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Vector incrimination and transmission 
of avian malaria at an aquarium in Japan: 
mismatch in parasite composition 
between mosquitoes and penguins
Mizue Inumaru1, Atsushi Yamada2, Misa Shimizu1, Ayana Ono1, Makiko Horinouchi1, Tatsuki Shimamoto1, 
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Abstract 

Background:  Captive populations of penguins outside of their natural distributions are often maintained in outdoor 
facilities, such as zoos and aquariums. Consequently, such penguins in captivity are constantly exposed to mosquito 
vectors and risk of avian malarial infection during their active period from spring to autumn, which can be lethal to 
these naïve birds. Previous studies have investigated parasite prevalence in mosquitoes or penguins, but simultane-
ous investigations, which would be crucial to monitor the transmission dynamics and cycle within a facility, have not 
been done. To identify dominant lineages and trends, multiple-year surveys are recommended.

Methods:  Avian malaria parasites (Plasmodium spp.) and related haemosporidia were tested in penguins and mos-
quitoes at an aquarium in Japan through multiple years from 2011 to 2018. Prevalence and dynamics were confirmed, 
and molecular analyses targeting the protozoal cytb gene were used to reveal the transmission cycle. Blood meals of 
mosquitoes were also identified using molecular methods.

Results:  Parasite detection in penguins tended to fluctuate within an individual. Two Plasmodium lineages were 
consistently detected in mosquitoes that had fed on penguins and wild birds observed around the aquarium. Plas-
modium lineage CXPIP09 was detected from both mosquitoes and penguins, suggesting active transmission at this 
facility. However, Plasmodium cathemerium PADOM02 was only detected in mosquitoes, which may be due to host, 
vector or parasite-related factors, or detection methods and their limits. Additionally, Haemoproteus larae SPMAG12 
was detected from penguins, suggesting active transmission via biting midges.

Conclusions:  The mismatch in parasite composition between penguins and mosquitoes shows that multiple 
aspects such as captive birds, wild birds and vector insects should be monitored in order to better understand and 
control avian malarial infection within ex-situ conservation facilities. Furthermore, morphological analyses would be 
needed to confirm competency and infection dynamics of avian malaria parasites.
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Background
Many wild populations of penguins are at risk of extinc-
tion as a result of multiple threats, including pollution, 
habitat loss, climate change, and infectious diseases. 
Many species have been designated  as  endangered 
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species [1]. As part of conservation efforts, ex-situ pop-
ulations have been established in zoos, aquariums and 
other breeding facilities throughout the world. Avian 
malaria, caused by Plasmodium parasites, is mainly 
transmitted by Culex mosquitoes [2–5]. Due to their 
evolutionary background in environments of little con-
tact with vector species, penguins are mostly naïve to 
avian malaria and many lethal cases of avian malarial 
infections have been reported in captive penguins [6, 7]. 
While indoor enclosures can substantially decrease risk 
of infection by lowering contact with mosquito vectors 
[6], penguins at most facilities are kept in open-air enclo-
sures throughout the year where mosquito vectors can 
freely access these captive birds. Mosquitoes can there-
fore transmit avian malaria parasites among and between 
captive penguins and wild birds that inhabit surrounding 
areas [2, 8, 9]. Local mosquitoes and wild birds maintain 
a constant transmission cycle of avian malaria, which 
can consequently be transmitted to captive individuals 
via vectors. Previous studies have indicated that Culex 
mosquitoes are the primary vectors transmitting Plasmo-
dium to captive penguins [7–9]. However, most studies 
have investigated the prevalence in mosquitoes following 
mortality in penguins, and simultaneous investigations of 
mosquitoes and penguins have not been done. The role 
of captive penguins in avian malarial parasite transmis-
sion in zoos and aquariums has been poorly investigated. 
In order to better understand the infection dynamics and 
transmission within zoo and aquarium facilities, simulta-
neous investigations of haemosporidia in both penguins 
and mosquitoes would be needed. Blood-feeding pat-
terns of mosquitoes are an important factor in explain-
ing transmission dynamics of avian malaria parasites and 
other vector-borne pathogens [10–13]. Blood meal anal-
ysis can help to indirectly reveal the transmission cycle 
within the survey area. Whether blood meal analysis can 
accurately estimate parasite prevalence in avian hosts has 
not been assessed.

In Japan, over 3000 penguins are kept at zoos and 
aquariums, making one of the largest ex-situ popula-
tions in the world [14, 15]. Sporadic detections of avian 
malaria parasites have been reported within the coun-
try [16]. However, infection status had not been moni-
tored over multiple years and infection dynamics are 
unknown. Likewise, parasite prevalence in mosquitoes 
caught at zoological gardens have been investigated in 
only a single year [8, 12]. Parasite intensity in host birds 
is known to fluctuate in relation to circannual changes in 
both the host and parasite physiology [2, 17–19]. A pre-
vious study demonstrated changes in Plasmodium line-
age composition in Culex mosquitoes between years, 
and also noted that dominant lineages were consistently 
found in all years [20]. Hence, multiple-year studies are 

recommended to determine transmission within a study 
area.

In this study, the prevalence and infection dynamics 
of avian malaria and related haemosporidian parasites 
were investigated in both penguins and mosquitoes at 
an aquarium in northern Japan. Parasite lineages from 
penguins and mosquitoes were compared across multi-
ple years to determine the transmission dynamics, iden-
tify vector species (vector incrimination), and reveal the 
role of captive penguins within the transmission cycle. 
Blood meal analysis in mosquitoes was also used to com-
pare results between penguins and mosquitoes in order 
to evaluate how well such indirect evaluations using mos-
quitoes reflect the actual host parasite prevalence.

Methods
Study site
The study took place at Niigata City Aquarium Marine-
pia Nihonkai (37°55′ N 139°01′ E), located on the coast 
of the Sea of Japan. Penguins are the only avian species 
kept at the facility and are kept in an outdoor enclosure 
during the whole year, where free access of mosquitoes 
is possible. The enclosure is connected to a shack, where 
penguins are able to go in and out freely. Two species, 
Humboldt penguins (Spheniscus humboldti) and south-
ern rockhopper penguins (Eudyptes chrysocome), are 
kept at the aquarium. The facility is surrounded by for-
ested areas. Roughly 20  km southwest of the aquarium 
is the Sakata wetland, where avian malaria parasite DNA 
was previously detected from mosquitoes [20]. A fresh-
water biotope area was created within the facility in 2013 
for recreational and educational purposes.

Penguin samples
Penguins were sampled from 2012 to 2018, mainly during 
summer and spring, for their routine medical check-ups. 
No anti-malarial medications were used during the study, 
and the penguins were in good health. All penguins were 
born within Japan. In total, 104 Humboldt penguins 
and two southern rockhopper penguins were sampled. 
Some individuals were sampled multiple times during 
the course of the study, although sampling frequency and 
interval varied between individuals. Blood samples were 
taken from the metatarsal vein and placed in microtubes 
containing 70% ethanol. The samples were sent to Nihon 
University College of Bioresource Sciences Laboratory of 
Biomedical Science, Fujisawa, Japan and kept at − 20  °C 
until further processes. Blood smears were not prepared 
in this study and microscopic observation of parasites 
was not possible.

Deoxyribonucleic acid (DNA) extraction was done by 
standard phenol–chloroform method, using Tris–EDTA 
(ethylene-diamine-tetra-acetic acid) for the final buffer. 
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DNA concentration and quality were confirmed with a 
spectrophotometer (Nanodrop 1000 or Nanodrop One 
Microvolume UV–Vis Spectrophotometer; Thermo 
Fisher Scientific, MA, USA), and the concentration was 
adjusted to 50 ng/µl. Haemosporidian parasite DNA was 
detected by a nested polymerase chain reaction (PCR) 
targeting the partial mitochondrial cytochrome b (cytb) 
gene of the parasite [21]. In brief, the first PCR was car-
ried out with the HaemNFI/HaemNR3 primer set, fol-
lowed by a second PCR using HaemF/HaemR2 to detect 
Plasmodium/Haemoproteus and HaemFL/HaemR2L 
to detect Leucocytozoon parasites. The reaction mix-
ture contained 2  mM MgCL2, 0.2  mM deoxynucleotide 
triphosphate, 10 × ExTaq Mg2+ free buffer (TaKaRa, 
Ohtsu, Japan), 0.625 U Ex-Taq (TaKaRa), 10 µM of each 
primer, and 50 ng DNA template, making a final volume 
of 25  µl each. PCR conditions were followed according 
to protocol [21]. Negative controls containing distilled 
water instead of DNA was included in every reaction. 
Positive controls were also included, using 50  ng DNA 
templates of Plasmodium gallinaceum GALLUS01 from 
an experimentally infected chicken (Gallus gallus) and 
Leucocytozoon sp. OTULEM04 from a Sunda scops-owl 
(Otus lempiji) rescued in central Japan. Amplifications 
were confirmed and positive samples were sequenced fol-
lowing a previously described protocol [22]. The obtained 
sequences were assembled and compared with sequences 
in the GenBank database using the Basic Local Align-
ment Search Tool (BLAST) [23] and the MalAvi database 
[24]. In the case of any suspicious findings, the sample 
was re-tested using newly extracted DNA.

Mosquito samples
Mosquitoes were sampled during the summers (June 
to October) of 2011 to 2014 and 2018. Females rest-
ing within the penguin shack were directly captured 
in the morning or evening, using film canisters (height 
5 cm × diameter 3 cm) or hand-held aspirators. All mos-
quitoes were morphologically identified to a species [25, 
26]. Mosquitoes were placed in − 20  °C until further 
processes.

For the mosquitoes captured from 2011 to 2014, indi-
viduals were randomly selected. Among selected mos-
quitoes, unfed individuals were removed and only 
blood-fed (including gravid) individuals were used for 
analysis. Each individual was separated into head-thorax 
and abdomen under an Olympus SZ61TR stereo micro-
scope (Olympus, Tokyo, Japan) in order to differentiate 
the biological status of the parasite (i.e., sporozoites in 
the salivary gland or gametocytes in the blood meal). Up 
to five head-thoraxes of the same species were pooled for 
mosquitoes caught in 2012 to 2014. All abdomen sam-
ples from 2012 to 2014 and all samples from 2011 were 

processed individually. Mosquitoes caught in 2018 were 
classified into blood-fed or unfed, and all blood-fed indi-
viduals were processed individually without dissection.

DNA was extracted from each sample with a REDEx-
tract-N-Amp Tissue PCR kit (SIGMA, St Louis, MO, 
USA). A nested-PCR targeting the partial cytb gene of 
Plasmodium/Haemoproteus parasites was performed, 
using the DW2/DW4 primer set for first PCR [27] and 
HAEMNF/HAEMNR for second PCR [28]. The reaction 
mixture contained 4  mM MgCl2, 0.4  mM deoxynucleo-
tide triphosphate, 10 × ExTaq buffer (Mg2+ free; Takara, 
Ohtsu, Japan), 1 U Ex-Taq (Takara), 0.4 µM each primer 
and 1 µl of template DNA, making the final volume 25 µl 
each. Positive and negative controls were prepared the 
same as for bird samples. PCR conditions were followed 
according to protocol [27, 28]. The remaining processes 
(i.e., amplification to sequence comparisons) were done 
following the same methods as for the bird samples.

The abdomens of blood-fed mosquitoes were used to 
identify the blood-source species. Semi-nested PCRs 
were performed using the primers Avian-3, Avian-4 
and Avian-8 targeting the cytb gene of birds; and Mam-
malian-1, Mammalian-2 and Mammalian-7 targeting 
the cytb gene of mammals [29]. The reaction mixture 
was prepared with the same composition as for parasite 
detection from mosquitoes, and PCR conditions were 
followed according to protocol [29]. A negative control 
containing distilled water instead of DNA was included. 
All further processes used the same method as above, 
and the blood-source was identified using the GenBank 
database [23].

Statistical analyses
The annual parasite prevalence in penguins and mos-
quitoes was compared using Fisher’s exact test with the 
software R version 3.6.3 [30]. For mosquitoes, preva-
lence (or pooled prevalence) was tested separately for the 
head-thorax and abdomen. Multiple comparisons with 
the Bonferroni correction were carried out as a post-hoc 
test using the package ‘fmsb’ [31]. Plasmodium spp. and 
Haemoproteus spp. were tested separately for penguins. 
If multiple samples were obtained from the same indi-
vidual in the same year, only one sample was counted. 
If results differed between the samples (e.g., one posi-
tive and one negative), the positive sample was counted. 
Statistical significance was determined using the 5% sig-
nificance level. The maximum likelihood estimation of 
minimum infection rates (MIRs) were calculated using 
PooledInfRate to estimate the number of infected mos-
quitoes per 1,000 individuals for pooled samples of vary-
ing sizes [32]. For mosquitoes caught in 2011 to 2014, the 
MIR was calculated separately for head-thorax and abdo-
men. For mosquitoes caught in 2011, an individual was 
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considered positive if either the head-thorax or abdomen 
was positive, and the total MIR was calculated.

Results
Prevalence and genetic diversity of haemosporidian 
lineages in penguins
Over the course of 7  years, a total of 268 blood sam-
ples were obtained from 106 individuals. Nine of the 
tested penguins (8.49%) were positive for Plasmodium 
or Haemoproteus in at least one sampling time point 
(Fig.  1). Annual prevalence ranged from 0 to 4.26% for 
Plasmodium and 0 to 6.52% for Haemoproteus (Table 1). 
No significant difference was detected among years 
for both genera (Fisher’s exact test: Plasmodium spp. 
p = 0.65; Haemoproteus spp. p = 0.35). Infection status 
tended to fluctuate in the positive individuals among 
years, going from positive to negative and vice versa. Of 
the positive individuals, Plasmodium spp. and Haemo-
proteus spp. were detected from five individuals each. In 
one individual (no. 35), Plasmodium sp. CXPIP09 was 
initially detected, but Haemoproteus larae SPMAG12 
was detected in later samples. Three Plasmodium line-
ages were detected, including one newly detected lineage. 
The new lineage, SPHUM05 was deposited to GenBank 
and MalAvi (see Additional file 1: Table S1 for informa-
tion on the detected lineages). One lineage was identical 
to Caleu1, previously detected from a streaked shear-
water (Calonectris leucomelas) of Japan (accession no. 

AB601429). This lineage was newly named SPHUM03 
according to MalAvi nomenclature and was deposited to 
GenBank and MalAvi. Haemoproteus larae SPMAG12 
was the only detected Haemoproteus lineage. Leucocyto-
zoon was not detected in this study.

Prevalence and genetic diversity of haemosporidian 
lineages in vectors
Culex pipiens group and Culex tritaeniorhynchus 
were caught in all sampling years (Table  2). Some 
years, Aedes albopictus was caught in small numbers, 

Fig. 1  Parasite detection dynamics in PCR-positive penguins. Blue marks: Plasmodium spp. detection; red marks: Haemoproteus spp. detections; 
open circles: negative

Table 1  Annual prevalence of  Plasmodium 
and Haemoproteus by PCR in penguins

Duplicate samples from the same individual in the same year have been 
removed

Year Number 
of samples

Plasmodium Haemoproteus

Number 
positive

Prevalence 
(%)

Number 
positive

Prevalence 
(%)

2012 47 2 4.26 0 0

2013 33 0 0 0 0

2014 33 1 3.03 1 3.03

2015 35 0 0 2 5.71

2016 45 0 0 2 4.44

2017 29 1 3.45 0 0

2018 46 1 2.17 3 6.52
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and one Culex bitaeniorhynchus was caught in 2018. 
Plasmodium were detected from Cx. pipiens group 
every sampling year. Plasmodium spp. CXPIP09 and 
PADOM02 were detected from Cx. pipiens group in 
all years (Table  3, Fig.  2). The prevalence of these lin-
eages did not significantly differ among years (Fisher’s 
exact test: CXPIP09 pooled prevalence in head-thorax 
p = 0.09; CXPIP09 prevalence in abdomen p = 0.08; 
PADOM02 prevalence in abdomen p = 0.13). For the 
pooled PADOM02 prevalence in head-thorax, Fish-
er’s exact test initially resulted in a significant p-value 
(p = 0.01). However, the Bonferroni-corrected pairwise 
Fisher’s test revealed no significant results (multiple 
comparison Fisher’s test with Bonferroni correction: 
2011 vs 2013 p = 0.52; 2011 vs 2013 p = 0.06; all others 
p = 1.00). The MIR of these two lineages, as well as the 
overall MIR, tended to be higher in abdomen samples 
compared to head-thorax samples. Analysis of mosqui-
toes caught in 2011 reveal that many individuals were 
positive for only head-thorax or abdomen (Table  3). 
Furthermore, two individuals were positive for different 
lineages in the head-thorax and abdomen. Plasmodium 
sp. SPHUM05 was also detected from head-thorax of 
three Cx. pipiens group (Table 3). Plasmodium-positive 

Cx. tritaeniorhynchus were caught only in 2018, and 
the lineages CXPIP09 and GALLUS02 were detected.

Blood meal analyses
Blood hosts of the captured mosquitoes were mostly 
penguins, but a few Cx. pipiens had fed on wild birds, 
including the Japanese white-eye (Zosterops japonicus), 
oriental greenfinch (Chloris sinica), and Eurasian tree 
sparrow (Passer montanus) (Table 2). Most Plasmodium-
positive Cx. pipiens had fed on penguins. Meanwhile, 
some individuals positive for the lineages CXPIP09 and 
PADOM02 had fed on Eurasian tree sparrows (Fig.  2). 
Both Plasmodium-positive Cx. tritaeniorhynchus had fed 
on penguins.

Discussion
Infection dynamics in penguins
A total of 9 penguins were positive for avian haemos-
poridia. All individuals were in good health, exhibiting 
no observable symptoms. Previous studies have reported 
lethal cases of avian malaria in captive penguins [6, 7]. 
Differences in virulence have been suggested between 
cytb lineages and MSP1 types [16, 33]. Lineages detected 
in this study may potentially be less virulent compared 

Table 2  Number of female mosquitoes collected and tested, including blood meal analysis results

a  Includes Plasmodium positive individuals and/or pools
b  Bloodmeal investigated for only Plasmodium-positive mosquitoes

Year Species Caught Tested Blood meal

Penguin Wild bird Unknown

2011 Cx. pipiens group 1013 413a 298 1 114

Cx. tritaeniorhynchus 19 17 8 0 9

Ae. albopictus 9 1 – – –

sub-total 1041 431 306 1 123

2012 Cx. pipiens group 3652 329a 239 2 88

Cx. tritaeniorhynchus 2 2 2 0 0

Ae. albopictus 4 1 – – –

sub-total 3658 332 241 2 88

2013 Cx. pipiens group 783 220a 159 2 59

Cx. tritaeniorhynchus 26 26 24 0 2

sub-total 809 246 183 2 61

2014 Cx. pipiens group 536 142a 109 2 31

Cx. tritaeniorhynchus 1 1 0 0 1

sub-total 537 143 109 2 32

2018 Cx. pipiens group 932 901ab 20 2 0

Cx. tritaeniorhynchus 30 30ab 2 0 0

Cx. bitaeniorhynchus 1 1 – – –

Ae. albopictus 2 0 – – –

sub-total 965 932 22 2 0

total 7010 2084 867 9 304
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to other lineages, although further monitoring would be 
needed to confirm. While no positive individuals were 
detected in some years, the parasite prevalence of both 
genera did not significantly differ annually. Therefore, 
both Plasmodium and Haemoproteus are thought to be 
maintained within the penguin population at low levels. 
For some individuals, samples were initially negative, 
but later samples were positive. Such cases may possibly 
reflect newly gained infections. Meanwhile, in many indi-
viduals, the infection status went from positive to nega-
tive (nos. 33 and 72) or fluctuated (nos. 2, 15, 23, 35). The 

parasite intensity is generally known to increase in the 
spring and summer (i.e., spring relapse) and decrease, or 
even disappear from the bloodstream, in the autumn and 
winter [2, 17–19]. While PCR is a highly sensitive tool for 
detection of DNA, extremely low parasitaemia may pos-
sibly be below the detection limit. In a recent study, PCRs 
of Haemoproteus-infected penguin DNA were negative 
using 50  ng DNA template, but positive using 200  ng 
DNA [22]. All PCR tests in this study were done using 
50 ng of DNA template. Circannual changes could have 
possibly caused a fluctuation in parasitaemia, causing 

Fig. 2  Minimum infection rate (MIR) of Plasmodium in blood-fed Culex pipiens group and blood meal composition of Plasmodium-positive 
individuals. Plasmodium sp. CXPIP09 (a) and Plasmodium cathemerium PADOM02 (b). MIR is shown by each sample type, and error bars 
represent ± 95% of confidence interval
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some samples to become negative due to the PCR detec-
tion limit. The use of higher DNA concentration may be 
needed to monitor the infection status of these penguins 
more precisely. Morphological detections and parasi-
taemia counts using blood smears would also help to 
understand causes of these fluctuating results. Note that 
for one individual (no. 35), the parasite lineage changed 
from Plasmodium sp. CXPIP09 to Haemoproteus sp. 
SPMAG12. This individual may have been newly infected 
with SPMAG12 during the study. However, co-infections 
are difficult to detect, especially when co-infected with 
Plasmodium and Haemoproteus, and one parasite may 
be favoured over the other using PCR [34–36]. In rela-
tion to the circannual fluctuation of parasitaemia, detect-
ability may also fluctuate between these lineages during 
co-infection. Therefore, it was not possible to distinguish 
new detections or fluctuations of parasitaemia in this 
study.

Infection dynamics in mosquitoes
Plasmodium-positive Cx. pipiens group were detected in 
all years of sampling, and the prevalence of both CXPIP09 
and PADOM02 was relatively stable between years. These 
results suggest that Cx. pipiens group is the primary vec-
tor of avian malarial parasites at this aquarium and that 
infection dynamics are relatively stable among years. The 
MIR tended to be higher in the abdomen compared to 
the head-thorax, presumably due to the presence of the 
gametocytes within the blood meal. In general, positive 
detections of avian malaria from the head-thorax suggest 
the presence of sporozoites in the salivary gland, which 
are necessary for the transmission of avian malaria from 
mosquitoes to host birds. Similarly, positive detections 
from the abdomen suggest the presence of gametocytes 
in the blood meal or oocysts in the midgut [2]. Digestion 
of blood in the abdomen takes approximately 2 to 5 days, 
although the period differs by species and temperature 
[37–40]. Plasmodium sporozoites reach the salivary 
gland of the mosquito in 4 to 14  days post-blood meal, 
also differing by factors including parasite species, inten-
sity and temperature [2, 39, 41]. Considering the duration 
and timing of blood meal digestion and parasite develop-
ment, parasite detections from the head-thorax of blood-
fed mosquitoes is thought to be due to the presence of 
sporozoites obtained from previous blood meals. Hence, 
mosquitoes would have had to take a second blood meal, 
while detection in the abdomen requires only one blood 
meal. However, it may be possible that parasite detec-
tions in the head-thorax are due to remnant blood meal 
within the head-thorax [11]. If conditions are favourable, 
a mosquito can complete digestion, oviposition and take 
a second blood meal within 5 to 7 days of the first blood 
meal [38, 41]. Oocysts can persist in the midgut for up to 

16 to 24 days post-blood meal [11, 42, 43], which means 
that detections from blood-fed abdomens could also 
potentially be due to oocysts from the first blood meal. 
Meanwhile, in two individuals, different parasite lineages 
were detected from the head-thorax and abdomen. It is 
expected that the same lineage would be detected if rem-
nant blood meal was in the head-thorax. Such cases sug-
gest that the lineage in the head-thorax was obtained in 
the first blood meal, and the lineage in the abdomen was 
obtained by the second blood meal.

Plasmodium parasites were detected from Cx. tritae-
niorhynchus in only 2018. Far fewer Cx. tritaeniorhyn-
chus were caught each year compared to Cx. pipiens 
group, and this may have resulted in the low detection 
rate. These two species have different preferences in rest-
ing locations, as Cx. tritaeniorhynchus prefers outdoor 
environments, while Cx. pipiens group prefers indoor 
environments [39, 44, 45]. All mosquito collection in this 
study was done inside the penguin shack. Outdoor col-
lections of mosquitoes may result in an increased col-
lection of Cx. tritaeniorhynchus, which may offer a more 
accurate estimation of parasite prevalence in this species.

Transmission cycle
In total, three and four Plasmodium lineages were 
detected from penguins and mosquitoes, respectively. 
Of these, CXPIP09 and SPHUM05 were the only shared 
lineages between penguins and mosquitoes. CXPIP09 is 
widely distributed in Japan and has thus far been detected 
only in Japan. It has been previously detected from both 
mosquitoes and wild birds (see Additional file 1: Table S1 
for detailed information on the detected lineages, includ-
ing previous detections). Both sporozoites and oocysts 
of CXPIP09 have been confirmed in Cx. pipiens group, 
verifying that this mosquito species is a competent vec-
tor [5]. This lineage was detected from mosquitoes in all 
sampling years, strongly suggesting that this lineage is 
maintained at the study site. Despite the constant detec-
tion and stable MIR among mosquitoes, CXPIP09 was 
only detected from two penguins throughout the study. 
This could possibly be due to the limited detectability of 
sub-microscopic parasitaemia, as discussed above. Even 
when parasitaemia is sub-microscopic, mosquitoes are 
capable of developing oocysts [46]. Another possibil-
ity could be that infected penguins are more attractive 
to mosquitoes and therefore get bitten more often. Host 
birds with chronic infections have been shown to attract 
significantly more mosquitoes compared to birds with 
acute infection and uninfected birds [47–50]. Both pos-
sibilities are assuming that penguins are competent hosts 
of CXPIP09, which has not yet been confirmed due to the 
absence of blood smears. While most of the CXPIP09-
infected mosquitoes had fed on penguins, some had fed 
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on wild Eurasian tree sparrows. This suggests that Cx. 
pipiens group can carry CXPIP09 between penguins 
at the facility and wild birds that inhabit the surround-
ing areas. These results are in agreement with previous 
studies that have established Plasmodium spp. in captive 
penguins are acquired from wild birds in the surround-
ings [7, 9]. Meanwhile, if penguins are competent hosts, 
they may also act as reservoirs for transmission. To our 
knowledge, CXPIP09 was detected from Cx. tritaenio-
rhynchus for the first time. However, the mosquito was 
blood-fed and its vector competency remains unknown.

Plasmodium sp. SPHUM05 was detected from the 
head-thorax of three Cx. pipiens group and blood of two 
penguins. This lineage was detected for the first time and 
information is limited. However, as all penguins were 
born within Japan, infections had to have occurred in 
Japan although the natural host has not yet been iden-
tified. Detection from the head-thorax of mosquitoes 
suggests the possibility that Cx. pipiens group may be 
competent vectors of this lineage, but further investiga-
tions are necessary.

The lineage PADOM02 is widespread and has been 
detected from mainly passeriform birds of Europe, 
Asia, North America, and North Africa (see Additional 
file  1: Table  S1). It has also been detected from mul-
tiple mosquito species of Japan, including Cx. pipiens 
group. A recent study revealed that this lineage belongs 
to the morphological species Plasmodium catheme-
rium and that Cx. pipiens group are competent vectors 
of this lineage [51]. In this study, this lineage was con-
stantly detected from mosquitoes suggesting that this 
lineage is also a dominant lineage maintained within 
the area. Meanwhile, PADOM02 was not detected from 
penguins. However, blood meal analysis revealed that 
positive mosquitoes had mostly fed on penguins and 
some on Eurasian tree sparrows. This mismatch can be 
explained by three hypotheses. First, the parasitaemia 
in penguins may be too low for PCR detection, as dis-
cussed above. As previous detections of this lineages 
have been from predominantly passeriform birds, this 
hypothesis seems rather improbable. Observations of 
blood smears and PCR using higher DNA concentration 
would help to further investigate this hypothesis. Sec-
ond, mosquitoes may have taken their first blood meal 
from an infected wild bird and second blood meal from 
an uninfected penguin after oviposition. As mentioned 
above, in favourable conditions, mosquitoes can take a 
second blood meal within 7 days of the first blood meal 
[38, 41], while oocysts and sporozoites can persist for up 
to 24 days post-blood meal [11, 42, 43]. If the first blood 
meal was from a PADOM02-infected wild bird and the 
second from an uninfected penguin, the persisting para-
site may have been detected along with blood meal from 

the second host. Third, mosquitoes may have subse-
quently taken blood meals from multiple hosts. If suffi-
cient amounts of blood are not obtained in the first blood 
meal, mosquitoes can take multiple meals from different 
individuals to achieve sufficient amounts for oviposition 
[52]. The latter two hypotheses in combination with the 
lack of detection from penguins suggest that penguins 
are incompetent hosts of PADOM02 and are refractory. 
Avian parasites have been detected from vectors that 
had fed on non-avian hosts [53, 54], suggesting that such 
mismatches are not necessarily rare. Blood meal analysis 
is a useful tool especially when investigating vector host 
range and preferences. However, the blood host should 
not be directly interpreted as the avian host of the para-
site. Meanwhile, detection of Eurasian tree sparrow DNA 
from PADOM02-infected mosquitoes is not surprising, 
as Eurasian tree sparrows are likely to be natural hosts 
of PADOM02, considering previous detections from this 
species [55].

Plasmodium juxtanucleare (GALLUS02) was detected 
from one Cx. tritaeniorhynchus that had fed on penguins. 
This species has a wide distribution across the Neotropi-
cal, Ethiopian and Oriental regions and primary hosts 
are members of the Phasianidae family, including both 
wild and captive birds [2, 56–58] (see Additional file  1: 
Table S1 for information on GALLUS02). Culex mosqui-
toes have been confirmed to be vectors of this species, 
including Cx. tritaeniorhynchus [57]. GALLUS02 was 
previously detected in one Cx. pipiens group caught in 
Sakata wetland of Niigata [20], and may persist within the 
area in low levels. While it is unknown whether penguins 
are competent hosts of GALLUS02, a previous study sug-
gests that P. juxtanucleare may be associated to the mor-
tality of black-footed penguins (Spheniscus demersus) 
[59]. Continued monitoring of parasite prevalence and 
close monitoring of health status for penguins should be 
carried out.

Two lineages, Plasmodium sp. SPHUM03 and Haemo-
proteus larae SPMAG12, were detected solely from pen-
guins. The former has been detected previously from a 
streaked shearwater of Niigata (accession no. AB601429) 
and may presumably be transmitted between captive 
penguins and wild birds via mosquitoes. Vector species 
of this lineage are still unknown. In this study, numerous 
Cx. pipiens were sampled and investigated for avian hae-
mosporidia. However, mosquito species other than Cx. 
pipiens group were far less investigated due to the limited 
sample size, and such species may possibly be involved in 
the transmission of this lineage. The latter was recently 
identified as Haemoproteus larae and is suggested to be 
transmitted between captive penguins and wild gulls via 
biting midges [22]. The aquarium in this study is located 
on the coast where gulls are frequently seen. Biting 



Page 10 of 12Inumaru et al. Malar J          (2021) 20:136 

midges have been seen within the penguin shack (pers. 
comm.). Like other facilities in Japan, Haemoproteus 
larae (SPMAG12) may be regularly transmitted within 
and around this facility.

Conclusions
Avian Plasmodium was detected by PCR from both mos-
quitoes and penguins at an aquarium in Japan. Some lin-
eages suggest active transmission between wild birds and 
penguins via mosquitoes, supported by blood meal anal-
ysis results. Meanwhile, PADOM02 was only detected 
from mosquitoes, including many that had fed on pen-
guins. Such mismatching results may be due to host, 
vector or parasite-related factors, or detection methods 
and their limits. Penguins may possibly be competent for 
some local lineages, and infected individuals may act as 
reservoirs to drive the local transmission. Meanwhile, 
penguins may be refractory to other lineages and trans-
mission of these lineages may be limited to the local avian 
and vector fauna. Furthermore, analyses on blood meal 
and parasite prevalence should be carefully assessed, as 
blood hosts may not always be the parasite host. Haemo-
proteus larae (SPMAG12) was detected from penguins, 
indicating transmission between penguins and biting 
midges at this facility. To further understand the infec-
tion dynamics and transmission cycle of avian haemos-
poridia at this facility, the combination of molecular and 
morphological methods for detection of parasites would 
be needed. This study emphasizes the need to investi-
gate all aspects such as captive birds, wild birds and vec-
tor insects to better understand the transmission cycle 
within ex-situ conservation facilities.
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