvcrt-o gene, higher than that found in India (9.4%) and 
Thailand (0%) [60–62], but lower than that detected in 
other regions of Myanmar (48.3–72.7%) [23]. A recent 
study showed correlation of CQR with increased expres-
sion of pvcrt [29], which could not be evaluated with the 
DBS samples. Continuous monitoring of clinical efficacy 
of CQ and candidate molecular markers including pvcrt-
o expression may be necessary to assess CQR in P. vivax 
populations in different parts of the GMS.

Results from this study suggest high-level resistance 
of the P. vivax parasites from the GMS to the antifolate 
drug SP. Resistance to antifolate drugs in P. falcipa-
rum and P. vivax was found to be associated with point 
mutations in dhps and dhfr [68]. For the pvdhfr gene, 
mutations at codons 50, 58, 117 and 173, corresponding 
to residues 51, 59, 108 and 164 in pfdhfr, confer resist-
ance to pyrimethamine [69]. Double mutations (S58R 
and S117N) were associated with a high level of resist-
ance in P. vivax, whereas quadruple mutations (F57L/I, 
S58R, T61M and S117T) were more likely associated 
with SP treatment failure [38, 70]. Here, the preva-
lence of double or quadruple mutations (50.7%) was 
much lower than that found along the Thailand border 
(100%) and other areas of Myanmar (71%–90%) [23, 
61], but much higher than what was found in southern 
China (9.2%) [71]. Asymptomatic isolates in this study 
showed a much lower prevalence of both the double 
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asymptomatic and acute infections along China–Myanmar border. a 
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and quadruple mutations than that found in southern 
Myanmar. Compared with the findings reported much 
earlier in Myanmar and Cambodia where double muta-
tions (S58R and S117N) accounted for 91.7% to 93.8% 
of the sequenced samples [36, 72], multiple mutations 
(more than 2) in the DHFR domain were more fre-
quently in the present study. This may be a warning 
sign of the growing resistance of P. vivax to pyrimeth-
amine over time in Southeast Asia.

Mutations at codons 382, 383, 512, 553 and 585 in 
pvdhps, corresponding to codons 436, 437, 540, 581 and 
613 in pfdhps, may confer resistance to sulfadoxine. A 
recent study confirmed that A383G was associated with 
sulfadoxine resistance than other mutations when exam-
ined in transgenic rodent parasites expressing PvHPPK-
DHPS [73]. In addition, the double mutations A383G 
and A553G that possibly cause a disruption in the sulf-
adoxine-binding site in P. vivax were similar to those in P. 
falciparum [40]. At the China–Myanmar border, A383G 
reached 75%. The prevalence of a haplotype with both the 
A383G and A553G mutations was 36.5%, obviously lower 
than at the Thai–Myanmar and–Cambodian borders 
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(61.2%), and in other endemic areas of Myanmar (73.5%) 
[23, 61].

For P. falciparum, triple mutations at codons 51, 59 and 
108 of pfdhfr and double mutations at codons 437 and 
540 of pfdhps are associated with SP treatment failures 
[74]. The combination of pvdhfr mutations at codons 57, 
58, 61 and 117 and pvdhps mutations at codons 383 and 
553 was identified in 13 (22%) P. vivax isolates, of which 6 
(46.2%) were from asymptomatic carriers. These findings 
suggest that highly resistant P. vivax parasites to SP were 
present among asymptomatic and symptomatic infec-
tions at the China–Myanmar border.

Tandem repeats are a unique feature present in the 
pvdhfr and pvdhps, but it is not clear whether polymor-
phisms in these repeat regions contribute to resistance 
to SP. Tandem repeat region variations were observed in 
both asymptomatic and symptomatic infections. Consist-
ent with previous studies, parasite isolates based on the 
pvdhfr repeat region were typically separated into three 
types [67, 75]. Type 1 tandem repeat variant was highly 
prevalent along with triple, quadruple or quintuple muta-
tions, and about half of Type 3 variant co-existed with the 
double mutations (58R/117N). This finding is consistent 
with that Type 1 and Type 3 are associated with increased 
resistance to SP [75–78]. It differed from the earlier 
findings in Cambodia where a large majority of isolates 
had two GGDN repeat units with double mutations 
(58R/117N) [72], indicating that P. vivax with antifolate 
resistance evolved independently in different regions of 
the GMS. For pvdhps gene, five types of tandem repeat 
variants were identified for the first time in this study. 
Similar to pvdhfr, the majority of pvdhps tandem repeat 
types co-existed with mutations conferring SP resistance. 
However, further studies are essential to clarify the rela-
tionship between these polymorphisms and P. vivax sen-
sitivity to SP.

PCA was used to explore if the parasite populations 
in symptomatic and asymptomatic infections could 
be differentiated based on the haplotypes of muta-
tions in the five candidate resistance genes. While this 
method may have limitations to illustrate the genetic 
relatedness of different parasite isolates, the analysis 
nonetheless showed that the two clusters largely over-
lapped. While this supports the notion that asympto-
matic infections are important reservoirs for sustaining 
continued transmission of the parasites, it also showed 
higher prevalence of certain haplotypes in asympto-
matic parasite population. For single-gene haplotypes, 
the WT pvmdr1 haplotype was significantly more prev-
alent in symptomatic patients than asymptomatic carri-
ers, whereas the 976Y/997K/F1076L haplotype showed 
the opposite. In P. falciparum, some mutations in the 

drug transporter genes were found to confer fitness 
costs [46, 47]. Although the effect of pvmdr1 mutations 
on parasite’s fitness is unknown, such differences in the 
prevalence of the WT and mutant alleles in asympto-
matic and symptomatic infections, which had lower 
and higher parasitaemias, respectively, implies that the 
F1076L mutation may be associated with a fitness loss 
in the parasites. This mutation varies greatly in different 
parasite populations [21, 31, 79, 80], and its functional 
importance for CQR remains to be formally tested. It is 
also noteworthy that although this study screened more 
than 13,000 blood samples for asymptomatic infec-
tions, only a limited number of slide-positive samples 
were identified and used in the analysis, thus limiting 
the sample size and power of the analysis. There were 
also differences in age distribution between the two 
groups, which further complicates the comparison as 
host immunity is correlated with age and exposure. 
Therefore, although this study provided baseline infor-
mation on candidate drug resistance genes in P. vivax 
in the China–Myanmar border region, the resistance 
mechanisms, except for antifolate resistance, demand 
future investigations.

Conclusion
All countries in the GMS have set an ultimate goal of 
eliminating malaria by 2030. One of the main chal-
lenges is the resilience of P. vivax parasites to control 
measures, evidenced by the increased proportions of 
P. vivax parasites in many areas of the GMS. Molecu-
lar analysis of five potential drug resistance markers in 
P. vivax from the China–Myanmar border area showed 
prevalence of mutations in pvmdr1, pvdhfr and pvdhps, 
suggesting resistance to antifolate drugs and possible 
CQ. The higher prevalence of certain mutant alleles in 
asymptomatic infections also suggests fitness cost of 
the mutations, underscoring their potential involve-
ment in drug resistance.
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