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Abstract 

Background:  Avian malaria parasites are microorganisms parasitizing erythrocytes and various tissues of the birds; 
they are common and distributed worldwide. These parasites are known to infect birds of different taxa and be the 
cause of the deaths of birds in the wild and in captivity. The species of parasites with the ability to colonize new 
territories and infect local non-migratory birds are of particular interest. This scenario is likely in temperate zones 
of Europe, because of climate change and its contribution in spreading vectors of southern origin, which can be 
involved in the transmission of malaria parasites. In the present study, a tropical Plasmodium parasite from a naturally 
infected long-distance migrant bird was isolated and tested for its ability to develop in common species of mosqui-
toes and European short-distance migrant birds.

Methods:  Plasmodium sp. (pFANTAIL01) was isolated on the Curonian spit of the Baltic sea coast from the naturally 
infected Common rosefinch, Carpodacus erythrinus in June 2019. The parasite was described based on the morpho-
logical features of its blood stages, the partial mitochondrial cytochrome b gene and development after experimental 
infection of birds and mosquitoes. The parasite was inoculated into Eurasian siskins, Carduelis spinus. Parasitaemia, 
haematocrit and weight of birds were monitored. At the end of the survey, internal organs were collected to study 
exoerythrocytic stages of this parasite. Experimental infection of mosquitoes Culex pipiens form molestus and Culex 
quinquefasciatus was applied to study sporogonic development of the parasite.

Results:  Based on morphological features, the parasite was described as a new species, Plasmodium collidatum n. 
sp., and attributed to subgenus Novyella. It was revealed that the obtained pFANTAIL01 lineage is a generalist parasite 
infecting a wide range of avian hosts and most likely is transmitted in South and Southeast (SE) Asia and Oceania. In 
Europe, this strain was recorded only in adult migratory birds wintering in South Asia. This parasite developed high 
parasitaemia in experimentally infected siskins and caused 25 % mortality. Exoerythrocytic stages of pFANTAIL01 were 
found in the lungs, liver, spleen and kidney of the deceased birds. Sporogonic development did not occur in Cx. pipi-
ens form molestus and Cx. quinquefasciatus mosquitoes.

Conclusions:  Plasmodium collidatum is a highly virulent for Eurasian siskin and completes its development in these 
birds, which can be considered as a potential vertebrate host if the transmission of the infection starts occurring in 
Europe and temperate zones.
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Background
Every year billions of European breeding birds migrate 
to their wintering ground [1]. The distances the indi-
viduals cover along their routes can reach thousands 
of kilometres and inevitably these movements involve 
birds as reservoirs in transporting and potentially 
spreading other organisms to the new territories [2, 
3]. One group of parasites whose spreading can be 
enforced by migrating birds causes avian malaria. These 
parasites belong to Plasmodiidae (order: Haemos-
porida), are distributed worldwide and are diverse [4]. 
More than 100 years of studies on Plasmodium infect-
ing birds show that some species are virulent to their 
vertebrate hosts and may cause severe disease [4–10]. 
Extensive molecular screening of juvenile and adult 
birds as well as migrant and non-migrating species of 
birds in Europe reveals which avian malarial parasites 
are transmitted within Europe and which are exotic 
species present only in birds after their return from 
wintering quarters [11]. Among the latter are Plasmo‑
dium delichoni (genetic lineage pCOLL6), Plasmodium 
homonucleophilum (pSW2), Plasmodium homocircum‑
flexum (pCOLL4), Plasmodium ashfordi (pGRW2), 
and some others [12–15]. This is only a small fraction 
of all recorded Plasmodium genetic lineages, which are 
linked to morphologically described species and con-
tains information about their development and viru-
lence for a vertebrate host. In most of the cases, natural 
vectors are still unknown.

Transmission of the largest number of potentially 
invasive avian Plasmodium lineages found in Europe, 
occurs in Africa as this is the main wintering ground for 
the European long-distance migrant birds [4]. Instead 
of Africa, several bird species migrate to South Asia 
and SE Asia, these include Common rosefinch (Ca. 
erythrinus), Rosy starling (Pastor roseus), Little bunting 
(Emberiza pussila), Read-breasted flycatcher (Ficedula 
parva), Blyths reed warbler (Acrocephalus dumetorum) 
and a few others [16]. According to the MalAvi data-
base [17], there are more than 20 genetic lineages of 
avian malarial parasites found in breeding European 
birds which migrate to South Asia and SE Asia, but 
only few morphologically described lineages of Plas‑
modium have been identified, e.g. Plasmodium circum‑
flexum, pTURDUS1 [18, 19], and Plasmodium relictum, 
pSGS1 [20] and pGRW4 [21]. At present, there are no 
described malarial parasite lineages linked to Plas‑
modium species, which are transmitted only in South 
Asia or SE Asia and annually brought to Europe with 

migrating birds. However, these parasites should be of 
prime interest as they may become the main threat to 
local bird populations in the near future. According to 
some calculations, the prevalence of avian malaria will 
increase by two-threefold due to global warming [22]. 
Ecological changes and invasive mosquito species may 
play the main role in the appearance of new interac-
tions between invasive mosquito species and exotic 
Plasmodium parasites causing the transmission of these 
parasites on local, non-migrating or within Europe 
migrating birds. For instance, the invasive Asian tiger 
mosquito (Aedes albopictus), originated from SE Asia, 
is spreading in some parts of Europe already [23, 24]. 
The presence of Plasmodium vaughani (genetic lineage 
pSYAT05) DNA was recorded in these mosquitoes col-
lected in Italy [24] and this mosquito could also be a 
potential vector for other avian malaria parasites, espe-
cially those originated from SE Asia [25].

The development and virulence in a vertebrate host and 
insect vector vary between different Plasmodium species 
and, therefore, identification of the parasite species and 
knowledge about their biology is crucial to better under-
stand the epizootiology and potential spread of avian 
malaria. In recent years, the description of newly found 
avian malaria parasites includes both morphological and 
phylogenetic information obtained from the molecular 
examination [13, 15, 26, 27]. Some studies go further and 
provide information about the development patterns in a 
vertebrate host, erythrocytic and exoerythrocytic stages, 
the virulence and information about potential vectors [9, 
10, 12].

In the present study, a new species of malaria parasite 
obtained from a naturally infected long-distance migrant 
Common rosefinch (wintering in South Asia) in North-
ern Europe was described. Using morphological and 
molecular methods the detailed description of blood 
stages and the phylogenetic relationships of this lineage 
with other previously described avian malaria parasites is 
provided. The development in the red blood cells (RBCs) 
and various tissues together with the caused virulence to 
the vertebrate hosts was studied on common bird species 
Eurasian siskins Cr. spinus, which migrate within Europe. 
Sporogonic development of the newly described species 
was studied in blood sucking mosquitoes Cx. pipiens 
form molestus and Cx. quinquefasciatus. The obtained 
data can help understanding new parasite-host associa-
tions and impact on the host health in regard to parasite 
spread, brought on by global climate change and newly 
formed ecological conditions.

Keywords:  Plasmodium, Avian malaria, pFANTAIL01, Experimental infection, Rosefinch
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Methods
Study site and design of the experiment
In June of 2019, one adult male Common rosefinch was 
caught using mist-nets on the Curonian Spit of the Bal-
tic Sea (55°09′14 N, 20°51′27 E) at the Biological station 
“Rybachy” of the Zoological Institute of the Russian 
Academy of Science (Russia). The blood was collected 
in heparinized microcapillary by puncturing a brachial 
vein. Two blood smears were prepared and stained as 
described by Valkiūnas [4]; about 25–30 µL of blood was 
stored in SET-buffer (0.05  M Tris, 0.15  M NaCl, 0.5  M 
EDTA, pH 8.0) for a later molecular analysis. Microscopic 
examination showed a Plasmodium (Novyella) sp. infec-
tion. The strain was multiplied in one Eurasian siskin by 
subinoculation of infected blood as described below for 
studying experimental infection in the vertebrate host. 
Juvenile Eurasian siskins, a common and widespread in 
Europe passerine bird, were used. All wild siskins used in 
the present experiment were captured about 40 km away 
from the biological station. The mist-nets were estab-
lished in a mixed forest area near the town Zelenogradsk 
in the vicinity of Zelenogradka river (54°56’41 N; 20°30’57 
E). In all, 18 juvenile siskins were captured and randomly 
allocated to experimental (8 birds) and control (10 birds) 
groups after microscopically proving the absence of Plas‑
modium parasites in their blood samples. All birds were 
checked before experimental infection for haemosporid-
ian parasites using microscopic examination (see chapter 
below). Later, in the laboratory, blood samples obtained 
from all birds before the experiment and in the end of 
the experiment were analysed using PCR-based method 
(as described below). Experimental birds were housed in 
individual cages (60 × 40 × 40 cm, Joko GmbH, Germany) 
and kept in a vector-free aviary under controlled labora-
tory conditions (room temperature 22 ± 1  °C, photoper-
iod 17:7 of light:dark). Food and water were provided ad 
libitum during the entire period of the experiment.

To infect experimental birds, standard protocol in 
accordance with Palinauskas et  al. [28] was used. Each 
experimental bird was subinoculated with a mixture 
(0.10  mL) of infected blood, 3.7 % sodium citrate and 
0.9 % saline in proportion 4:1:5 into the pectoral mus-
cles. Intensity of meronts in the two used donor birds 
were 0.03 % and 0.05 %. Two birds were inoculated with 
approximately 5 × 104 number of mature meronts, and 
six birds received about 8.3 × 104 meronts. Birds from the 
negative control group were inoculated using the same 
procedure and blood mixture as the experimental group, 
but with blood obtained from an uninfected siskin. The 
duration of the experiment was 36 days. To estimate 
the development of parasites in the blood the exposed 
birds were examined every 4 days by taking blood from 
the brachial vein as was described above. Small drop of 

blood was used to make smears for microscopy, a frac-
tion of blood (20–30 µL) was placed in SET-buffer for the 
molecular analysis and the rest (about 30 µL) was used 
to measure haematocrit level. To measure the haemato-
crit level, blood collected in capillary was centrifuged for 
5 min at 7000 r. p. m using a ELMI CM-70 (ELMI Ltd., 
Latvia) centrifuge. Also, the body mass was measured in 
both experimental and control siskins.

At the end of the experiment all experimentally 
infected birds were euthanized. Their internal organs 
(the brain, heart, lungs, spleen, liver, kidneys, pectoral 
muscle) were extracted and placed to a 10 % neutral buff-
ered formalin solution for fixation. Fixed and parafilm-
embedded tissues were cut in 4 µm sections, stained with 
haematoxylin-eosin (H&E) and examined microscopi-
cally under 1000  ×  magnification [4, 10] for parasite’s 
exoerythrocytic stages. Also smears of the bone marrow 
from bird’s femurs were prepared. Air-dried films were 
fixed in absolute methanol for 3  min and stained using 
Romanowski-Giemsa protocol to check the presence of 
phanerozoites [4].

Experimental infection of mosquitoes
To study the development of the new malarial parasite 
in an invertebrate host, two species of potential vectors, 
Cx. pipiens form molestus and Cx. quinquefasciatus were 
used.

Experimental colonies of mosquitoes were established 
at the Biological Station Rybachy in April 2019. The eggs 
of mosquitoes were obtained from P. B. Šivickis Labora-
tory of Parasitology, Nature Research Centre, Vilnius, 
Lithuania. Insects were kept in isolated laboratory under 
controlled conditions (room temperature 23 ± 1  °C; 
humidity 75–80%; photoperiod 17:7 light:dark). Mosqui-
toes were kept in a nylon netted cage (45 × 45 × 45  cm, 
BugDorm, UK). Food for mosquitoes was provided in the 
form of cotton wools saturated with 5% saccharose solu-
tion [29].

For experimental infection an infected donor bird with 
approximate, 1% parasitaemia (gametocytaemia around 
0.3%) was used. A bird was carefully immobilized and 
fixed in a paper tube, leaving only its legs exposed for 
the mosquitoes [29]. This tube was placed into a sepa-
rate mosquito cage with about 100 uninfected female 
mosquitoes taken from the main colony. After 1  h 
engorged mosquitoes were separated into small cages 
(17.4 × 17.5 × 17.5 cm) and kept there up to 22 days post 
exposure (dpe). The same procedure was applied for con-
trol group mosquitoes, where a non-infected siskin was 
used to feed the females obtained from the main colony. 
Experimental mosquitoes were dissected gradually for 
preparations of different sporogonic stages. For ookinete 
preparations mosquitoes were dissected 1–3 dpe, for 
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oocysts 8–22 dpe and for sporozoite preparations 12–22 
dpe. Before dissection, all insects were euthanized in an 
entomological aspirator with cottonwool moistened with 
96% ethanol. The preparations of all sporogony stages 
were made according Žiegytė et al. [30].

In total, 26  Cx. pipiens form molestus and 26  Cx. 
quinquefasciatus mosquitoes were engorged. In the con-
trol group, 25 Cx. pipiens form molestus had uninfected 
blood meals.

Microscopic examination of blood smears and species 
identification
For blood smears screening, examination of sporogonic 
stages and parasitaemia calculation in experimental indi-
viduals an Olympus CH2O light microscope with ×  40 
and ×  100 magnifications was used. Pictures for meas-
urements of the parasite at its different blood stages 
were prepared by using the Olympus BX61 light micro-
scope equipped with digital camera DP70. Visualization 
of pictures was performed using the software AnalySIS 
FIVE (Olympus Soft Imaging Solutions GmbH, Mün-
ster, Germany). Blood smears obtained from wild birds 
were examined about 15–20 min with × 100 magnifica-
tion. To evaluate the intensity of parasitaemia, numbers 
of infected erythrocytes per 10,000 red blood cells were 
counted [28, 31].

Molecular examination and phylogenetic analysis
Total DNA was extracted from whole blood stored in 
SET-buffer, using the ammonium-acetate  protocol [32]. 
The standard nested PCR protocol was used to amplify 
478 bp fragment of the mitochondrial cytochrome b gene 
(cyt b) of P. collidatum [33, 34]. To control for a false 
amplification one positive control (DNA of P. relictum 
pSGS1) and one negative control (nuclease-free water) 
were used every10 samples. Final PCR-products were 
checked for the success of amplification by running them 
on 2 % agarose gel. Obtained fragments were sequenced 
from both 5′ and 3′ ends using an ABI PRISM TM 3100 
capillary sequencing robot (Applied Biosystems, USA). 
Obtained sequences were aligned in BioEdit software 
[35] and identified using BLAST-program of GenBank 
[36] and MalAvi database [17].

Phylogenetic analysis of the pFANTAIL01 with 28 
additional sequences of haemosporidian parasites was 
conducted using the Bayesian method and performed in 
MrBayes v.3.1 [37]. The General Time Reversible Model 
with a proportion of invariable sites and variation among 
sites (GTR + I + G) was selected by the mrModeltest 3.7 
program [38] as the best fitting model. In total, 3  mil-
lion generations were run with a sample frequency of 
every 100th generation. Twenty five percent of obtained 
trees representing the burn-in phase were discarded. 

Remaining trees were used for the determination of the 
consensus tree. The final phylogenetic tree was visualized 
using FigTree software 1.4.4. [39]. The sequence diver-
gence between different lineages was calculated by apply-
ing the Jukes–Cantor model of substitution implemented 
in the program MEGA 6.0 [40].

Statistical analysis
The statistical analysis was performed by using the RStu-
dio interface based on R software [41]. The normality of 
distribution in the experimental dataset was evaluated 
by employing the Shapiro-Wilk test. Wilcoxon rank-sum 
test was used for the analysis of differences in haemato-
crit and body mass values between experimental and 
control groups of siskins. P-value above or equal to 0.05 
was considered as significant.

Results
Description of parasite
Plasmodium (Novyella) collidatum n. sp.

DNA‑sequence  Mitochondrial cyt b lineage pFAN-
TAIL01 (478 bp, GenBank accession no. MW175901).

Type host  The Common rosefinch Ca. erythrinus (Pas-
seriformes, Fringillidae).

Additional hosts  According to literature data the lin-
eage pFANTAIL01 (synonym codes AP63, GenBank 
accession no. AY714196; C028, DQ212193 and ASI-2012, 
JX418225) have been recorded in18 species of 15 families 
in 7 orders of naturally infected birds (see Table 1). Eura-
sian siskin was susceptible to experimental infection and 
could be a competent host.

Type locality  The Curonian Spit of the Baltic Sea 
(55°09′14 N, 20°51′27 E).

Prevalence  71 Common rosefinches were collected 
and examined for haemosporidian infection on Curo-
nian spit in 2010–2019 years. About 7% of all rosefinches 
were infected with different species of blood parasites. P. 
collidatum was reported in one bird individual in 2019. 
According to MalAvi database, this lineage is rare in 
Europe.

Site of infection  Erythrocytic meronts and gametocytes 
developed in mature red blood cells (Fig.  1); no other 
data.

Vectors  Natural vectors are unknown. Mosquitoes of 
Cx. pipiens form molestus and Cx. quinquefasciatus were 
not susceptible to P. collidatum.
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Distribution  According to the molecular data, P. col‑
lidatum pFANTAIL01 has been reported in South Asia, 
SE Asia, Australia, and neighbouring islands as well as in 
Europe (Table  1). In South Asia, SE Asia and Australia, 
P. collidatum has been found in numerous species of 
resident and migratory birds. Among infected European 
birds in the temperate zone, this lineage was confirmed 
only in adult birds of those species which are wintering in 
South Asia (Ca. erythrinus, Pastor roseus).

Type specimens  Hapantotype (accession nos. 49,242–
49,244 NS, intensity of parasitaemia is approximately 
0.3 %, Ca. erythrinus, the Curonian spit, Kaliningrad 
district, Russia, 36° 44′ N, 119° 29′ W, collected 6 
June 2019 by E. Platonova) is deposited in the Nature 

Research Centre, Vilnius, Lithuania. Parahapanto-
types (accession nos. G466222, G466223 [1149b/19C, 
1220b/19C]), the intensity of parasitaemia is approxi-
mately 10 % and 3.3 % respectively, of experimentally 
infected Cr. spinus, collected 26–30 July 2019 by E. 
Platonova) are deposited in the Queensland Museum, 
Queensland, Australia.

Additional material  Blood films from experimentally 
infected Cr. spinus (accession nos. 1149/19C, 1219/19c, 
1220/19C, 1367/19C) and blood samples fixed in SET-
buffer (accession nos. 1149/19C, 1219/19c, 1220/19C, 
1367/19C) are deposited in the Nature Research Centre, 
Vilnius, Lithuania.

Table 1  Host range and  distribution of  Plasmodium collidatum n. sp. (lineage pFANTAIL01) based on  molecular 
examination (places in Results/Description of parasite chapter)

Order and family of the avian host Species of the avian host Locality Reference

Anseriformes

Anatidae Dendrocygna javanica Unknown [42]

Bucerotiformes

Bucerotidae Penelopides panini Philippines [43]

Charadriiformes

Scolopacidae Calidris tenuirostris Australia [44]

Falconiformes

Accipitridae Milvus sp. Spain [45]

Passeriformes

Acanthizidae Sericornis magnirostris Australia [46]

Fringillidae Carpodacus erythrinus Czech Republic [18]

Maluridae Malurus coronatus Australia [47]

Malurus melanocephalus Australia [47]

Pachycephalidae Pachycephala simplex Australia [46]

Petroicidae Poecilodryas albispecularis Australia [46]

Rhipiduridae Rhipidura rufifrons Australia [42]

Sturnidae Acridotheres tristis Singapore, Australia [48, 49]

Pastor roseus Bulgaria [50]

Turdidae Turdus merula India [51]

Zosteropidae Zosterops lateralis Australia [49, 52]

Psittaciformes

Cacatuidae Calyptorhynchus funereus Australia [53]

Calyptorhynchus lathami Australia [53]

Strigiformes

Strigidae Glaucidium cuculoides Thailand [54]

Fig. 1  Plasmodium collidatum n. sp. (lineage pFANTAIL01) from the blood of the Common rosefinch Carpodacus erythrinus: a, b trophozoites, 
c–j—erythrocytic meronts, k–y—macrogametocytes, z–dd—microgametocytes. Long simple arrows—clumps of chromatin; short simple 
arrows—cytoplasm in meront; triangle heads—pigment granules; simple wide heads—vacuole-like spaces; short simple wide arrows—cytoplasm 
in merozoites. Giemsa-stained thin blood films. Scale bar = 10 µm

(See figure on next page.)
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Etymology  The specific name reflects the morphologi-
cal feature—markedly indented (lobular-like) appearance 
of the pellicle, which is typical for advanced gametocytes.

Exoerythrocytic meronts  Primary exoerythrocytic 
merogony (cryptozoites and metacryptozoites) was not 
investigated and remain unknown. Numerous second-
ary exoerythrocytic meronts (phanerozoites) were found 
in the lungs (Fig.  2a–c) of the infected individuals and 
appeared elongated (Fig. 2a), oval (Fig. 2b) or irregularly 
shaped (Fig.  2c). Phanerozoites in the lungs contained 
over 30 roundish merozoites. In smaller numbers, phan-
erozoites were also seen in the liver (Fig.  2d–f), spleen 
(Fig. 2g–i) and kidneys (Fig. 2j–l) of the infected individ-
uals. In these organs phanerozoites appeared roundish or 
slightly oval and contained less than 30 merozoites.

Trophozoites (Fig. 1a, b) are most often seen in mature 
erythrocytes, however, rarely can be observed in poly-
chromatophilic red blood cells. Round or oval trophozo-
ites are located at the poles of infected erythrocytes. As 
trophozoites mature, they attach to the nucleus of the 
infected erythrocyte and this contact is maintained.

Erythrocytic meronts (Fig. 1c–j; Table 2) found only in 
mature erythrocytes. Growing meronts contain little, but 
readily visible, blue in colour cytoplasm and small pig-
ment granules (Fig. 1c); in mature meronts cytoplasm is 
rarely seen. Both, in growing and mature meronts a small 
bluish roundish and non-refractive globule is often seen 
(Fig.  1f, h). Meront with developing merozoites touches 
the erythrocyte nucleus, located laterally or close to the 
pole of the infected cell and this contact is maintained 
during the whole time of maturation (Fig. 1c–i). Grown 
meronts are oval or irregularly shaped and contain 4–8 
merozoites (Fig. 1e–i). Pigment granules in mature mer-
onts are small and clumped, however, scattered gran-
ules can also be seen in some cells (Fig. 1j). Effect of the 
gametocyte on the infected erythrocyte is not expressed. 
Mature merozoites contain prominent irregular-shaped 
nuclei, and each contains a small portion of readily visible 
cytoplasm (Fig. 1g, j).

Macrogametocytes (Fig.  1k–y; Table  2) found only 
in mature erythrocytes. The cytoplasm is markedly het-
erogeneous and is unevenly stained: more dense stained 
portions of the cytoplasm are intermediated with pale 
stained portions, which look like large vacuole-like pale-
stained spaces (Fig.  1q–s, w, y), a characteristic feature 
of this species. Young forms usually found in the poles 
of infected erythrocytes. In the earliest growing game-
tocytes, long outgrowths often appear (Fig.  1l). Game-
tocytes vary in outline from amoeboid in growing to 
wavy in mature parasites. Gametocytes are located later-
ally to the nucleus of the infected erythrocyte; maturing 

and mature gametocytes are strictly nucleophilic, how-
ever, growing forms not touching the nucleus can also 
be seen occasionally (Fig. 1o). A central part of the pel-
licle of some growing gametocytes does not extend to 
erythrocyte envelope causing a ‘dip’, which gives dumb-
bell-shaped form (Fig.  1q, r). Typically, the growing 
gametocytes are asymmetric in appearance, with one end 
being broader than the other one (Fig. 1p, s, t, x). Fully-
grown gametocytes often do not adhere to the envelope 
of the erythrocyte and do not fill the poles of erythrocytes 
(Fig. 1x, y). Markedly wavy lobular-like appearance of the 
pellicle (on the opposite side to erythrocytes nucleus) of 
mature gametocytes is an important distinctive feature 
of this species (Fig.  1u, w). The cytoplasm stains more 
densely in lobules than in indented areas. The nucleus of 
the gametocyte is diffused and of unclear outline; it con-
sists of several chromatin clumps, which visually look 
to be non-connected with each other in Giemsa-stained 
preparation and can be seen closer to center or anywhere 
in the gametocyte, a characteristic feature of this spe-
cies (Fig. 1s–y). Due to the pale cytoplasm staining and 
diffuse nucleus, macrogametocytes are difficult to dis-
tinguish from microgametocytes. Pigment granules are 
roundish, of small (˂0.5 µm) size, most often grouped in 
one relatively large distinct spot, but occasionally also 
were seen scattered in the cytoplasm (Fig. 1s–x). The area 
of the pigment granule groups is relatively large, and this 
feature attracts attention during microscopic examina-
tion (Fig. 1y). Individual pigment granules do not change 
size and shape during the development of gametocytes, a 
rare feature in avian malaria parasites. Effect of the game-
tocyte on the infected erythrocyte is not expressed.

Microgametocyte (Fig.  1z–dd; Table  2) are difficult 
to distinguish from the macrogametocytes based on the 
intensity of the cytoplasm staining and appearance of 
parasite nuclei. The cytoplasm is relatively paler in the 
microgametocytes, all other characters are as in macro-
gametocytes. In the blood of type host, microgameto-
cytes were seen extremely rare, and this prevented the 
complete picture of the morphometry of parasite.

Taxonomic summary
Morphology of P. collidatum—small meronts, a small 
amount of cytoplasm in meronts and elongated shape 
of grown gametocytes allows linking this species with 
the subgenus Novyella. Nucleophilic stages develop-
ing in the blood of the infected host allows to discrimi-
nate this species from other non-nucleophilic species of 
Novyella.This parasite can be readily distinguished from 
all nucleophilic Novyella species due to the following 
morphological characteristic of its mature gametocytes: 
(i) the cytoplasm consists of intermediated readily vis-
ible large pale-stained and dense-stained areas, providing 
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Fig. 2  Phanerozoites of Plasmodium collidatum n. sp. (lineage pFANTAIL01) from a naturally infected Common rosefinch Carpodacus erythrinus in: 
a–c—lung, d-f—liver, g–i—spleen, j—l—kidney. Arrows indicate the phanerozoites. Haematoxylin and eosin-stained histological sections. Scale bar 
= 10 µm
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markedly heterogeneous appearance, (ii) the majority of 
advanced gametocytes possesses the markedly indented 
(lobular-like) appearance of pellicle and (iii) macro- and 
microgametocytes are difficult to distinguish based on 
their size and morphology of their nuclei. Additionally, 
the presence of a relatively large loose group on small 
pigment granules is also helpful during this parasite iden-
tification (see our description and [12, 13, 55–57]). The 
described parasite morphologically is the most similar 
to P. delichoni however, some features, like small round-
ish granules clearly distinguish this parasite from P. deli‑
choni. Other mentioned nucleophilic species also have 
additional features, which are not found in the described 
parasite. Growing meronts of Plasmodium nucleophi‑
lum often displace the nuclei of the infected erythro-
cytes and its macrogametocytes have a compact nucleus; 
Plasmodium paranucleophilum possesses gametocytes, 
which push the nucleus in infected erythrocyte later-
ally; gametocytes of P. homonucleophilum are not strictly 
nucleophilic. None of the above-mentioned features 
is characteristics of the newly described species. The 
main morphological features of described parasite blood 
stages, which were observed in type host (Ca. erythrinus) 
also maintained in Eurasian siskins after experimental 
infection. Very occasionally meronts with 9 and 10 mero-
zoites appeared in experimentally infected siskins, but 
not in type host.

Phylogenetic analysis
According to the phylogenetic analysis, the lineage 
pFANTAIL01 clusters together with P. nucleophilum lin-
eage pDENPET03 (Fig. 3). The genetic distance between 
these two lineages is 4.31%. Both lineages cluster within a 
bigger clade with other two Novyella parasites e.g. P. ash‑
fordi (pGRW2) and P. delichoni (pCOLL6). However, the 
genetic difference between pFANTAIL01 and the latter 
two cyt b lineages is 8.43 and 10.45%, respectively. Plas‑
modium collidatum (pFANTAIL01) morphologically is 
the most similar to pCOLL6, but distribution and host 
range of these lineages differ.

Development and caused virulence in experimentally 
infected birds
All experimentally exposed siskins were susceptible to 
P. collidatum (pFANTAIL01) and showed the complete 
development of all blood stages of the parasite. Both PCR 

Table 2  Morphometry of  host cells, mature gametocytes 
and  erythrocytic meronts of  Plasmodium collidatum n. sp. 
(lineage pFANTAIL01) (n = 21) (places in Results/Description 
of parasite chapter)

Feature Measurements (μm) a

Uninfected erythrocyte

Length 10.4–12.4 (11.5 ± 0.5)

Width 6.1–7.2 (6.5 ± 0.3)

Area 52.8–67.8 (60.5 ± 4.3)

Uninfected erythrocyte nucleus

Length 5.1–6.2 (5.5 ± 0.3)

Width 2.1–2.8 (2.3 ± 0.2)

Area 9.5–14.8 (10.8 ± 1.1)

Macrogametocyte

Infected erythrocyte

 Length 11.2–13.6 (12.4 ± 0.6)

 Width 5.3–7.38 (6.1 ± 0.5)

 Area 52.4–71.5 (60.4 ± 4.7)

Infected erythrocyte nucleus

 Length 4.6–5.8 (5.2 ± 0.3)

 Width 1.6–2.5 (2.1 ± 0.2)

 Area 7.0–10.8 (9.0 ± 1.1)

Gametocyte

Length 9.6–13.2 (11.5 ± 1.1)

Width 0.9–2.5 (1.5 ± 0.4)

Area 18.2–28.9 (21.8 ± 2.6)

Gametocyte nucleus

Length –

Width –

Area –

Pigment granules 7.0–14.0 (8.2 ± 1.7)

Microgametocyte (n = 6)

Infected erythrocyte

 Length 10.7–14.1 (12.3 ± 1.3)

 Width 6.0–6.6 (6.2 ± 0.2)

 Area 53.0–70.5 (61.6 ± 7.3)

Infected erythrocyte nucleus

 Length 4.9–5.8 (5.3 ± 0.4)

 Width 2.0–2.6 (2.2 ± 0.2)

 Area 9.1–10.6 (9.9 ± 0.6)

Gametocyte

Length 10.5–13.0 (12.2 ± 1.0)

Width 1.8–2.3 (2.0 ± 0.2)

Area 17.5–25.5 (21.6 ± 3.0)

Gametocyte nucleus

Length 1.3–3.8 (2.8 ± 1.0)

Width 0.5–0.7 (0.6 ± 0.1)

Area 0.9–1.2 (1.0 ± 0.2)

Pigment granules – b

Meront

Length 2.8–5.6 (4.4 ± 0.7)

Width 1.0–2.2 (1.7 ± 0.3)

Area 3.7–8.0 (5.5 ± 1.3)

No. of pigment granules – b

No. of merozoites 4.0–8.0 (5.8 ± 1.2)

Table 2  (continued)
a   Minimum and maximum values are provided, followed in parentheses by the 
arithmetic mean and standard deviation
b   Pigment granules are clamped and are difficult to calculate
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and microscopic examination showed that all controls 
remained uninfected until the end of the experiment.

Prepatent period of infection, when the first infected 
erythrocytes were detected in the blood smears varied 
between 12 and 20 days post infection (dpi), (Fig.  4). 
Dynamics of parasitaemia were highly variable between 
individuals (Fig. 4); in some reaching up to 70–80%, while 
in others only < 1%. In half of infected birds after sharp 
increase of parasitaemia, there was typical bell-shaped 
form of primary parasitaemia with clearly decreasing 
slope after the sharp initial increase. High parasitaemia 
maintained in most of the experimental birds up to 36 
dpi, reaching up to 11–75% (Figs.  4 and 5). Two birds 
died with parasitaemias of 15 and 18% on 32 dpi. All con-
trol birds survived until the end of the experiment.

The average body mass of the infected birds did not 
differ significantly from the control group throughout 
the experiment (W = 4415, p-value = 0.6502, Fig.  6a). 
The mean haematocrit value was decreasing gradually 

Fig. 3  Bayesian phylogenetic tree based on 478 bp mitochondrial cytochrome b sequences gene of 28 Plasmodium spp. and 5 Haemoproteus spp. 
One genetic lineage sequence of Leucocytozoon spp. was used as outgroup. Lineages of parasites and GenBank codes are given in accordance with 
MalAvi database
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Fig. 4  Individual development of parasitaemia of Plasmodium 
collidatum n. sp. (pFANTAIL01) in experimentally infected siskins
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during the experiment in infected birds, however, there 
were no significant differences between infected and 
control siskins (W = 4427, p-value = 0.4631; Fig.  6b). 
The biggest, but not significant difference between two 
groups was 32 dpi (W = 53, p-value = 0.08689).

Development in experimentally infected mosquitoes
After screening Cx. pipiens form molestus and Cx. 
quinquefasciatus midguts and salivary glands prepa-
rations it was determined that ookinetes, oocysts and 
sporozoites in all exposed to P. collidatum (pFAN-
TAIL01) mosquitoes within 22 days after blood feed-
ing were absent. Authors also did not detect any 

zygotes within 48 h in preparations of mosquito midgut 
contents.

Discussion
pFANTAIL01 lineage from the Common rosefinch was 
identified as Plasmodium (Novyella) collidatum n. sp. 
The morphological analysis of the erythrocytic stages of 
the parasite showed that P. collidatum has typical features 
associated with Novyella subgenus: elongated gameto-
cytes, small meronts and parasitizing only in mature red 
blood cells [4]. Based on several unique morphological 
features of blood stages of pFANTAIL01 lineage it is pos-
sible to distinguish it from other Novyella parasites and 
to define this parasite as a separate species (see "Taxo-
nomic summary").

Analysis of accumulated molecular data shows that P. 
collidatum has been recorded predominantly in Oce-
ania and SE Asia (Table  1). It was recorded not only in 
migrant, but also in resident bird species. The transmis-
sion, apparently, takes place in these regions. Several 
records of pFANTAIL01 were reported in bird species 
breeding in Europe, Common rosefinch [18], Rosy star-
ling [50] and in one of Milvus sp. [45]. All above men-
tioned passerines were adults after their spring migration 
returning from South Asia, therefore, it is highly prob-
able that transmission of this parasite does not occur in 
Europe.

Interestingly, there is one case of P. collidatum in Spain, 
from a bird of Milvus genus [45]. There might be two spe-
cies of Milvus in Europe, one is M. milvus and the second 
one, M. migrans but European populations of both these 
species do not migrate to South or SE Asia [45]. However, 
as this is a single record in a raptor bird, it is difficult to 
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Fig. 5  Dynamic of mean parasitaemia of Plasmodium collidatum 
(pFANTAIL01) in experimentally infected siskins. Vertical lines indicate 
standard error

Fig. 6  Dynamic of body mass (a) and haematocrit (b) in experimentally infected and control birds. Vertical lines indicate standard error
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make a definite conclusion where and how the bird was 
infected [58].

According to the MalAvi and GenBank databases, 
pFANTAIL01 lineage has been reported in wide range 
of birds of 17 species, 14 families and 7 orders prevail-
ing, herewith, in Passeriformes (Table  1). Apparently, P. 
colllidatum is of low specificity for the vertebrate host 
and, therefore, can be considered as a generalist species. 
Although, it is unclear if P. collidatum develops game-
tocytes in all of the mentioned species as the presence 
of infection in blood was confirmed only by molecular 
methods and the possibility of abortive parasite develop-
ment could not be excluded [9, 59].

The damage caused by malaria parasites can be by 
the tissue stages of exoerythrocytic merogony or by the 
pathogenic effect due to severe anaemia caused by eryth-
rocytic stages of the parasite [10, 60]. The pathogenic 
effect of the exoerythrocytic meronts was described in 
bird species of different families and orders [4, 6, 60] but 
development and pathogenicity of tissue stages in genera 
Novyella is poorly studied [12, 61]. Phanerozoites were 
described in P. nucleophilum toucani with huge infesta-
tion of internal organs and caused mortality in experi-
mentally infected canaries [62]. Phanerozoites were also 
seen in different internal organs of birds infected by P. 
vaughani [4], P. paranucleophilum [57] and Plasmodium 
bertii [4].

The pathogenic effect of the exoerythrocytic stages of P. 
collidatum was reported only in two species of cockatoo, 
a Yellow-tailed black cockatoo Calyptorhynchus funereus 
and Glossy black cockatoo Calyptorhynchus lathami [53]. 
Both birds were infected in captivity and died despite of 
the medical treatment. The histological analysis showed 
a large infestation of schizonts in their liver, spleen, lungs 
and intestines together with hemorrhage and necrosis 
of other tissues [53]. Birds died, apparently, due to the 
extensive damage of their internal organs by the tissue 
stages of P. collidatum. According to the authors, these 
Australian species live in habitats where the presence of 
potential vectors is restricted. Both housing cockatoo 
birds were kept not in their species-specific conditions 
thus they most likely were exposed to parasite vectors. 
In the present experiment, numerous phanerozoites 
were observed in liver, lungs, spleen and kidney tissue 
of infected siskins. Two of eight birds died at the end of 
study after decreasing of parasitaemia.

Two mutually non-exclusive factors, the depleted 
immune system and pathologies caused by phanerozo-
ites could trigger the death of the host. Similar cases have 
been reported by Ilgūnas et  al. [63] in experimentally 
infected crossbill (Loxia curvirostra), siskin and starling 
(Sturnus vulgaris) which were inoculated with a highly 
virulent parasite P. (Giovannolaia) homocircumflexum 

(lineage pCOLL4) and mortalities of birds were observed 
after the peak of parasitaemia.

The negative impact of erythrocytic stages of Plasmo‑
dium is most noticeable when the parasite damages a 
big number of blood cells [28, 64–66]. The limited infor-
mation about the development of Novyella parasites is 
obtained up to now comparing to some Haemamoeba 
or Giovannolaia species. It was considered that Novy‑
ella parasites are mainly of low virulence to birds [67]. 
However, the studies with infection of tropical origin, P. 
ashfordi (pGRW2) and P. delichoni (pCOLL6) showed 
that these Novyella parasites develop high intensities 
of parasitaemia in experimental birds [12, 15, 68, 69]. 
According to the present study, siskins are susceptible 
to P. collidatum. The prepatent period varied between 
individuals but was relatively long in all experimental 
birds (Fig. 4). This data is in consistent manner with the 
information about the development of other species of 
Novyella e.g. P. vaughani where the prepatent period lasts 
from 1 to 6 weeks [4, 70], in P. ashfordi—2–4 weeks [15], 
in P. delichoni—2–3 weeks [12]. The dynamic of parasi-
taemia varied among individuals reaching peak values 
up to 0.42–80% (Fig. 4), but was rather extended in time 
comparing to other species from the most studied para-
sites from subgenus Haemamoeba which characterized 
by rapid increase of parasitaemia and rapid decrease to 
chronic values within 36 dpi [28, 71].

During the study, the impact of P. collidatum on body 
mass and haematocrit level of infected birds was meas-
ured (Fig.  6a, b). The negative effect on body mass of 
the infected siskins was not detected (Fig. 6a). This data 
agrees with former experimental studies where even 
severe malaria infection did not affect the body mass of 
infected individuals, probably, because birds kept in lab-
oratory conditions were receiving food ad libitum and 
were able to compensate the energy loss [10, 28, 72]. 
Haematocrit level slightly decreased in infected birds on 
32 dpi, but the difference between infected and control 
birds was insignificant (Fig. 6b). This is not a typical case 
for parasites from other subgenera, because the increase 
of parasitaemia usually causes the decrease in the num-
ber of RBCs [6, 28, 73]. During the infection with Hae‑
mamoeba parasite P. relictum (pSGS1), the quick raise 
of parasitaemia is immediately followed by a sharp drop 
of haematocrit value [28]. On the other hand, Palin-
auskas et  al. [9] showed that single infection with low 
parasitaemia (less than 1%) by Huffia subgenus parasite 
P. elongatum (pERIRUB01) dramatically decreased the 
haematocrit value in experimentally infected siskins. 
The similar situation was observed in canaries infected 
with Novyella species P. paranucleophilum, the bone 
marrow of infected birds had heavy invasion at low 
parasitaemia but anemia was clearly manifested by the 
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decrease in haematocrit values [57]. Apparently, a huge 
infestation of bone marrow by phanerozoites reduces 
erythropoiesis and, therefore, decrease haematocrit 
values. At the present study, the exoerythrocytic stages 
in the bone marrow of the infected siskins were not 
detected. Probably, the erythropoietic system was com-
pensating the loss of erythrocytes until its depletion on 
32 dpi when slight decrease of haematocrit in infected 
birds but further experimental studies are needed to 
clarify this point.

The annual migration of birds is an important fac-
tor for a possible invasion of new haemosporidian spe-
cies [4, 74]. However, to complete the life cycle on new 
territories parasites need a competent vector (Culicidae 
mosquitoes) and suitable environmental conditions. At 
the present study, Cx. pipiens form molestus and Cx. 
quinquefasciatus were used for the experimental inves-
tigations. Culex pipiens form molestus is the common 
mosquito species distributed around the world and was 
confirmed as a natural and potential vector for a num-
ber of Plasmodium species [9, 24, 30, 75, 76]. Culex 
quinquefasciatus is more distributed in subtropical and 
tropical regions and is known to transmit avian malaria 
parasites as well [77, 78]. However, mosquitoes of both 
species experimentally exposed to infection of P. collida‑
tum were not susceptible to this parasite. Neither ooki-
netes, oocysts or sporozoites were detected in any of the 
exposed insects. Also, zygotes were not seen in blood 
smears from engorged mosquitoes. Apparently, sporo-
gonic development was aborted on the stage of forming 
gametes. Further studies are needed to identify a compe-
tent vector species for this parasite.

Knowledge about natural vectors of pathogens causing 
lethal diseases is a cornerstone for the basic understand-
ing of epizootiology of any disease and possible threats 
in the future. The introduction of competent vector 
species could lead to the establishment of the tropical 
P. collidatum (pFANTAIL01) in Europe and that could 
further lead to an outbreak of new malarial infection in 
local birds which did not co-evolve with the introduced 
parasite. In the present study, it was experimentally dem-
onstrated that susceptible avian species which could 
enhance the transmission of tropical pathogen exist in 
Northern Palearctic.

Despite the fact, that P. collidatum did not develop in 
Cx. pipiens form molestus, there are other mosquitoes, 
especially invasive species, which potentially, could serve 
as a vectors of this parasite. The anthropogenic activity 
and the global warming are the main factors contribut-
ing to the increased numbers of invasive species of mos-
quitoes and other vectors coming from southern regions 
[23, 24, 79, 80]. Since recent decades, there are 6 species 

of mosquitoes and 1 species of biting midges of tropi-
cal origin colonizing different parts of Europe. Most of 
these species are involved in the transmission of various 
human and animal diseases and could be responsible for 
the introduction of some of these infections in Europe. 
For example, the tropical biting midges Culicoides imic‑
ula introduced the bluetongue virus of ruminants widely 
throughout Europe [81]. Introduced new mosquito spe-
cies could serve as competent vectors both for locally 
already transmitting Plasmodium spp. and for exotic 
blood parasite species carried by long-distance avian 
migrants. Several field and experimental studies indi-
cated that for instance Culex sasai and Culex pipiens pal‑
lens are competent vectors for some genetic lineages of 
Plasmodium in Asian regions [82, 83]. The introduction 
of these or other mosquito species from Asia or SE Asia 
could contribute to transmission of some avian Plasmo‑
dium parasites, including those which are at present not 
transmitted in Europe, like P. collidatum. However, pre-
cise experimental and field studies are needed to deter-
mine the possibility of such assumptions.

Conclusions
In conclusion, a new avian malaria parasite P. collida‑
tum n. sp. (pFANTAIL01) was described, which is an 
incongruous species for European local birds and its 
transmission takes place in South, SE Asia and Oce-
ania regions. P. collidatum completes development in 
the Eurasian siskin, which is a short-distance migrant 
within Europe. The parasite develops high intensi-
ties of parasitaemia and exoerythrocytic stages in the 
lungs, liver, spleen and kidneys of the vertebrate host. 
The negative effect on host health is not expressed in 
changed body mass and haematocrit values of experi-
mentally infected birds, but this Plasmodium species 
is highly virulent causing the death of infected birds. 
Although common vector species of avian malaria, Cx. 
pipiens form molestus and Cx. quinquefasciatus were 
not susceptible to P. collidatum, this parasite should be 
considered as potential threat to siskins and likely to 
other non-migrating European birds if suitable vectors 
and ecological conditions appear.
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