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Abstract 

Background:  In 2004, in response to high levels of treatment failure associated with sulfadoxine-pyrimethamine 
(SP) resistance, Benin changed its first-line malaria treatment from SP to artemisinin-based combination therapy for 
treatment of uncomplicated Plasmodium falciparum malaria. Resistance to SP is conferred by accumulation of single 
nucleotide polymorphisms (SNPs) in P. falciparum genes involved in folate metabolism, dihydrofolate reductase (Pfdhfr) 
and dihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. Because SP is still 
used for intermittent preventive treatment in pregnant women (IPTp) and seasonal malaria chemoprevention (SMCP) 
in Benin, the prevalence of Pfdhfr and Pfdhps SNPs in P. falciparum isolates collected in 2017 were investigated.

Methods:  This study was carried out in two sites where the transmission of P. falciparum malaria is hyper-endemic: 
Klouékanmey and Djougou. Blood samples were collected from 178 febrile children 6–59 months old with confirmed 
uncomplicated P. falciparum malaria and were genotyped for SNPs associated with SP resistance.

Results:  The Pfdhfr triple mutant IRN (N51I, C59R, and S108N) was the most prevalent (84.6%) haplotype and was 
commonly found with the Pfdhps single mutant A437G (50.5%) or with the Pfdhps double mutant S436A and A437G 
(33.7%). The quintuple mutant, Pfdhfr IRN/Pfdhps GE (A437G and K540E), was rarely observed (0.8%). The A581G and 
A613S mutant alleles were found in 2.6 and 3.9% of isolates, respectively. Six isolates (3.9%) were shown to harbour a 
mutation at codon I431V, recently identified in West African parasites.

Conclusions:  This study showed that Pfdhfr triple IRN mutants are near fixation in this population and that the highly 
sulfadoxine-resistant Pfdhps alleles are not widespread in Benin. These data support the continued use of SP for chem-
oprevention in these study sites, which should be complemented by periodic nationwide molecular surveillance to 
detect emergence of resistant genotypes.
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Background
Malaria is a major health problem in Benin and is the 
leading cause of mortality among children under 5 years 
of age and morbidity among adults. In 2019, the World 
Health Organization (WHO) reported an estimated four 
million malaria cases and over 7000 deaths in the coun-
try [1]. In 2004, Benin joined many other countries in 
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Africa in changing their recommended first-line treat-
ment of uncomplicated malaria to artemisinin-based 
combination therapy (ACT) [2] due to reported high 
treatment failure rates in children treated with sulf-
adoxine-pyrimethamine (SP) for uncomplicated malaria 
[3–5]. However, the WHO recommends the continued 
use of SP for intermittent preventive treatment in preg-
nant women (IPTp) [6], as well as for seasonal malaria 
chemoprevention (SMC), used in combination with amo-
diaquine (SP-AQ) for the latter indication, in countries 
with highly seasonal malaria transmission such as the 
Sahel region of sub-Saharan Africa [7].

Resistance to SP is conferred by accumulation of single 
nucleotide polymorphisms (SNPs) in two genes that code 
for enzymes involved in Plasmodium falciparum folate 
metabolism: P. falciparum dihydrofolate reductase (Pfd-
hfr) and P. falciparum dihydropteroate synthase (Pfdhps), 
which are targeted by pyrimethamine and sulfadoxine, 
respectively. At least five mutations in Pfdhfr confer 
resistance to pyrimethamine: C50R, N51I, C59R, S108N, 
and I164L (amino acid substitutions in bold face). Simi-
larly, at least five SNPs in Pfdhps are involved in resist-
ance to sulfadoxine: S436A/F, A437G, K540E, A581G, 
and A613S/T [8–12].

The combination of Pfdhfr triple mutant IRN with the 
Pfdhps double mutant GE results in a quintuple mutant, 
which has been shown to lead to clinical treatment fail-
ure of SP [13–15]. In general, these quintuple mutants are 
commonly found throughout East Africa, but rarely in 
West and Central Africa [16–18]. In contrast, the Pfdhfr 
triple mutant IRN with the Pfdhps A437G is often found 
in West Africa and is also associated with treatment fail-
ure, but to a lesser degree than the IRN plus GE quin-
tuple mutants [16–21]. Studies have demonstrated that 
the efficacy of SP for IPTp is still acceptable even when 
a high prevalence of SP resistance markers exists, includ-
ing the IRN plus GE quintuple mutants and the IRN plus 
G quadruple mutants [6, 22–25], justifying the continued 
use of SP for IPTp and SMC. However, the occurrence 
of additional Pfdhps mutations at codons A581G [19, 
26–28] and A613S/T [27] or Pfdhfr I164L [29, 30] to the 
quintuple IRN plus GE mutant genotype was shown to 
lead to declines in SP’s IPTp efficacy [28] and protection 
in infants [31].

Studies of molecular markers of SP resistance in Benin 
carried out between 2003 and 2012  in the north, south 
[32–34], and the coast [4, 35, 36] showed that the major-
ity (> 90%) of parasites carry IRN Pfdhfr mutations. The 
most common mutation in Pfdhps was A437G (71.4%) 
[34]. A low prevalence of K540E (8.3%) was found [36] 
and no mutation was found at codon S436A in a study 
conducted between 2008 and 2010 [37]. However, recent 
data on molecular markers associated with SP resistance 

is lacking. This study investigated the prevalence of SNPs 
in Pfdhfr and Pfdhps in P. falciparum isolates collected 
from Benin in 2017.

Methods
Study population and sample collection
The samples utilized in this study were obtained from a 
therapeutic efficacy study (TES) of artemether-lumefan-
trine conducted by the National Malaria Control Pro-
gramme (NMCP) in Benin in 2017 (results unpublished). 
The study was carried out in two NMCP sentinel sites, 
Klouékanmey and Djougou, where the transmission of 
P. falciparum malaria is hyper-endemic (Fig. 1). Criteria 
for inclusion included children 6–59 months old with 
monoinfection of P. falciparum, measured by micros-
copy, a parasite density between 2000 and 200,000 para-
sites/µl, axillary temperature of 37.5  °C or higher, and 
ability to take oral medication. Children with signs of 
severe illness and malnutrition were excluded. Enrolled 
patients were treated with a supervised 3-day course of 
artemether-lumefantrine and monitored for 28 days with 
weekly scheduled visits on days 7, 14, 21, and 28. Patients 

Fig. 1  Location of study sites used for the therapeutic efficacy study, 
Benin, 2017. Benin map (shaded in gray) indicating the location of 
the two sentinel sites, Klouékanmey and Djougou (purple dots), in 
which samples were collected and used to determine the prevalence 
of sulfadoxine-pyrimethamine resistance markers in Plasmodium 
falciparum isolates
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were also asked to return to the clinic if they became ill 
any other day during the follow-up period (unscheduled 
visits). Dried blood spots (DBS) were collected on What-
man grade 3 filter paper (GE Healthcare Life Sciences, 
Marlborough, USA) from enrolled patients on the day 
of enrollment (pre-treatment) and on the scheduled and 
unscheduled visits. Only samples from the day of enroll-
ment were utilized in this study.

Sample processing and Pfdhfr and Pfdhps molecular 
analysis
Genomic DNA was isolated from the DBS using the 
QIAamp® blood mini kit (Qiagen Inc., CA, USA) per the 
manufacturer’s recommendations. The Pfdhfr and Pfdhps 
gene fragments were amplified by polymerase chain reac-
tion (PCR) using previously published primers [38]. SNPs 
at Pfdhfr codons 50, 51, 59, 108, and 164 and Pfdhps 
codons 431, 436, 437, 540, 581, and 613 were investi-
gated using Sanger sequencing as previously described 
[38]. The PCR products were precipitated in 70% ethanol 
to clean up dye terminators, rehydrated in 10  µl Hi-Di 
Formamide™, and sequenced using the Applied Biosys-
tems 3130xl sequencer (Life Technologies, Grand Island, 
NY). Sequences were analysed using Geneious software 
(Biomatters, San Francisco, CA, USA). The 3D7 P. falci-
parum Pfdhps (Gene ID: 2,655,294) and Pfdhfr (Gene 
ID: 9,221,804) were used as reference sequences in the 
analysis.

Data management and analysis
Data were entered into a Microsoft Excel database and 
descriptive statistics such as percentage, mean, and 
range were reported as appropriate. The prevalence of 
different alleles and haplotypes in the Pfdhfr and Pfdhps 
genes were reported per site. The prevalence of the dif-
ferent alleles was reported as wild type (having only the 
wild type allele), mutant (having only the mutant allele), 
or mixed infection (having both wild type and mutant 
alleles).

Results
A total of 178 pre-treatment samples (85 from Klouékan-
mey and 93 from Djougou) were evaluated for molecular 
markers of resistance in the Pfdhfr and Pfdhps genes. The 
mean age of the patients was 33 (SD = 14) months and 
62.1% were male. The geometric mean P. falciparum par-
asite density was 24,154 (95% CI 16,600–31,700); range: 
2,081–200,000) parasites/µl.

Prevalence of Pfdhfr and Pfdhps alleles (SNPs)
A total of 169 (94.9%) specimens were successfully 
sequenced for the Pfdhfr gene. Twelve samples (7.1%) had 
a mixed infection. No mutations were found at codons 

50 or 164. Overall, a high prevalence of mutations was 
observed in codons N51I, (86.4%; 146), C59R, (89.9%; 
152), and S108N, (94.7%; 160); an additional 4.1, 6.5, and 
2.4% of samples, respectively, contained both mutant and 
wild-type alleles as part of a mixed infection, Table 1. For 
the Pfdhps gene, 153 (86.0%) samples were successfully 
sequenced and 21 of these (13.7%) had a mixed infec-
tion. Overall, a majority of the samples had the A437G 
mutation (94.8%; 145) followed by the S436A mutation 
(35.3%; 54), Table  1. All samples from Klouékanmey 
(100%; 68) had the A437G mutation compared to 95.3% 
(81) in Djougou, of which four (4.7%) were mixed alleles. 
The A581G and A613S alleles were observed in 2.6 and 
3.9% of isolates, respectively, with an additional sample 
from Djougou having a 613A/S mixed infection. Six iso-
lates (3.9%) were shown to harbour a mutation at codon 
I431V, three from Klouékanmey and three from Djou-
gou, of which two were mixed with wildtype parasites, 
Table 1.

Observed haplotypes per gene
Table 2 summarizes the observed haplotypes for the Pfd-
hfr and Pfdhps genes. Haplotypes were constructed using 
codons C50R, N51I, C59R, S108N, and I164L in the 
Pfdhfr gene and I431V, S436A, A437G, K540E, A581G, 
and A613S in the Pfdhps gene. Mixed infections in the 
Pfdhfr (12) and Pfdhps (21) genes were excluded for the 
haplotype construction. The majority of parasites (84.6%, 
143) harboured the triple mutant Pfdhfr CIRNI haplo-
type: 89.8% (71) in Klouékanmey and 79.9% (72) in Djou-
gou. The most common Pfdhps haplotype was ISGKAA 
(49.6%; 76), followed by the double mutant Pfdhps IAG-
KAA (29.3%; 45). The I431V mutation was seen in com-
bination with other Pfdhps mutations, with three isolates 
(2.0%) possessing S436A, A437G, A581G, and A613S, 
and one isolate (0.7%) possessing S436A, A437G, and 
A613S, Table 2.

Combined Pfdhfr/Pfdhps haplotypes
Combined Pfdhfr and Pfdhps haplotypes were con-
structed using 119 samples that were successfully 
sequenced at each of the codons investigated, Table  3. 
Mixed infections at any of the codons were excluded. 
The N51I/C59R/S108N/A437G haplotype was found in 
106 (89.1%) of the samples. Of these 106, 45 also con-
tained the S436A mutation (N51I/C59R/S108N/S436A/
A437G) and one contained the K540E mutation (N51I/
C59R/S108N/A437G/K540E). Another two samples 
contained neither the A437G nor the K540E mutation 
but contained the S436A mutation (N51I/C59R/S108N/
S436A). In the samples with the N51I/C59R/S108N/
S436A/A437G haplotype, the A613S mutation was found 
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in five samples, three of which also contained the A581G 
mutation.

Discussion
Results from this study demonstrate that the prevalence 
of the Pfdhfr IRN triple mutant is very high, implying 
these mutants are well established in this region, similar 
to observations made previously in Benin and in many 
African countries [16, 18, 39, 40]. In contrast, the preva-
lence of multiple mutations in the Pfdhps gene was low, 

with the majority of parasites having only a single muta-
tion at codon A437G and 29.3% of the parasites with a 
double mutant (S436A/A437G), as commonly observed 
in West Africa [18, 21, 41, 42]. Only a handful of isolates 
had mutations at codons K540E (2.6%), A581G (2.6%), 
and A613S (4.6%). A low prevalence or complete absence 
of these mutations was also observed in other studies in 
Benin [36, 37]. Several studies have shown the prevalence 
of these mutations in West Africa is very low compared 
to East Africa, (reviewed in [16, 18]). This is especially 

Table 1  Summary of alleles observed in Pfdhfr and Pfdhps genes

Bold letters denote mutant alleles

Pfdhfr Klouékanmey
n = 79 (%)

Djougou
n = 90 (%)

Overall
n = 169 (%)

C50 79 (100) 90 (100) 169 (100)

50R 0 0 0

50 C/R 0 0 0

N51 3 (3.8) 13 (14.4) 16 (9.5)

51I 72 (91.1) 74 (82.3) 146 (86.4)

51 N/I 4 (5.1) 3 (3.3) 7 (4.1)

C59 1 (1.3) 5 (5.6) 6 (3.6)

59R 72 (91.1) 80 (88.8) 152 (89.9)

59 C/R 6 (7.6) 5 (5.6) 11 (6.5)

S108 0 5 (5.6) 5 (3.0)

108 N 78 (98.7) 82 (91.1) 160 (94.7)

108S/N 1 (1.3) 3 (3.3) 4 (2.4)

I164 79 (100) 90 (100) 169 (100)

164L 0 0 0

164I/L 0 0 0

Pfdhps Klouékanmey
n = 68 (%)

Djougou
n = 85 (%)

Overall
n = 153 (%)

I431 65 (95.6) 82 (96.4) 147 (96.1)

431V 3 (4.4) 1 (1.2) 4 (2.6)

431I/V 0 2 (2.4) 2 (1.3)

S436 41 (60.2) 40 (47.1) 81 (52.9)

436A 22 (32.4) 32 (37.6) 54 (35.3)

436S/A 5 (7.4) 13 (15.3) 18 (11.8)

A437 0 4 (4.7) 4 (2.6)

437G 68 (100) 77 (90.6) 145 (94.8)

437A/G 0 4 (4.7) 4 (2.6)

K540 66 (97.0) 83 (97.6) 149 (97.4)

540E 1 (1.5) 1 (1.2) 2 (1.3)

540K/E 1 (1.5) 1 (1.2) 2 (1.3)

A581 65 (95.6) 84 (98.8) 149 (97.4)

581G 3 (4.4) 1 (1.2) 4 (2.6)

581A/G 0 0 0

A613 65 (95.6) 81 (95.3) 146 (95.4)

613S 3 (4.4) 3 (3.5) 6 (3.9)

613A/S 0 1 (1.2) 1 (0.7)
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the case for the K540E mutation, which has a prevalence 
greater than 10% in many countries in East Africa but 
is rarely reported in West Africa [16, 18]. A significant 
increase in the prevalence of the mutations at codons 
A581G and A613S was observed in Nigeria [27, 43], dem-
onstrating the emergence of these mutations. However, 
their prevalence, even in Benin, is well below the WHO 
thresholds for consideration of changes in the use of IPTp 
(> 95% for K540E and > 10 % for A581G) [44].

Ultimately, the combination of mutations in the Pfd-
hfr and Pfdhps genes is one of several factors that deter-
mines a parasite’s response to SP. Marked regional 
differences in the Pfdhfr and Pfdhps genotypes have been 
observed across Africa [16, 18]. The quadruple (N51I, 
C59R, S108N plus A437G) mutants are widespread in 
West Africa, while the quintuple mutants (N51I, C59R, 
S108N plus A437G, 540E) and sextuple mutants (addi-
tion of Pfdhps A581G and A613T/S or Pfdhfr I164L on 
the quintuple background) predominate in East Africa 
[16, 18–20, 38, 45, 46]. In keeping with these observa-
tions and with a study conducted in Benin between 2008 
and 2010 [37], the majority of isolates in this study were 
quadruple (N51I, C59R, S108N plus A437G ) mutants. 

Table 2  Summary of  haplotypes observed in  Pfdhfr 
and Pfdhps genes

Bold letters denote mutant alleles

Klouékanmey n (%) Djougou n (%) Overall n (%)

Pfdhfr

CIRNI 71 (89.8) 72 (79.9) 143 (84.6)

CNRNI 1 (1.3) 7 (7.8) 8 (4.7)

CNCNC 1 (1.3) 0 1 (0.6)

CNCSI 0 5 (5.6) 5 (3.0)

Mixed-infection 6 (7.6) 6 (6.7) 12 (7.1)

Pfdhps

ISGKAA 39 (57.4) 37 (43.5) 76 (49.6)

IAGKAA 19 (27.9) 26 (30.6) 45 (29.3)

IAAKAA 0 3 (3.5) 3 (2.0)

VAGKGS 3 (4.4) 0 3 (2.0)

ISGEAA 1 (1.5) 1 (1.2) 2 (1.3)

VAGKAS 0 1 (1.2) 1 (0.7)

IAGKAS 0 1 (1.2) 1 (0.7)

ISAKAA 0 1 (1.2) 1 (0.7)

Mixed-infection 6 (8.8) 15 (17.6) 21 (13.7)

Table 3  Summary of combined Pfdhfr and Pfdhps haplotypes. Shaded boxes and bold letters denote mutant alleles. Key 
haplotypes associated with SP resistance include: the quadruple haplotypes, N51I, C59R, S108N plus S436A or A437G; 
the quintuple haplotypes, N51I, C59R, S108N plus A437G and K540E; or N51I, C59R, S108N plus S436A and A437G 
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The sustained high prevalence of these quadruple mutant 
parasites is likely due to persistent SP drug pressure 
from its continual use for IPTp and SMC in Benin. The 
quintuple (N51I, C59R, S108N plus A437G and K540E) 
mutant was observed only in one isolate in Klouékanmey. 
The minority of isolates in this study with the A581G 
and A613S mutations were found in the absence of the 
K540E mutation. These results demonstrate that geno-
types conferring a high level of SP resistance have not 
fully emerged in these study sites, providing support for 
the continued use of SP for IPTp and SMC in Benin.

A few isolates (2.6 %) in this study possessed the Pfdhps 
I431V mutation, which was first described in travelers 
from Nigeria identified in the UK [47]. A recent study 
conducted in Nigeria demonstrated an increase in the 
prevalence of this mutation from 0–6.5 % between 2003 
and 2008, and as high as 46 % in 2010 in Enugu, Nigeria 
[43]. It was also found in pregnant women from other 
sites in Nigeria such as Epe and Ibeju-Lekki [42]. Fur-
thermore, the I431V mutation was seen in isolates from 
pregnant women in Cameroon and Ghanaian travel-
lers [48, 49], suggesting this mutation is emerging in the 
region. Interestingly, to date, the I431V mutation has 
not been observed in other parts of Africa. In concord-
ance with previous studies [42, 49], this mutation was 
observed in combination with other Pfdhps mutations 
(S436A/A437G/A581G/A613S), suggesting this muta-
tion may have occurred only in the presence of the other 
Pfdhps mutations. The implications of this combination 
of Pfdhps mutations remain unclear. While some propose 
these mutations may disrupt the binding of sulfadox-
ine to the Pfdhps active site [43], additional studies are 
needed to fully support this notion and to understand the 
mechanisms involved. Therefore, it is worthwhile to con-
tinue monitoring the prevalence of the I431V mutation, 
along with other mutations, in this region.

Limitations of this study include the fact that the sam-
ples were obtained from a TES conducted in only two 
sites in Benin, and therefore the results obtained may not 
be generalizable to other regions or sites. Moreover, the 
sample size used was small; additional study sites are rec-
ommended for future studies.

Conclusions
The results from this study indicate that the highly sul-
fadoxine resistant Pfdhps alleles are not widespread in 
Benin, supporting the current policy of using SP for IPTp 
and SMC in Benin. However, given the continued use of 
this drug and limited alternative options, frequent moni-
toring of SP resistance markers in order to inform IPTp 
and SMC policies in Benin remains important.
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