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Abstract 

Background:  In common with the majority of personal protective equipment and healthcare products, the ability 
for long-lasting insecticidal nets (LLINs) to remain in good physical condition during use is a key factor governing fit-
ness for purpose and serviceability. The inherent ability of a product to resist physical deterioration should be known 
in advance of it being used to ensure it has maximum value to both the end-user and procurer. The objective of this 
study was to develop a single performance metric of resistance to damage (RD) that can be applied to any LLIN prod-
uct prior to distribution.

Methods:  Algorithms to calculate RD values were developed based on consideration of both human factors and 
laboratory testing data. Quantitative reference forces applied to LLINs by users during normal use were determined 
so that aspirational performance levels could be established. The ability of LLINs to resist mechanical damage was 
assessed based on a new suite of textile tests, reflecting actual mechanisms of physical deterioration during normal 
household use. These tests quantified the snag strength, bursting strength, abrasion resistance and resistance to hole 
enlargement. Sixteen different unused LLINs were included in the analysis. The calculated RD values for all LLINs and 
the corresponding physical integrity data for the same nets retrieved from the field (up to 3 years of use) were then 
compared.

Results:  On a RD scale of 0 (lowest resistance) – 100 (highest resistance), only six of the sixteen LLINs achieved an RD 
value above 50. No current LLIN achieved the aspirational level of resistance to damage (RD = 100), suggesting that 
product innovation is urgently required to increase the RD of LLINs. LLINs with higher RD values were associated with 
lower hole damage (PHI) in the field when adjusted for normal use conditions.

Conclusions:  The RD value of any LLIN product can be determined prior to distribution based on the developed 
algorithms and laboratory textile testing data. Generally, LLINs need to achieve higher RD values to improve their 
ability to resist hole formation during normal use. Innovation in LLIN product design focused on the textile material 
should be actively encouraged and is urgently needed to close the performance gap.
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Background
In terms of reliability engineering, long-lasting insec-
ticidal nets (LLINs) should be capable of functioning 
under field conditions for 3 or more years, and resist 
failure during normal use by remaining in good physical 
condition [1]. However, it is well known that the actual 
service life of LLINs can fall markedly short of 3 years, 
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depending on prevailing circumstances. Whilst there 
have been numerous long-term studies monitoring the 
physical integrity and durability of LLINs using various 
methodologies [2–8], much less attention has been paid 
to the design of the LLIN product itself, and the inherent 
ability of products to resist damage. Therefore, at present, 
there is no single metric that reliably defines the inherent 
resistance to damage of a new LLIN before it is used.

Based on detailed laboratory analyses of used LLINs 
[9], distinct mechanisms of structural damage take place 
in LLINs that are common across different geographic 
regions and brands. Mechanical damage is the primary 
contributor to LLIN deterioration in normal use, both 
in terms of hole frequency and area. Of these mechani-
cal damage mechanisms, snagging is responsible for the 
initiation of the largest proportion of holes. Although 
such holes may be initially small in dimensions, they can 
potentially enlarge to form significantly larger holes over 
time. Collectively, tearing, abrasion and seam failure are 
also responsible for a large proportion of the hole area, 
and their underlying mechanisms of damage would be 
practically difficult to avoid during normal use of a LLIN 
product. Tears usually form as a result of the net first 
being snagged on a solid object, such as wooden mat-
tress material, and then when force is applied to pull it 
free, a tear is created. Abrasion occurs when two sur-
faces are rubbed against each other e.g. during washing 
or when the LLINs are tucked between the mattress and 
bedframe. Furthermore, forms of mechanical damage are 
recurrent across different geographical settings and are 
found in all knitted LLINs regardless of whether they are 
made of polyester (PET) or polyethylene (PE) [10, 11].

Studies have subsequently focused on developing tex-
tile testing methods for LLINs that relate to the actual 
damage sustained in the field [12]. Test method selec-
tion was based on identifying suitable test methods that 
accurately reflect the physical damage observed in LLINs 
analysed after use in the field [13]. Overall, four textile 
test methods based on existing or slightly modified ISO 
standards, have been proposed for LLINs to reflect actual 
modes of damage observed in the field. One of the pro-
posed methods, i.e. the bursting test, is already used in 
the specification of LLIN products [14]. The other three 
methods are snag strength, hole enlargement and abra-
sion resistance [12]. This suite of four laboratory textile 
test methods currently yields four separate quantitative 
values to represent the inherent resistance to damage of 
LLINs.

The aim of the present study was to develop a single 
quantitative metric to define the resistance to damage 
(RD) of a LLIN based on the same laboratory test data, 
but which also considered the question ‘how strong is 
strong enough?’. This formed the basis to develop a new 

algorithm for calculating RD for new LLINs that should 
assist with future innovation and the development of bet-
ter performing products.

Methods
Establishing real‐life forces
Over the course of normal use, LLINs accumulate physi-
cal damage that produce holes. For example, LLINs are 
frequently snagged on rigid objects, such as bits of wood, 
and when pulled by the user to free the snag, a force is 
generated. Little is known about the magnitude of the 
forces that are generated in such practical circumstances, 
and the levels required to induce filament breakages or 
create a tear. Simply stated, if the force measured in the 
lab under simulated conditions is greater than what can 
be normally generated by a human being in the field, then 
the LLIN can be expected to resist the accumulation of 
damage.

Such human factors and associated real-life forces and 
mechanisms of damage are routinely considered in the 
development of other protective and healthcare products 
to ensure products are fit for purpose. Table 1 indicates 
the maximum isometric forces that are capable of being 
safely exerted by a person [15]. According to this stand-
ard, a person in a seated position exerting a one-handed 
arm only pulling movement in a downwards direction, 
produces a maximum isometric force of 75 N. These val-
ues relate to isometric forces that can be steadily exerted 
while the limbs are in a stationary position [16]. Under 
field conditions, forces will also occur as a result of explo-
sive strength, i.e. a dynamic burst of movement, and in 
these instances the forces capable of being exerted by a 
user are likely to be higher [15].

The maximum explosive forces that can be generated 
by humans have been studied by other researchers with 
the aim of informing designers about the safe design of 
products [17]. Pulling strength was one of the aspects 
studied and the values obtained are shown in Table  2. 
Note that the forces generated are much higher than 
those obtained for a person in a stationary position.

The mean weight of adult males taking part in the 
experiment was 80  kg, while that for the women was 
68 kg. This is higher than the average weight of adults in 
malaria endemic countries (Table  3) [18]. Strength has 
long been established as being influenced, by body weight 
as well as other factors [19]. Therefore, this should be 
reflected when setting an aspirational performance target 
for the strength or resistance to damage of a LLIN based 
on published real life forces. Forces recorded in Newtons 
(N) are straightforward to relate to the snag strength test 
in the laboratory, which measures the force (N) required 
to break a yarn in the LLIN. Furthermore, data on the 
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forces generated during underhand or overhand pulling 
is available (Fig. 1) [17].

LLIN samples for testing
Sixteen different new and unused LLIN products sup-
plied by 10 different brands representing the majority of 
WHOPES (World Health Organization Pesticide Evalu-
ation Scheme) recommended insecticide treated nets 
(ITNs) in 2013 were obtained from suppliers to allow tex-
tile testing data to be generated for snag strength, burst-
ing strength, abrasion resistance and hole enlargement. 
Details of the sample preparation, textile testing pro-
cedures and number of replicates have been previously 
reported [12]. The datasets for each LLIN were then used 
to calculate a RD value based on the developed algorithm.

Algorithm development
Approaches for predicting the service life of products, 
product performance during use, and warranty costs 
[20, 21] are all well established. Methods to predict ser-
vice life of products rely on mathematical models based 
on prior knowledge of the appropriate distribution that 
should be used, as well as data on how users and the 
environment interact with products in the field [22]. 
Given the complexities involved in such an approach 
with LLINs, a criterion-referenced assessment of the 
resistance to damage of LLINs was applied based upon 
the quantitative values obtained for each durability test 

Table 1   Maximal isometric force measurements from EN 1005-3:2002 Safety of machinery [15]

Activity Professional use
Fa in N

Domestic use
Fa in N

Hand work (one hand):
power grip

250 184

Arm work (sitting posture, one arm):

 upwards 50 31

 downwards 75 44

 outwards 55 31

 inwards 75 49

 pushing:

  with trunk support 275 186

  without trunk support 62 30

 pulling:

  with trunk support 225 169

  without trunk support 55 28

Table 2  Minimum and maximum mean force for overhand 
and underhand explosive

Male aged 21–60
Min-Max mean force 
(N)

Female 
aged 21–60
Min-Max 
mean force 
(N)

Underhand pulling 145–185 85–123

Overhand pulling 99–308 78–260

Table 3  Mean body weight of  adult humans in  different 
malaria-endemic countries

Mean weight of adult human

Country kg

India 52.9

Ethiopia 53.1

Congo 53.5

Cambodia 55.7

Mozambique 56

Kenya 56.3

Uganda 57

Benin 60.3

Nigeria 60.7

All of World 62
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parameter and human factors, specifically based on 
the magnitude of forces that is likely to be applied to 
a LLIN by its user. Two different methods were devel-
oped for determining the RD values for LLINs.

Method 1: Proximity to  aspirational values  In this 
method, laboratory testing data for snag strength, burst-
ing strength, abrasion and hole enlargement, i.e. actual 
values (λ), were compared with aspirational values (ɳ) 
for each parameter to determine numerical differences 
in performance. The mean value for each parameter was 
then divided by four so that each contributed equally to 
the overall RD value, expressed as a percentage (Eq. 1):

 where:  RD = Resistance to damage; �B = Actual burst-
ing strength (kPa);  ηB = Aspirational bursting strength 
(kPa); �S = Actual snag strength (N); ηS = Aspirational 
snag strength (N); �A = Actual abrasion resistance 
strength (number of rubs); ηA = Aspirational abrasion 
resistance (number of rubs); σH = Hole enlargement 
resistance score.

The hole enlargement value for Eq. 1 was defined by 
a score, which was based on the final hole size obtained 

(1)

RD =

(

�B

ηB
×

100

4

)

+

(

�S

ηS
×

100

4

)

+
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�A

ηA
×

100

4

)

+
σH

4

in the hole enlargement laboratory test and the pres-
ence (or not) of hole enlargement due to laddering, 
unravelling or tearing, as defined in Table 4.

Algorithm development‑method 2: proximity 
to aspirational value by KPI
Method 2 is based on a Key Performance Indicator sys-
tem (KPI), which uses the laboratory data to establish 
scores for each of the four individual test parameters. The 
basic approach is used across a range of sectors includ-
ing healthcare, performance monitoring in the business 
sector, education and customer services [23, 24]. As 
the name suggests, the method measures performance 
against pre-specified criteria based on aspirational values 
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Fig. 1  Maximum pulling strength a using an underhand grip and b on a round handle using an overhand grip [17]

Table 4  Hole enlargement resistance  scores reflecting 
the hole size and type of hole enlargement for Method 1

Damage type End hole size

< 5 mm 6–20 mm ≥ 21 mm

None 100 80 40

Laddering 80 64 32

Unravelling 50 40 20

Tearing combined 
with laddering or 
unravelling

40 32 16
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defined for each test parameter. The methodology allows 
for qualitative data to be included and provides a solu-
tion for dealing with multi-objective outcomes. It does 
this by use of a scoring matrix. The score matrix struc-
ture is illustrated in Table 5. For each test parameter, the 
matrix defines test value ranges up to the aspirational 
value in equal proportions. The overall score for burst-
ing strength, snag strength, abrasion resistance and hole 
enlargement contribute equally to the overall RD value.

For the hole enlargement resistance score, a weighting 
is applied, as indicated in Table 4, which is based on the 
hole enlargement behaviour. These weightings are based 
on the analysis of field nets in the study by Wheldrake et 
al. [13], where laddering, unravelling and tearing were 
responsible for large holes, and as such their presence 
results in large weightings. In method 2, the overall RD 
value is, therefore, calculated as follows (Eq. 2).

 where σB is the score for bursting strength, σS is the score 
for snag strength, σA is the score for abrasion resistance, 
σH is the score for hole enlargement resistance and ρH is 
the penalty score.

Correlation
The calculated RD values for all LLINs were determined 
based on the laboratory test data obtained from the suite 
of four textile tests [12] and the two methodological 
approaches (Methods 1 and 2) using equations 1 and 2. 
To explore any correlation between the RD data obtained 
in the lab and the extent of hole formation in the field, 
RD values for different LLINs were compared with previ-
ously reported [13] proportionate hole index (PHI) data 
after 1–3  years which uses the World Health Organiza-
tion (WHO)-recommended metric for physical integrity 
in the field [25]. The proportionate hole index (PHI) data 
corresponds exclusively to holes that through forensic 
assessment were determined to have been the result of 
mechanical damage from reasonable household use, i.e. 
snagging, tearing and abrasion, and excluding cut, seam 
failure, rodent and thermal damage. The PHI for each 
LLIN was calculated following WHO guidelines as sum-
marized in Table 6.

Thus, if the weighting of the hole sizes 1, 2, 3 and 4 is α, 
β, γ and δ respectively, the hole index (Hi) is calculated as 
in Eq. 3:

 where N1 is the number of size 1 holes, N2 is the number 
of size 2 holes, N3 is the number of size 3 holes and N4 is 
the number of size 4 holes.

(2)RD = σB + σS + σA + (σH − ρH )

(3)
Hi = (α×N1)+ (β×N2)+ (γ×N3)+ (δ×N4)

Results
Specification of aspirational values
Snag strength
The laboratory snag test is performed over a small sur-
face area of the fabric ~ 1mm2 [12], which is consistent 
with the relatively small holes that this mechanism most 
frequently produces in real field nets [13]. The maximum 
explosive force a male of 21–60 years weighing an aver-
age of 80 kg can exert in an overhand pulling motion is 
reported to be 308 N [17] and therefore it is unlikely that 
a LLIN with snag strength of > 300  N would be readily 
damaged by snagging during normal use. Based on the 
results in Fig.  1, if a maximum upper limit, or effective 
reference value, was therefore placed at 200  N it would 
be greater than the maximum most of the expected users 
in malaria-endemic regions could exert on the LLIN in 
an underhand grip (Fig. 1a). In the case of overhand pull-
ing (Fig. 1b), a proportion of the measured forces occur 
above 200 N, but it should be noted that this data set is 
based on a heavier adult population. Additionally, to 
verify the ease with which yarns in LLINs could be bro-
ken by human adults, manual snag tests were performed 
with a mixture of males and females aged between 27 
and 42 years and weighing between 58 and 90 kg. LLINs 
with snag strength greater than 60 N required substan-
tial effort by the participants to break the filaments. 
Thus, 200 N is considered a reasonable aspirational snag 
strength value.

Bursting strength
In Table  2, the mean maximum overhand pulling force 
that can be generated by an adult male aged 21–60 years 
is 308  N. Considering the 7.3  cm2 burst area, this is 
equivalent to 421 kPa. Therefore, in theory, a LLIN with 
a bursting strength > 421 kPa caught on a 7.3 cm2 surface 
and pulled with an underhand grip in an explosive man-
ner, by a 21–60  years old adult male weighing ≤ 80  kg, 
should not easily break. This is based on assump-
tions such as the pressure being equally distributed 
across the surface area. In reality, LLINs with bursting 
strengths > 421 kPa have been found to contain tears [13]. 
This is likely to be due to nets being caught on smaller 
radius objects, which reduce the surface area over which 
the force acts. For example, if the same 308 N force was 
exerted over half the surface area of 3.65 cm2, the equiva-
lent pressure would be 843  kPa. If the surface area was 
reduced further to represent a corner of a bed frame, 
e.g. 1  cm2 surface area, the equivalent pressure would 
increase to > 3000 kPa.

If the upper limit for force based on reasonable use is 
ca. 200  N [26] and this is applied to bursting strength 
using a 7.3  cm2 burst area, the corresponding pressure 
at break is 274 kPa. This is similar to the current WHO 
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threshold value of 250 kPa [27]. However, the possibility 
of the surface area in the field being substantially smaller 
than 7.3  cm2 also needs to be taken into account, and, 
therefore, a safety factor needs to be built in. It is not pos-
sible to predict the possible surface areas that the net will 
interact with, which may lead to a failure, as these will be 
greatly variable in size, shape and surface texture. Gener-
ally, forces greater than 500 N would be at the upper limit 
of what is likely to be generated, which over a 7.3  cm2 
area is equivalent to 685 kPa. Therefore, the aspirational 
level for the bursting strength of the nets was estimated 
at ≥ 700 kPa. Note that current burst testing equipment 
used by most textile testing laboratories record values up 
to a maximum of 1000 kPa.

Abrasion resistance
Other industries that use an accelerated abrasion test 
with fine sandpaper as the abradant set a pass rate at 
1000 rubs [28]. However, this is usually based on testing 
heavier-weight woven fabrics that are subjected to inten-
sive flat abrasion during use. Therefore, based on the pro-
portional difference in weight and in the mode of use of 
LLINs, an aspirational reference value of 400 rubs with-
out failure was estimated.

Hole enlargement
Current WHO guidelines recommend that hole sizes 
of 5  mm and greater are recorded [29]. This size is 

considered to be of practical relevance, given that the 
principal role of a LLIN is to act as a physical barrier to 
the penetration of mosquitoes. Therefore, it is consist-
ent with current WHO guidelines to suggest an aspira-
tional hole enlargement size of 5  mm following a yarn 
breakage, which is equivalent to a score of 100 for hole 
enlargement.

In the Proportionate Hole Index (PHI) used to deter-
mine the condition of field nets, size 1 holes are those 
between 5 and 20 mm. Herein, a penalty weighting was 
therefore introduced because of the need to account 
for LLINs that are susceptible to hole enlargement once 
yarns in the fabric are broken as a consequence of their 
knitting pattern. The hole enlargement resistance  score 
due to secondary tears, laddering and unravelling are also 
accounted for in the RD calculation. The most serious 
secondary damage in terms of the size of holes formed 
is associated with combination of laddering and tearing 
or unravelling and tearing and this is reflected in the sug-
gested weightings.

A summary of the aspirational values for each 
parameter comprising the RD value and used to calcu-
late RD by method 1 and 2 (Eqs.  1 and 2) is given in 
Tables 7and 8.

The RD values for each LLIN calculated using Method 
1 (Proximity to Aspirational Values) are reported in 
Fig. 2. Marked differences in RD values were observed 
across the different LLIN products, and none reached 
the aspirational value (RD = 100). Six LLINs achieved 

Table 6  WHO hole size guidelines and hole index used to assess physical integrity of LLINs

A -area of the hole pr2; p = 3.142; a Area divided by 1.23; b Assumer diameter

WHO 2013 guidelines Size banding Hole diameter Hole radius Area of hole Hole Indexa

cm d; cm r = d/2; cm r2; cm2 cm2

Size 1
Smaller than a thumb

0.5–2 1.25 0.625 0.3906 1.23 1

Size 2
Larger than a thumb but smaller than a fist

2.5–10 6 3 9 28.28 23

Size 3
Larger than a fist but smaller than a head

11–25 17.5 8.75 76.5625 240.56 196

Size 4
Larger than a head

≥ 26 30b 15 225 706.95 576

Table 7  Definition of  effective reference values for  snag strength, bursting strength abrasion resistance and  hole 
enlargement

Textile Testing Parameter

Mean snag strength (N) Mean bursting strength (kPa) Abrasion resistance (number 
of rubs)

Hole enlargement resistance 
score

Aspirational value ≥ 200 ≥ 700 400   (Allows 5 out of 15 to fail) 100   No Laddering No Unravel-
ling No Tearing
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RD values of 50% RD (Net G, I, L, N, O and P), the 
remaining ten LLINs produced RD values of < 50.

These data also highlight marked differences in the 
performance of LLIN products in relation to each of the 
four damage mechanisms. The high resistance to abra-
sion of Net P and hole enlargement resistance  in Net 
L are particularly noteworthy. The RD data (method 1) 
for six of the LLINs reported in Fig. 2 were compared 
with corresponding, separately reported PHI data for 
the same brands of net retrieved from the field after 
1–3 years in use from the Wheldrake et al. study [13]. 
The results are shown in Fig.  3 and reveal an associa-
tion between RD values obtained in the laboratory with 
PHI field data (r2 = 0.78, p < 0.05).

In relation to RD values calculated in accordance with 
Method 2 (Proximity to Aspirational Value by KPI), the 
same aspirational values were used as in Method 1 as 
defined in Table 7. The resulting RD values for each LLIN 
using Method 2 are given in Fig. 4. Generally, the result-
ing rank order of the RD values were very similar to those 
determined by Method 1 with six LLIN products achiev-
ing RD values ≥ 50% and none with RD < 20%.

As for Method 1, the results for six different branded 
LLINs retrieved from the field followed the same trend 
of reducing PHI with increasing RD using Method 2, see 
Fig. 5 (r2 = 0.80, p < 0.05).

Each method of calculating RD was capable of distin-
guishing LLINs that were more physically robust and 
capable of resisting damage than others and good corre-
lation was observed between the outputs of both meth-
ods, Fig. 6 (r2 = 0.96, p < 0.05).

Discussion
Resisting the major sources of damage LLINs are exposed 
to during normal use is essential if products are going to 
remain in good physical condition for many years. For 
years, the vector control community has relied upon 
measuring the bursting strength of LLINs in the labo-
ratory to characterize the ‘physical strength’ of differ-
ent products. However, these measurements are clearly 
insufficient given the root causes of hole formation [13]. 
In practice, there are multiple mechanisms of damage, 
but representing all in one meaningful resistance to dam-
age (RD) metric would be more reliable. The approach 
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Fig. 2  RD values for all LLINs following algorithm Method 1
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Fig. 3  Method 1: PHI (field) vs. RD (lab) for six LLIN Products (r2 = 0. 78)
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Fig. 4  RD values for all LLINs following algorithm Method 2
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described in the present work is distinct from other 
attempts to develop a single composite metric in that no 
field study evaluations are needed [30], and rapid assess-
ment of any LLIN product is, therefore, possible prior to 
distribution. The RD approach focuses on measurements 
conducted under controlled laboratory conditions based 
on ISO procedures, and has the advantage that the inher-
ent variations in field study evaluations are completely 
obviated.

In the RD methodology, the concept of aspirational tar-
gets has been introduced, taking into account the mag-
nitude of forces LLINs are likely to encounter during 
normal use. Of course, the setting of these aspirational 
targets is open to contention, but at the very least, it 
focuses attention on what is actually needed in terms of 
functional performance. Based on an analysis of the real 
forces generated by human adults, a pragmatic approach 
was adopted for defining upper values for resistance to 

Fig. 5  Method 2: PHI (field) vs. RD (lab) for six LLIN Products (r2 = 0.80)

Fig. 6  Correlation of RD values using Method 1 and Method 2 (r2 = 0.96)
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damage in terms of: bursting strength (700 kPa), snag 
strength (200 N), abrasion resistance (400 rubs) and hole 
enlargement (residual hole size < 5  mm corresponding 
to a score of 100 without laddering, unravelling or tear-
ing). Note that the setting of aspirational targets needs to 
be considered not just in terms of product performance, 
but also in terms of economics. Generally speaking, engi-
neering of LLINs capable of meeting high aspirational 
values are likely to improve cost effectiveness if LLINs are 
more robust for the entire life span.

The RD methodology also accounts for the fact that 
LLINs could be engineered to exceed aspirational tar-
gets in the future. Already, warp knitted nets are manu-
factured for use in other industries that would meet the 
targets suggested herein, albeit at significantly higher 
cost. For example, in sportswear applications, warp knit-
ted fabrics with bursting strength values of > 2000  kPa 
are produced, albeit at heavier basis weights (> 90 g/m2) 
[31]. In Method 1, the actual proportion of the aspira-
tional target is calculated, such that it is possible to score 
greater than 100 on the RD scale. This is clearly positive 
in terms of promoting product innovation. By contrast, 
in Method 2 the RD value is assigned based on a score 
matrix. The overall RD value is determined based on tier-
ing of the individual parameter values in equal propor-
tions. In this method it is possible for LLINs with snag 
strengths of e.g. 40 N to score the same as a net with snag 
strength of 59 N; similarly, this is possible with bursting 
strength and abrasion resistance. Therefore, this method 
does not enable scoring past RD = 100%. It is suggested 
that Method 1 is employed for future characterization of 
LLIN’s physical integrity. One could argue that Method 
2 might encourage manufacturers to focus on meeting 
bare minimum testing requirements, rather than target-
ing higher performance.

The RD results calculated by both Method 1 and 
Method 2 demonstrate the scope for improvement in the 
design of LLIN products. In particular, focus is required 
to improve snag strength (red, Figs.  2 and 4), which is 
also the most common form of damage observed in the 
retrieved field nets [13]. Also, even in LLINs that are con-
sidered to be ‘strong’ in terms of their bursting strength, 
careful attention should be paid to resisting hole enlarge-
ment by unravelling or laddering of the fabric structure.

Assuming normal household use of a LLIN, that avoids 
interaction with rodents and exposure to naked flames, 
cigarettes, cooking embers or deliberate cutting with a 
knife, good correlation between PHI values in the field 
and calculated RD values from the lab has been observed, 
for both RD Methods 1 and 2. This supports the assertion 
that LLINs can be improved to better withstand certain 
types of common and reasonable mechanical damage, 
and this is unlikely to be resolved without upgrading 

product specifications. However, progressive improve-
ments in RD scores, combined with behavioural change 
aimed at taking care of the product, is likely to have a 
major impact on long-term physical integrity and survi-
vorship [32]. Although the physical integrity of the nets 
vary by location, a study carried out by Wheldrake et al. 
[13] showed that mechanical damage was the main con-
tributor to hole formation across a range of geographies. 
Therefore, increases in the RD could improve the lifespan 
of LLINs across the board. Further field comparisons of 
RD scores and actual physical integrity are now needed 
to verify the suggested RD methodology as a valid 
approach to assess expected field performance of specific 
LLIN brands.

Conclusions
The Resistance to Damage (RD) metric provides a reli-
able metric to characterize the physical robustness 
of LLINs prior to use based on simple laboratory test-
ing of the textile material. Marked differences in RD 
scores between LLIN products were revealed, but none 
achieved the aspirational targets to maximize perfor-
mance in use. Comparison of RD scores with PHI val-
ues from the field for the same LLIN brands suggests 
that higher RD (measured in the lab) is associated with 
reduced hole formation (in the field). There is significant 
scope for product innovation aimed at moving much 
closer to aspirational RD targets and improving relevant 
performance parameters.
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