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Abstract 

Background:  Malaria remains a public health burden especially in Nigeria. To develop new malaria control and 
elimination strategies or refine existing ones, understanding parasite population diversity and transmission patterns is 
crucial.

Methods:  In this study, characterization of the parasite diversity and structure of Plasmodium falciparum isolates from 
633 dried blood spot samples in Nigeria was carried out using 12 microsatellite loci of P. falciparum. These microsatel-
lite loci were amplified via semi-nested polymerase chain reaction (PCR) and fragments were analysed using popula-
tion genetic tools.

Results:  Estimates of parasite genetic diversity, such as mean number of different alleles (13.52), effective alleles 
(7.13), allelic richness (11.15) and expected heterozygosity (0.804), were high. Overall linkage disequilibrium was weak 
(0.006, P < 0.001). Parasite population structure was low (Fst: 0.008–0.105, AMOVA: 0.039).

Conclusion:  The high level of parasite genetic diversity and low population structuring in this study suggests that 
parasite populations circulating in Nigeria are homogenous. However, higher resolution methods, such as the 24 
SNP barcode and whole genome sequencing, may capture more specific parasite genetic signatures circulating in 
the country. The results obtained can be used as a baseline for parasite genetic diversity and structure, aiding in the 
formulation of appropriate therapeutic and control strategies in Nigeria.
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Background
Although the incidence of malaria infections and malaria-
associated mortality has reduced in many African coun-
tries [1–3], transmission continues in endemic regions 
despite intensified efforts towards prevention, control 
and eradication [4, 5]. This is due, in part, to the high 
genetic diversity of Plasmodium falciparum that contrib-
utes to increased transmission rate and spread of resist-
ant parasites [6]. Therefore, understanding the extent 
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of genetic diversity, transmission intensity, and parasite 
population structure in Nigeria—the most malaria bur-
dened country—is essential if the goal of malaria control 
or elimination is to be achieved.

Molecular techniques play important roles in the anal-
yses of genetic diversity, transmission dynamics, and 
population structure of P. falciparum field isolates. Early 
molecular studies focused mostly on the use of poly-
morphic markers, such as merozoite surface protein 1 
(msp-1), merozoite surface protein 2 (msp-2) and gluta-
mate-rich protein (glurp) to characterize P. falciparum 
genetic diversity and structure in Nigeria [7–9]. These 
markers were also useful in monitoring drug efficacy 
with regards to classification of recurrent P. falciparum 
parasitaemia as re-infection or recrudescent infection [6, 
10, 11]. However, there have been contrasting reports of 
polymorphisms in MSP-1 and MSP-2 in earlier studies in 
Nigeria [6, 12–14], which is associated with the fact that 
these antigenic markers are often under intense immune 
pressure [15–17]. The genotyping results provided by 
these markers can, therefore, potentially lead to a masked 
and distorted view of the population structure and trans-
mission patterns which may account for observed vari-
ations across parasite populations circulating in a given 
environment [6].

Microsatellite loci have been suggested to be better 
alternatives to msp-1, msp-2 and glurp due to their abun-
dance, putative neutrality and higher levels of polymor-
phisms [18]. This molecular technique remains one of 
the most efficient and reliable methods for analyzing the 
genetic diversity of falciparum populations for epidemio-
logical and drug efficacy purposes within countries and 
across continents [19]. In past studies of using microsat-
ellite analyses, it was observed that parasites from areas 
of low malaria transmission [19] (< 1% infection) have 
less genetic diversity but more population structure and 
greater linkage disequilibrium (i.e., more non-random 
association among alleles across multiple loci) [4, 19–21]. 
Contrary, in regions of high malaria transmission, indi-
viduals are more likely to be infected by more than one 
P. falciparum parasite thereby resulting in an increase 
in the rate of recombination and subsequently, highly 
diverse population with low linkage disequilibrium [18, 
19, 22]. Although, some studies report a deviation from 
the norm whereby high levels of heterozygosity (a meas-
ure of genetic diversity) is observed in several low trans-
mission countries [18, 23, 24]. This suggests that a high 
level of heterozygosity may reflect past human demo-
graphic processes as opposed to recent epidemiological 
factors [25].

The objective of this study was to investigate the 
genetic diversity of circulating P. falciparum parasites 
and their population structures in Nigerian children 

6–96 months old with uncomplicated infections, treated 
with artemisinin-based combination therapy (ACT).

Methods
Study site
This is a retrospective, cross-sectional, community-
based study that is part of a larger drug therapeutic effi-
cacy testing (DTET) study for monitoring anti-malarial 
efficacy of artesunate-amodiaquine (AA), artemether-
lumefantrine (AL) and dihydroartemisinin-piperaquine 
(DHP) in the treatment of uncomplicated P. falciparum 
infections in children aged 6–96  months old. A cohort 
of children were enrolled from nine sentinel sites of the 
National Malaria Elimination Program of the Federal 
Ministry of Health (located in six geographical zones of 
Nigeria), namely; Numan (n = 48), Bodinga (n = 50), Kura 
(n = 100), Barkin Ladi (n = 100), Ilorin (n = 58), Ibadan 
(n = 50), Otuasegha (n = 45), Agbani (n = 100) and Ogwa 
(n = 82) in Adamawa, Sokoto, Kano, Plateau, Kwara, Oyo, 
Bayelsa, Enugu and Imo States, respectively.

Study population
Children aged 6–96 months old were eligible for enroll-
ment in the efficacy study if they had symptoms compat-
ible with uncomplicated malaria such as fever, anorexia, 
vomiting or abdominal discomfort with or without diar-
rhea with P. falciparum infections.

Sample collection
Filter papers containing dried blood spots (DBS) 
obtained from 633 children confirmed as malaria posi-
tive by microscopy were randomly selected for this study. 
All DBS samples were collected in 2014 (Adamawa, 
Bayelsa, Imo, Kwara, Oyo and Sokoto) and 2018 (Enugu, 
Kano and Plateau). Samples were collected for a dura-
tion of three months (July–September) which represents 
intense malaria transmission season in Nigeria. Two to 
three drops of finger-pricked blood samples were blotted 
on 3 mm Whatman filter paper (Whatman International 
Limited, Maidstone, UK) before treatment initiation (Day 
0). The blood samples impregnated on to filter papers 
were allowed to air-dry properly at room temperature, 
and DBS were kept in airtight envelopes with silica gel at 
room temperature until analysed.

DNA extraction
DNA was extracted from DBS for parasite genetic diver-
sity and population structure studies as previously 
described [26]. DNeasy Blood and Tissue extraction kit 
(Qiagen, Germany) was used to extract parasite DNA 
from DBS following the manufacturer’s protocol.
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Plasmodium falciparum genotyping by microsatellite loci 
analysis
Semi-nested PCR amplification of 12 P. falciparum 
microsatellite loci was done using a previously described 
protocol [17]. The 12 microsatellite loci were Poly A, 
PfG377, TA81, ARA2, TA87, TA40, TA42, 2490, TA1, 
TA60, TA109 and PfPk2 [27]. FAM, YAK YELLOW, and 
ATTO550N-labeled PCR products for the different loci 
amplified were pooled together for electrophoresis on 
the ABI 3500XL Genetic Analyzer at the African Cen-
tre of Excellence for the Genomics of Infectious Diseases 
(ACEGID), Redeemer’s University Ede, Osun State, Nige-
ria. Peakscanner (Applied Biosystems) and GeneMarker 
(Softgenetics) software were used for normalization 
across runs and automatic determination of allele length 
and peak heights in samples containing multiple alleles 
per locus.

Data analysis
Microsatellite data was retrieved from the Genetic Ana-
lyzer 3500XL and formatted in Microsoft excel (version 
16.44) as previously described [28]. Subsequent genetic 
analysis was only done on samples where all microsatel-
lite markers were successfully amplified. Multiple alleles 
at a given locus was assumed if minor peaks observed 
were more than 20% the height of the predominant peak 
[6]. Although minor alleles were scored in samples con-
taining them, only the predominant alleles were consid-
ered for all population genetic and structure analysis. 
Multi-clone infections were defined as those that had at 
least two loci containing multiple alleles (only samples 
with two alleles were included for analysis), while single 
clone infections  were defined as those containing one 
allele for all microsatellite loci or when one locus con-
tained multiple alleles [6]. Haplotypes were computed 
using ARLEQUIN software version 3.11 [29] from both 
single-clone and multi-clone infections. The predomi-
nant allele at each locus was used to define twelve-locus 
parasite haplotype in multiple-clone infections [30].

Measures of parasite genetic diversity
Number of effective alleles (Ne) and number of different 
alleles (Na)
The number of effective alleles (Ne) and number of dif-
ferent alleles (Na) were computed per locus for each State 
involved in the study using GENALEX 6.5 [28].

Allelic richness
Allelic richness (Ar) was computed using FSTAT (v 3.1) 
as the average number of alleles per locus [31].

Expected heterozygosity
The expected heterozygosity (He), a measure of para-
site genetic diversity, represents the probability of being 
infected by two parasites with different alleles at a given 
locus, was calculated using ARLEQUIN software version 
3.11 [29] with the formula:

where n is the number of isolates analysed, and p repre-
sents the frequency of each different allele at a locus [29]. 
The He values range from 0 to 1. Values closer to 0 indi-
cate little or no genetic diversity while values closer to 1 
indicate high genetic diversity.

Measures of parasite population differentiation
Analysis of molecular variance (AMOVA)
Inter- and intra-population variance was determined 
with analysis of molecular variance (AMOVA, i.e., ΦPT). 
ΦPT value of zero (0) is considered indicative of no 
genetic differentiation among populations.

Fixation index (Fst)
The population divergence was measured by calculating 
the fixation index (Fst) for all pairs of parasite population 
in each State using the GENALEX 6.5 software. An Fst 
value between 0–0.05 was classified as little genetic dif-
ferentiation, 0.05–0.15: moderate genetic differentiation, 
0.15–0.25: great genetic differentiation and values greater 
than 0.25 represented very great genetic differentiation 
[32].

Cluster analysis
A Bayesian model implemented in the program STRU​
CTU​RE v2.3 [33] was used to determine the number of 
populations or genetic clusters present in Nigerian States 
considered in this study. A linked model with admixture 
was used with 5 replicates for each value of k (from 2 to 
6), and a burn-in period of 50,000 iterations of Monte 
Carlo Markov chains [34]. To obtain the optimal number 
of genetic populations, estimation of ΔK described by 
Evanno analysis was done using Structure Harvester [35].

Linkage disequilibrium (LD)
Multilocus linkage disequilibrium measured as the stand-
ardized index of association (ISA) was calculated using 
the program LIAN version 3.5 [36] for the whole dataset 
and a data- subset with haplotypes from only confirmed 
single-clone infections, as a precaution against the bias 
that may result from presence of any false dominant hap-
lotypes [37]. This index was calculated as:

(1)He = [(n/n − 1) (1 − �p2)]

(2)
(

I
S

A

)

= (1/n−1((VD/(VE)−1)
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where VE is the expected variance of the nth number of 
loci for which two individuals differ. VD is the observed 
variance. Randomization test was done to determine 
whether the ratio of VD/VE was significantly higher than 
1.

Results
Demographics and baseline characteristics
Overall, 329 (51.97%) were male and the mean age of all 
children included in the study was 48.4 ± 15.8  months. 
Also, mean enrollment body temperature was 

37.5 ± 2.5 °C. Overall geometric mean asexual parasitae-
mia was 16,219 μL−1 (range: 2003–198,200).

Parasite genetic diversity
Of the 633 samples considered for analysis, microsat-
ellite amplification was successful in 571 (90.2%). Most 
(67.1%) samples were multi-clone infections. There 
were as many haplotypes as the isolates fully geno-
typed in the dataset (i.e., all haplotypes were unique). 
The mean (computed as the average of the sum of val-
ues from each locus) of different alleles (Na), effective 

Fig. 1  Geographic representation of sites (highlighted) in Nigeria where samples in this study were collected

Table 1  Summary of measures for parasite genetic diversity

Na: Different alleles; Ne: effective alleles; Ar: allelic richness; He: expected heterozygosity; AD: Adamawa; BY: Bayelsa; EN: Enugu; OY: Oyo; IM: Imo; KN: Kano; KW: Kwara; 
SK: Sokoto; PL: Plateau

AD BY EN OY IM KN KW SK PL Combined

Na 13.2 12.3 16.3 11.4 11.7 17.3 14.4 12.4 12.8 13.52 (+ 0.59)

Ne 7.9 6.4 7.5 6.2 7.1 8.1 8.2 6.2 6.5 7.13 (+ 0.42)

Ar 7.21 7.36 14.27 9.01 7.34 13.02 7.14 7.09 8.78 11.15 (+ 4.34)

He 0.818 0.776 0.818 0.791 0.778 0.835 0.842 0.793 0.78 0.804 (+ 0.013)
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alleles (Ne), allelic richness (Ar) and expected het-
erozygosity (He) were 13.52 (+ 0.59), 7.13 (+ 0.42), 
11.15 (+ 4.34) and 0.804 (+ 0.013), respectively, when 
all States were considered as a single population. State-
wise, the number of different alleles (Na) (computed as 
the average of the sum of Na values from each locus) 
ranged from 11.4 to 17.3. Likewise, the number of 
effective alleles (Ne) (computed as the average of the 
sum of Ne values from each locus) ranged from 6.2 to 
8.2 (Table 1). The mean allelic richness (Ar) (computed 
as the average of the sum of Ar values from each locus) 
ranged from 7.09 to 14.27 (Table  1) and the mean He 
values observed in each population (computed as 
the average of the sum of He values from each locus) 
ranged from 0.776 to 0.842 (Table 1). Although genetic 
diversity was high in all populations, it was observed 
that Ar was especially high in parasite populations from 
two States (Enugu and Kano) obtained in 2018 (Fig. 1).

The distribution of Na, Ne, Ar and He per micros-
atellite loci across the nine States are represented in 
Additional files 1, 2, 3. Kruskal–Wallis test showed no 
significant difference between the Ar values observed 
across the nine States (P > 0.05). This was also observed 
in He and Ne values (P > 0.05).

Parasite population differentiation
Non-random associations among loci (multilocus LD) 
were measured for all complete haplotypes and also those 
from single infections by calculating the Index of Asso-
ciation (IAS). In both the complete data set (Multi-clone 
and single-clone infection) and the sub-data set (single-
clone infection), LD values obtained in parasite popula-
tions from Enugu, Kano, Sokoto and Plateau States were 
significant (P < 0.01) (Table  2). It is observed that three 
of the four parasite populations with significant LD were 
from 2018 (i.e., Enugu, Kano and Plateau) while just one 
(Sokoto) was from 2014. Pairwise genetic differentia-
tion (Fst) among study sites ranged from low to moder-
ate (Table  3). The lowest genetic differentiation was 
observed between Imo (South-East 1) and Kwara (North 
Central 1) 0.008 while the largest genetic differentiation 
was observed between Sokoto (North-West 1) and Oyo 
(South West) 0.105 (this still represents moderate genetic 
differentiation) (Table 3).

The AMOVA result (0.039) further confirmed the low 
parasite genetic differentiation as just 3.9% of genetic var-
iation were observed between study sites. Furthermore, 
cluster analysis using STRU​CTU​RE confirmed low popu-
lation differentiation as only three putative parasite clus-
ters; CL 1, CL 2 and CL 3 (ΔK = 14.73) were identified as 
admixtures in the nine States (Fig.  2). Furthermore, the 
majority of parasite populations from 2014 (Adamawa, 
Bayelsa, Imo, Sokoto and Kwara) were in the first cluster 
(blue) with the exception of Oyo (Green). While in 2018, 

Table 2  Linkage disequilibrium analysis for P. falciparum 
populations obtained in each state

IS
A: Linkage disequilibrium

* Significant levels for a test of departure from 0 for IS
A values (P < 0.01)

Population IS
A (All) P-Value IS

A (Single-clone) P-Value

Adamawa 0.0071 0.092 0.0031 0.375

Bayelsa 0.0118 0.042 0.0126 0.072

Enugu 0.013 < 0.001 0.0242 < 0.001

Oyo 0.0131 0.02 0.0124 0.167

Imo 0.0045 0.2 − 0.0104 0.904

Kano 0.0153 0.001 0.0149 0.002

Kwara − 0.0070 0.924 0.0036 0.292

Sokoto 0.0167 < 0.001 0.0321 0.008

Plateau 0.0100 0.001 0.0297 < 0.001

ALL 0.0065 < 0.001 0.0073 < 0.001

Table 3  Pairwise comparison of Fst values amongst populations

AD: Adamawa; BY: Bayelsa; EN: Enugu; OY: Oyo; IM: Imo; KN: Kano; KW: Kwara; SK: Sokoto; PL: Plateau
+ P-value < 0.001. Fst value between 0–0.05 (little genetic differentiation), 0.05–0.15 (moderate genetic differentiation), 0.15–0.25 (great genetic differentiation), < 0.25 
(very great genetic differentiation) * Interpretation is based on recommendations of Balloux and Lugon-Moulin, 2002

AD BY IM EN KW PL SK KN OY

AD 0 0.022 0.02 0.082 0.019 0.055 0.022 0.066 0.09

BY 0.022 0 0.018 0.098 0.018 0.064 0.021 0.08 0.102

IM 0.02 0.018 0 0.089 0.008 0.055 0.013 0.08 0.1

EN 0.082 0.098 0.089 0 0.093 0.055 0.099 0.024 0.051

KW 0.019 0.018 0.008 0.093 0 0.058 0.01 0.079 0.101

PL 0.055 0.064 0.055 0.055 0.058 0 0.065 0.047 0.067

SK 0.022 0.021 0.013 0.099 0.01 0.065 0 0.082 0.105

KN 0.066 0.08 0.08 0.024 0.079 0.047 0.082 0 0.042

OY 0.09 0.102 0.1 0.051 0.101 0.067 0.105 0.042 0
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two clusters were observed (Red and Green). In Enugu, 
most parasites were in the third cluster (green) while 
in Plateau, most parasites were in the second cluster 
(red). Parasites from Kano State clustered almost evenly 
between both cluster 2 and 3.

Discussion
Nigeria remains the country with the highest global 
malaria burden. Hence, molecular studies on P. falcipa-
rum diversity and population structure become essential 
in monitoring the impact of different intervention strat-
egies in the control of malaria transmission. This study 
employed the use of 12 microsatellite loci to evaluate P. 
falciparum genetic diversity and population structure 
in nine Nigerian States. Although microsatellite are bet-
ter alternatives to polymorphic markers, such as msp-1, 
msp-2, and glurp, there are only a few reports of its use in 
studies conducted in Nigeria [6]. Analysis of the micro-
satellite data generated in this study revealed high para-
site genetic diversity across all States. For instance, it was 
observed that the mean Ne (computed as the average of 
the sum of Ne values across the 12 microsatellite loci) 
in the nine States, ranged from 6.2–8.2. This is expected 
because the number of Ne detected per locus is likely to 
be high in areas with high malaria endemicity and vice 
versa [5, 19].

As such, this study’s Ne values were comparable to 
those reported in other high-endemic regions of Sub-
Saharan Africa [4, 5, 38]. Similarly, values of allelic rich-
ness (Ar) obtained in this study further confirmed the 
high level of parasite genetic diversity in all nine States 
(range: 7.09–14.27) and identical to those reported in 
other malaria endemic countries [39]. Furthermore, com-
puted expected heterozygosity (He) values observed in all 
nine States were high ranging from 0.776–0.842. This is 

similar to those reported in other malaria endemic coun-
tries [5, 6, 18, 40, 41]. This further emphasizes the earlier 
conclusion from this study, high parasite genetic diversity 
and parasite transmission within the country [42]. It is 
equally important to note that when samples were strati-
fied as Northern States (Adamawa, Kano, Kwara, Pla-
teau and Sokoto) and Southern States (Bayelsa, Enugu, 
Imo, and Oyo) in a bid to investigate the possible influ-
ence of geographic location of observed parasite diver-
sity, there was no significant difference in measures of 
genetic diversity i.e., Ne, He, and Ar values (P > 0.05). This 
is equally expected as malaria endemicity continues to be 
high across the country.

Although parasite genetic diversity was high, further 
analysis of microsatellite data revealed low parasite pop-
ulation differentiation. It was observed that when all nine 
States were considered as a single population, the overall 
association index was 0.0065 (P < 0.01), which is weaker 
than those typically reported in regions with low trans-
mission [21, 23]. Studies have associated low LD values 
such as those reported in this study, to high levels of 
malaria transmission; which leads to increased cross-
breeding and meiotic recombination that results in LD 
breakdown [5, 6, 19, 43]. The pairwise genetic differen-
tiation (Fst) among study sites showed low to moderate 
genetic variation (0.008–0.105; P < 0.001). This is simi-
lar to what was reported earlier in Nigeria [6]. Further-
more, the observed low population differentiation was 
confirmed by AMOVA (0.039). This implies that only 
about 3.9% of genetic differentiation exist amongst the 
nine States investigated. Cluster analysis also showed 
that only three parasite clusters exist amongst all the nine 
States. However, the majority of parasite populations 
from 2014 (Adamawa, Bayelsa, Imo, Sokoto and Kwara) 
were in the first cluster (blue) with the exception of Oyo 

Fig. 2  Plasmodium falciparum population structure in nine Nigerian States



Page 7 of 9Ajogbasile et al. Malar J          (2021) 20:236 	

(Green). While in 2018, parasites from Enugu were in the 
third cluster (green), those from Plateau were in the sec-
ond cluster (red) and those from Kano were distributed 
between cluster 2 and 3. Although, samples analysed in 
this work were representative of the country as a whole, 
a major limitation was that samples from each State were 
only collected at a single time point (i.e., either 2014 or 
2018) thus, a spatio-temporal analysis could not be done. 
This perhaps would have provided more insights into the 
variations in clustering patterns observed in this study.

In summary, it has been observed that parasites from 
areas of low malaria transmission [19] (< 1% infection) 
show less genetic diversity, more population structure 
and greater linkage disequilibrium [4, 19–21]. In this 
study, the contrary has been observed i.e., high genetic 
diversity, low population structure and weak linkage 
disequilibrium. This is typical in regions of high malaria 
transmission, as individuals are more likely to be infected 
by more than one P. falciparum parasite thereby result-
ing in an increase in the rate of recombination and sub-
sequently, high diverse population with low linkage 
disequilibrium [18, 19, 22]. It is plausible that the low to 
moderate genetic differentiation between States observed 
is as a result of immense human migration between these 
populations as part of the usual socioeconomic activities 
and indiscriminate vector migration within the country 
[6, 37, 44, 45].

Conclusion
This study represents the first use of 12 microsatellite loci 
to characterize parasite genetic diversity and structure in 
Nigeria across regions representing all the six geographi-
cal zones of the country. The high level of parasite genetic 
diversity and low population structuring in this study 
suggests that parasite transmission is high and circulat-
ing parasites may be homogenous. However, higher reso-
lution methods such as the 24 SNP barcode and whole 
genome sequencing may capture more specific parasite 
genetic signatures circulating in the country. The results 
obtained in this study can be used as a baseline for para-
site genetic diversity and structure, aiding in the formula-
tion of appropriate therapeutic and control strategies in 
Nigeria.
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