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METHODOLOGY

Markov chain Monte Carlo Gibbs sampler 
approach for estimating haplotype frequencies 
among multiple malaria infected human blood 
samples
Gie Ken‑Dror*   and Pankaj Sharma 

Abstract 

Background:  Malaria patients can have two or more haplotypes in their blood sample making it challenging to iden‑
tify which haplotypes they carry. In addition, there are challenges in measuring the type and frequency of resistant 
haplotypes in populations. This study presents a novel statistical method Gibbs sampler algorithm to investigate this 
issue.

Results:  The performance of the algorithm is evaluated on simulated datasets consisting of patient blood samples 
characterized by their multiplicity of infection (MOI) and malaria genotype. The simulation used different resistance 
allele frequencies (RAF) at each Single Nucleotide Polymorphisms (SNPs) and different limit of detection (LoD) of the 
SNPs and the MOI. The Gibbs sampler algorithm presents higher accuracy among high LoD of the SNPs or the MOI, 
validated, and deals with missing MOI compared to previous related statistical approaches.

Conclusions:  The Gibbs sampler algorithm provided robust results when faced with genotyping errors caused by 
LoDs and functioned well even in the absence of MOI data on individual patients.

Keywords:  Haplotype reconstruction, Multiplicity of infection, Single nucleotide polymorphisms, Markov chain 
Monte Carlo, Gibbs sampler algorithm, Malaria
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Background
Malaria is an infectious disease caused by protozoan 
parasites of the genus Plasmodium and transmitted to 
humans by Anopheles mosquito bites. Malaria infec-
tions in human blood often consist of several genetically 
distinct infections each of which is known as a clone. A 
“clone” consists of many individual parasites all hav-
ing the same haploid genotype, which call “haplotype”. 
Haplotypes are a key feature in tracking anti-malarial 
drug resistance as genes encoding drug resistance may 
accumulate mutations at several codons, with each 

mutation increasing the level of drug resistance and pos-
sibly reducing the metabolic costs of previous mutation. 
Humans living in endemic areas may receive up to 1000 
infective bites per-year. Polyclonal infections are com-
mon, with the number of clones within a human blood 
sample called the multiplicity of infection (MOI). The 
average number of MOI is around three in humans who 
live in areas of intense transmission and rarely exceeds 
12 in any individual patient [1]. The presence of mul-
tiple clones each of which is haploid in a blood sample 
makes it difficult to identify which multiple SNPs haplo-
types are present in each patient. This makes estimating 
the frequencies of haplotypes in the malaria population 
from human blood samples a challenging computational 
task. This method works on the principle that consider 
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Plasmodium organisms in haploid state (which they are 
in during most their life cycle, but they are also pass-
through diploid stages).

The genome of the malaria parasite Plasmodium falci-
parum was published in 2002 [2, 3], alongside that of its 
mosquito vector [3] and its human host (Consortium and 
International Human Genome Sequencing Consortium, 
2001) [4], malaria genomics has led the way in the study 
of eukaryotic pathogens. Since then, a growing number 
of Plasmodium species genomes have been sequenced 
and large-scale population resequencing studies have 
been carried out in P. falciparum and several other spe-
cies [2]. The development of ‘post-genomic’ tools such as 
SNP ‘barcoding’ panels [5, 6] has allowed parasite popu-
lation structures to be studied. This approach has been 
used in a number of studies of Plasmodium vivax [2, 7]. 
Today, P. vivax is the most geographically widespread of 
the human malarias, and accounts for an increasing pro-
portion of malaria cases in many endemic areas [8]. The 
species is more genetically diverse than P. falciparum [5], 
which may partly reflect low diversity and a more recent 
bottleneck in P. falciparum, but may also partly reflect its 
distinctive population structure. In co-endemic regions, 
the population structures of P. vivax have often been 
seen to differ from P. falciparum, being more genetically 
diverse and less geographically structured [2, 5]. The 
population genetics of P. vivax varies across its range [2].

Human blood samples can be obtained from malaria-
infected patients by simple finger-prick and stored on 
filter paper. The dried blood spots are stable at ambient 
temperatures so can be easily stored and transported to 
a laboratory where malaria DNA can be extracted and 
checked for the presence of resistance mutations. Use of 
these surveys has been widespread [9, 10]. Traditional 
standard PCR-based genotyping methods still being used 
often underestimates MOI. Next generation sequenc-
ing technologies and genome-wide has largely increased 
the sensitivity in detection of polyclonal infections, but 
targets only partial genomic regions, which may not 
represent complete polymorphism in mixed infections. 
However, complete haplotype characterization of multi-
clonal infections remains a challenge due to PCR artifacts 
and sequencing errors and requires efficient computa-
tional tools [11].

The prevalence of mutations presence/absence in a 
blood sample can be directly observed. The information 
available for each human blood sample is an estimate of 
the MOI and the presence/absence of an allele at a SNP. 
Haplotype inference is affected by a number of sources: 
first, the MOI is estimated using hyper-variable genetic 
loci, such as msp1, msp2, glurp and ta109, which 
typically have an expected homozygosity of around 

0.05–0.08 [12]. This may underestimate the true MOI 
if clones share alleles at hyper-variable loci purely by 
chance, or if they are low density clones missed during 
genotyping [13]. Second, alleles at Single Nucleotide 
Polymorphisms (SNPs) can only be scored as present/
absent and not directly counted unless MOI equal or 
more than two. Third, differing assay sensitivity impli-
cation that some alleles are not detected. Different 
laboratories set different cut-off levels to distinguish 
smaller true signals from background assay noise. Some 
laboratories attributed signals less than 30% intensity 
of the main genotyping signals as ‘noise’, while other 
laboratories use lower cut-offs, and some rely on user 
subjectivity to distinguish minor peaks from technical 
noise. The cut-off defines as the assay’s limit of detec-
tion (LoD) [1].

These factors can have a large impact such that the 
haplotypes may be systematically missed [1]. The 
impact of detection limits must include a simula-
tion study to know the true underlying genetic data 
in the simulated dataset and the observed data that 
would be seen in the blood samples. Several statisti-
cal approaches to estimate haplotype frequencies from 
multiclonal infections have been proposed including: 
Maximum-likelihood (ML) estimation [14], expec-
tation–maximization (EM) algorithm [15, 16], and 
Metropolis–Hastings Markov chain Monte Carlo 
(MCMC) within a Bayesian framework [16, 17]. Wigger 
et al. [13] proposed a method for haplotype frequency 
estimation that uses a MCMC Gibbs sampler. Although 
this Gibbs sampler assumes fixed and known MOI and 
cannot accommodate data without MOI information. 
The method has not been implemented in publicly 
available software, and thus does not meet availability 
criteria for being computationally evaluated along with 
the other methods.

The aim of this present study is to present a novel 
approach MCMC Gibbs sampler for haplotype recon-
struction with known or unknown MOI and to 
compare the results obtained to those from related sta-
tistical approaches. In addition, examined the impact of 
different limit of detection of the SNPs and the MOI on 
the results.

Methods
The simulated datasets, estimation algorithm and sta-
tistical analysis have been implemented in the R sta-
tistical software system version 4.0.2 [18], on a 64-bit 
computer with 8.00 GB of random access memory and 
an Intel(R) Core(TM) i5-3320  M central processing 
unit (CPU) @ 2.60 GHz processor.
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Simulation of genotype and haplotype datasets
Simulation of population (haplotype) data
The simulation starts by generating a number of human 
blood samples, N, (1, 2,…, N) in the dataset. The multi-
plicity of infection (MOI) in each blood sample generated 
randomly by the default frequency distributions given by 
Jaki et  al. [19] with true MOI frequencies is as follows: 
1–4%, 2–40%, 3–10%, 4–10%, 5–20%, 6–5%, 7–6%, 8–5%, 
this reflects a distribution of MOI observed in a relative 
intense area of malaria transmission. Separate infec-
tions in the MOI are assumed to be genetically distinct 
and unrelated, haploid, asexual clones that are presumed 
to have been inoculated by separate mosquito bites into 
the same person. Each clone within the blood sample is 
randomly assigned an allele from each of three hyper-
variable genetic markers used to estimate its MOI. The 
assumption is loci msp1, msp2 and ta109 whose allele 
frequency distributions are given by Jaki et al. [19]. Each 
clone is assigned a biomass randomly selected from the 
interval 109–1011, the biomass is the total number of par-
asites in the human and this sampling interval is typical 
for symptomatic malaria infections. The relative biomass 
of each clone (i.e., its proportion of the total biomass) 
is calculated as that clone’s biomass divided by the total 
biomass in the patient. The genotyping signal from a 
SNP or MOI allele will be assumed to be proportional 
to the relative biomass of parasites containing that allele. 
This approach was used to generate genetic datasets, 
assumed: 100 blood samples per-dataset, diallelic SNPs 
either resistant or sensitive resistance allele frequencies 
(RAF) at each codon ranging from 1%, to 50%, and link-
age equilibrium (LE) between all SNPs and MOI markers. 
1000 datasets were generated and analysed assuming dif-
fering LoD: 0.0/0.0, 0.1/0.05, 0.2/0.1, 0.3/0.15 where the 
first number is LoDSNP and the second is LoDMOI.

Simulation of observed (genotype) data
Genotypes are the observable data obtained on human 
blood samples and are subjected to the sources of genetic 
ambiguity, genotyping errors arising from LoD and the 
fact that different combination of haplotypes may give 
rise to the same observed genotype. The true genetic 
data are, therefore, processed as follows to simulate what 
would be observed in the blood samples.

Observed MOI  The strength of each genotyping signal 
is calculated from their relative biomasses. The cut-off for 
distinguishing true signals from ‘noise’ may differ slightly 
from that used for SNPs, which is why having different 
detection limits for LoDSNP and LoDMOI. The novel algo-
rithm assumes a signal less than a certain proportion of 
the major signal, this proportion being denoted LoDMOI, 

is regarded as noise. If LoDMOI = 0.1, signals < 10% of the 
maximum would be regarded as noise and would not 
contribute to the observed blood sample genotype. The 
observed MOI is then calculated as the maximum num-
ber of the alleles observed at three hyper-variable genetic 
markers msp1, msp2 and ta109.

Observed genotypes  These are calculated in an analo-
gous manner to MOI, by assuming that a clone’s biomass 
determines its contribution to the genotyping signal. The 
total signal for each allele at each SNP is then calculated 
and compared to the defined LoDSNP to find which alleles 
are detectable and contribute to the observed blood geno-
type (Additional file 1: Table S1).

Finally, a reality check was run on the simulated blood 
dataset, search for samples with observed MOI = 1 and 
one of the SNPs is heterozygous. These observations 
are incompatible and generally occur when MOI ≥ 2 but 
appears to have MOI = 1 for one of two main reasons. 
Firstly, the ≥ 2 clones are identical at all three MOI loci 
purely by chance such that the observed MOI = 1. Sec-
ondly, the clones do differ at one or more MOI loci but a 
difference in genotyping sensitivity (LoD) between MOI 
and SNPs means only a single MOI allele is detected at 
each hypervariable locus, but a heterozygote is detected 
at one of the SNPs. In both cases, the MOI is reset to 
have a value of 2 as would likely occur when processing 
clinical samples.

Novel haplotype reconstruction methods
The Markov chain Monte Carlo (MCMC) Gibbs sampler
The Gibbs sampler also known as the Glauber dynamics 
or the heat-bath algorithm, is a leading MCMC method 
for obtaining a sequence of observations which are 
approximated from a specified multivariate probability 
distribution, when direct sampling is difficult [20]. The 
Gibbs sampling algorithm generates a new sample from 
the distribution of each variable based upon the condi-
tional distribution among the current values of the other 
variable [20–22]. The Gibbs sampler is a popular MCMC 
algorithm and is widely used in phylogenetic analysis, 
sequence motif discovery and haplotype estimation. The 
algorithm consists of several steps and is explained in 
detail in the Additional file 1.

Existing statistical methods of haplotype reconstruction
There are five other published methods that are avail-
able to use: MalHaploFreq software, Maximum likeli-
hood (ML) estimation using a hill climbing algorithm 
[14] (hereon called “MHF”). Expectation–maximization 
(EM) algorithm malaria.em [15] estimation using effi-
cient iterative maximum likelihood approach (hereon 
called “R-EM”. A Bayesian approach [17] estimation 
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using a Metropolis–Hastings Markov chain Monte 
Carlo (hereon called “Bayesian”). Another expectation–
maximization (EM) algorithm [16] estimation using 
maximum likelihood approach that incorporates MOI 
(hereon called “EM”). And the Markov chain Monte 
Carlo (MCMC)-algorithm [16] using acceptance/rejec-
tion algorithm (hereon called “MCMC”). Summary of the 
statistical methods for haplotype reconstruction presents 
in the Additional file 1: Table S1.1.

Evaluation of different statistical methods
Thousand datasets were simulated assuming that resist-
ance is encoded at three loci there are eight resistance 
haplotypes. Each dataset is obtained by a process of five 
sequential steps:

	 I.	 The population frequencies of haplotypes are 
defined by selecting a RAF for each locus at ran-
dom and the 8 population haplotype frequencies 
obtained assuming linkage equilibrium between 
the alleles;

	II.	 A field survey of malaria blood samples is simu-
lated. Each patient in the dataset has an MOI 
assigned at random according to the frequencies 
given above. The malaria clones a number equal 
to the MOI are then sampled at random accord-
ing to the true population frequencies of resist-
ance haplotypes and polymorphic markers (msp1, 
msp2, ta109). The sampled resistance haplotype 
frequencies in the dataset will differ from the true 
frequency due to this sampling process;

	III.	 The MOI polymorphic markers and resistance 
SNPs in each patient are then processed to obtain 
the genotypes observed in the blood samples taken 
from patients depending on the LoD;

	IV.	 The estimated resistance haplotype frequencies are 
obtained from each of the statistical programmes;

	V.	 The estimated haplotype frequency from dataset is 
used to evaluate the performance of the six meth-
ods. Each of these five steps is repeated for each of 
the 1000 datasets. The datasets and selected haplo-
type in each dataset are kept the same for each of 
the six-analysis method, this allows a direct com-
parison between the different methodologies used 
to infer haplotype frequencies.

The performance and the accuracy of the different 
methods is measured as follows: ‘P’ is a vector whose 
number of elements equal h, the number of potential 
haplotypes in the malaria population in the sample case 
3 resistance SNPs (h = 23 = 8). The elements of the vec-
tor are indicated by the superscript i. The population and 
sampled values are compared with the estimated value as:

	 I.	 The correlation coefficient (R2) between population 
or sample and estimated haplotype frequency;

	II.	 Similarity index (IF) [23, 24] to examine how close the 
computationally estimated haplotype frequencies are 
to the population or sampled haplotype frequencies as: 
IF=

∑h
i=1min(Piestimated,Pipopulationorsample) = 1− 1/2∑h

i=1
|Piestimated − Pipopulationorsample| . This meas-

ure incorporates all h haplotype frequencies and thus 
captures the overall difference between estimated and 
population or sample frequencies. It varies between 
one, when population or sample and estimated hap-
lotype frequencies are identical, and zero when esti-
mated haplotypes frequencies tending to zero;

	III.	 The mean squared error (MSE) [25, 26] was calculated 
as: MSE =

[∑h
i=1(Piestimated − Pipopulationorsample)

2
]
/h 

the estimated and the population or sample haplotype 
frequency of i haplotype, h is the number of haplotype 
frequencies in the population;

	IV.	 Change coefficient C [27, 28] assess the scaled  
change in haplotype frequencies and was calculated as: 
Ci = (|Piestimated − Pipopulationorsample|)/Max[(Piestimated ,

Pipopulationorsample] . The coefficients were computed 
for each possible haplotype across statistical meth-
ods and presented as difference of estimation (%). 
The value of the coefficient C ranges from 1 to − 1, 
the value 0 indicating that the haplotype frequency 
estimated, and the haplotype frequency population 
or sample are identical. Positive values indicate that 
haplotype frequency estimates tend to be larger 
than the population or sample frequency;

	V.	 The validity of the methods measures how often 
the population and sampled frequencies fall within 
the 95% CI of the estimated frequency. In addition, 
the speed of the analyses which is self-explanatory 
recorded.

Results
The estimated haplotype frequencies with simulated 
population and sample haplotype frequencies across six 
statistical methods MHF (MalHaploFreq), R-EM (malaria 
EM), Bayesian (Bayesian statistic), EM (EM-algorithm), 
MCMC (Markov chain Monte Carlo), Gibbs (Gibbs 
sampler) and four conditions of LoD(SNP/MOI) showed 
high concordance. Table 1 shows the absolute deviation 
of the estimated haplotype frequencies from population 
and sample haplotype frequencies. The correlation coef-
ficient (R2) is slightly higher by 0.50–1.30% in the sam-
ple haplotype compared to the population haplotype 
among all statistical methods. Increasing both LoDMOI 
and LoDSNP decreases the correlation coefficient by 0.10–
0.30% among EM method. Conversely, increasing both 
LoDMOI and LoDSNP increased the correlation coefficient 
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by 0.30–4.90% among MHF, R-EM, Bayesian, MCMC 
and Gibbs methods. The difference between correla-
tion coefficients among statistical methods is less than 
6.4% among population haplotype frequencies and 5.7% 
among sample haplotype frequencies. The bias is slight 
and changes with limits of detection.

Table 2 shows the similarity index (IF) of the estimated 
haplotype frequencies compared population and sam-
ple haplotype frequencies. The six statistical methods 
provided similarity index (IF) values very close to each 
other. The similarity index is higher by 0.02–1.2% in the 
sample haplotype compared to the population haplotype 
among all statistical methods. The difference between 

similarity indexes among statistical methods is less than 
6% among population and sample haplotype frequen-
cies. Increasing both the LoDSNP and LoDMOI decreases 
the similarity index between 0.4–2% in MHF, Bayesian, 
and EM methods. Conversely, R-EM, MCMC and Gibbs 
methods shows increasing values of IF between 1 to 4%. 
The increased IF and MSE in three tested methods and 
decreasing in the other three tested methods look like 
random patterns. The changes are small, not statistically 
significant and for some of the methods the increases and 
decreases are not monotonous, but rather, the IF and the 
MSE jump around between higher and lower values with-
out an obvious pattern. This tendency is reflected in the 

Table 1  The correlation (R2) of the estimated haplotype frequencies with simulated population and sample haplotype frequencies 
across statistical methods and four conditions of LoDSNP (30%, 20%, 10%, 0%) and LoDMOI (15%, 10%, 5%, 0%)

Higher value represents higher accuracy

MHF MalHaploFreq, R-EM malaria em, Bayesian Bayesian statistic, EM EM algorithm, MCMC Markov chain Monte Carlo, Gibbs Gibbs sampler, LoD limit of detection, SNP 
single nucleotide polymorphisms, MOI multiplicity of infection

MHF R-EM Bayesian EM MCMC Gibbs

Population haplotype 
(LoDSNP/LoDMOI)

 0/0 0.949 0.913 0.955 0.977 0.973 0.961

 0.10/0.05 0.953 0.932 0.960 0.978 0.980 0.970

 0.20/0.10 0.962 0.949 0.960 0.977 0.981 0.975

 0.30/0.15 0.957 0.962 0.960 0.974 0.976 0.977

Sample haplotype (LoDSNP/
LoDMOI)

 0/0 0.960 0.926 0.962 0.983 0.978 0.966

 0.10/0.05 0.963 0.944 0.968 0.985 0.986 0.976

 0.20/0.10 0.971 0.960 0.968 0.984 0.987 0.982

 0.30/0.15 0.967 0.972 0.967 0.982 0.983 0.984

Table 2  The similarity index (IF) of the estimated haplotype frequencies with simulated population and sample haplotype frequencies 
across statistical methods and four conditions of LoDSNP (30%, 20%, 10%, 0%) and LoDMOI (15%, 10%, 5%, 0%)

Higher value represents higher accuracy

MHF MalHaploFreq, R-EM malaria em, Bayesian Bayesian statistic, EM EM algorithm, MCMC Markov chain Monte Carlo, Gibbs Gibbs sampler, LoD limit of detection, SNP 
single nucleotide polymorphisms, MOI multiplicity of infection

MHF R-EM Bayesian EM MCMC Gibbs

Population haplotype 
(LoDSNP/LoDMOI)

 0/0 0.906 0.879 0.910 0.938 0.915 0.919

 0.10/0.05 0.911 0.894 0.913 0.943 0.938 0.934

 0.20/0.10 0.905 0.909 0.909 0.940 0.945 0.940

 0.30/0.15 0.889 0.918 0.898 0.930 0.930 0.932

Sample haplotype (LoDSNP/
LoDMOI)

 0/0 0.917 0.886 0.917 0.942 0.917 0.921

 0.10/0.05 0.923 0.904 0.922 0.950 0.942 0.939

 0.20/0.10 0.915 0.920 0.917 0.948 0.953 0.948

 0.30/0.15 0.897 0.930 0.906 0.938 0.937 0.942
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mean squared error (MSE) statistics. Table  3 shows the 
MSE of the estimated haplotype frequencies around the 
population and sample haplotype frequencies. The MSE 
is lower by 0.005–0.027 in the sample haplotype com-
pared to the population haplotype among all statistical 
methods. The difference between MSE between statis-
tical methods is less than 0.128 among population hap-
lotype frequencies and 0.117 among sample haplotype 
frequencies. Increasing both the LoDSNP and LoDMOI 
increased the MSE between 0.012 and 0.074 among MHF, 
Bayesian, and EM methods. Conversely R-EM, MCMC 

and Gibbs methods decrease the MSE values between 
0.009 and 0.095.

Table 4 shows the average change coefficient C of the 
estimated haplotype frequencies compared population 
and sample haplotype frequencies for haplotype fre-
quency > 5%. The change coefficient C is lower by 0.5–
2.4% in the sample haplotype compared to the population 
haplotype among all statistical methods. The difference 
between change coefficient C among statistical methods 
is less than 12% among population haplotype frequen-
cies and 11.7% among sample haplotype frequencies. 
Increasing both the LoDSNP and LoDMOI increases the 

Table 3  The mean squared error (MSE) of the estimated haplotype frequencies with simulated population and sample haplotype 
frequencies across statistical methods and four conditions of LoDSNP (30%, 20%, 10%, 0%) and LoDMOI (15%, 10%, 5%, 0%)

Lower value represents higher accuracy

MHF MalHaploFreq, R-EM malaria em, Bayesian Bayesian statistic, EM EM algorithm, MCMC Markov chain Monte Carlo, Gibbs Gibbs sampler, LoD limit of detection, SNP 
single nucleotide polymorphisms, MOI multiplicity of infection

MHF R-EM Bayesian EM MCMC Gibbs

Population haplotype 
(LoDSNP/LoDMOI)

 0/0 0.103 0.178 0.091 0.050 0.085 0.097

 0.10/0.05 0.108 0.138 0.088 0.043 0.047 0.065

 0.20/0.10 0.120 0.103 0.108 0.051 0.040 0.050

 0.30/0.15 0.177 0.086 0.141 0.072 0.076 0.062

Sample haplotype (LoDSNP/
LoDMOI)

 0/0 0.082 0.158 0.077 0.041 0.080 0.091

 0.10/0.05 0.086 0.117 0.072 0.032 0.038 0.055

 0.20/0.10 0.095 0.081 0.089 0.036 0.027 0.037

 0.30/0.15 0.150 0.063 0.122 0.053 0.058 0.044

Table 4  The average change coefficient (C) of the estimated haplotype frequencies with simulated population and sample haplotype 
frequencies for haplotype frequency > 5% across statistical methods and four conditions of LoDSNP (30%, 20%, 10%, 0%) and LoDMOI 
(15%, 10%, 5%, 0%)

Lower value represents higher accuracy

MHF MalHaploFreq, R-EM malaria em, Bayesian Bayesian statistic, EM EM algorithm, MCMC Markov chain Monte Carlo, Gibbs Gibbs sampler, LoD limit of detection, SNP 
single nucleotide polymorphisms, MOI multiplicity of infection

MHF R-EM Bayesian EM MCMC Gibbs

Population haplotype 
(LoDSNP/LoDMOI)

 0/0 20.8 25.2 18.7 13.2 17.7 16.1

 0.10/0.05 19.3 22.3 18.0 12.4 13.4 13.7

 0.20/0.10 19.8 19.7 18.6 13.0 11.9 12.9

 0.30/0.15 22.0 17.8 20.1 14.6 14.4 14.4

Sample haplotype (LoDSNP/
LoDMOI)

 0/0 18.8 23.7 17.4 12.0 17.2 15.4

 0.10/0.05 17.0 20.5 16.3 10.9 12.4 12.5

 0.20/0.10 17.7 17.5 17.1 11.4 10.4 11.3

 0.30/0.15 20.6 15.4 18.8 13.0 13.1 12.8
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change coefficient C between 1.0–1.8% in MHF, Bayes-
ian, and EM methods. Conversely, R-EM, MCMC and 
Gibbs methods shows decreasing values of change coef-
ficient C between 1.7% and 8.3%. There was a tendency 
for the estimates to cluster more closely to the population 
and sample haplotype frequencies at high frequencies, 
showing that there is a tendency for high-frequency hap-
lotypes to be more accurately estimated among all statis-
tical methods.

Table 5 shows the validity of the methods quantifies as 
how often the population and sample haplotype frequen-
cies fall out of the 95% confidence intervals. The per-
centage of results falling outside of the 95% CI is slightly 
lower, by 0.1–4%, in the sample haplotype frequen-
cies compared to the population haplotype frequencies 
among all statistical methods. The difference between 
percentage of results falling outside of the 95% CI among 
statistical methods is less than 13.9% among popula-
tion haplotype frequencies and 10.1% among sample 

haplotype frequencies. Increasing both the LoDSNP and 
LoDMOI increased the error rates produced by Bayesian 
and MHF approaches with 15.1–13.4%, and 8.7–6.8% of 
estimates lying outside the 95% CI. However, the R-EM, 
EM, MCMC and Gibbs methods shows small changes 
in LoD with variation in the percentage falling out-
side the 95% CI between 0.1–3.9% across the four LoD 
assumptions.

Table 6 shows the computational time for the statistical 
methods. There is a big difference between the statistical 
methods of almost 517 s. Increasing LoDMOI and LoDSNP 
decreased the time of the analysis by 79% among MHF, 
25% among R-EM, 89% among Bayesian, 4% among EM, 
82% among MCMC and 34% among Gibbs.

Additional file 1: Tables S2–S6 shows the performance 
of the statistical methods when MOI is unknown. In 
addition, Additional file  1: Tables S7–S11 shows exam-
ples of haplotype defined at 2 SNPs. Similar patterns 

Table 5  Percentages of simulated sample haplotype frequencies and population haplotype frequencies that fall outside the 
confidence intervals of the estimated haplotype frequencies across statistical methods and four conditions of LoDSNP (30%, 20%, 10%, 
0%) and LoDMOI (15%, 10%, 5%, 0%)

Lower value represents higher accuracy

MHF MalHaploFreq, R-EM malaria em, Bayesian Bayesian statistic, EM EM algorithm, MCMC Markov chain Monte Carlo, Gibbs Gibbs sampler, LoD limit of detection, SNP 
single nucleotide polymorphisms, MOI multiplicity of infection

MHF R-EM Bayesian EM MCMC Gibbs

Population haplotype 
(LoDSNP/LoDMOI)

 0/0 4.90 5.90 14.60 0.70 4.00 3.00

 0.10/0.05 6.20 5.70 15.10 1.00 1.30 1.90

 0.20/0.10 11.40 5.90 18.10 2.00 1.80 2.10

 0.30/0.15 20.00 8.10 23.30 4.30 4.40 3.80

Sample haplotype (LoDSNP/
LoDMOI)

 0/0 6.90 8.30 14.80 4.50 8.00 6.40

 0.10/0.05 7.50 7.50 14.50 4.40 5.10 4.80

 0.20/0.10 11.50 6.80 17.10 4.40 4.40 4.60

 0.30/0.15 20.30 8.20 21.60 5.40 5.40 5.20

Table 6  The computational time (seconds) of the estimated haplotype frequencies across statistical methods and four conditions of 
LoDSNP (30%, 20%, 10%, 0%) and LoDMOI (15%, 10%, 5%, 0%)

Lower value represents faster calculation

MHF MalHaploFreq, R-EM malaria em, Bayesian Bayesian statistic, EM EM algorithm, MCMC Markov chain Monte Carlo, Gibbs Gibbs sampler, LoD limit of detection, SNP 
single nucleotide polymorphisms, MOI multiplicity of infection

MHF R-EM Bayesian EM MCMC Gibbs

(LoDSNP/LoDMOI)

 0/0 29.8 517.5 3.5 19.9 5.4 25.5

 0.10/0.05 31.1 353.6 3.4 1.9 5.2 19.2

 0.20/0.10 25.6 227.5 3.3 1.3 4.8 13.1

 0.30/0.15 23.4 127.7 3.1 0.9 4.4 8.7
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were observed when haplotypes were defined at less than 
3 SNPs.

Discussion
This study proposed the Gibbs sampler statistical method 
for haplotype reconstruction among multiple malaria 
infected human blood samples. These methods present 
a greater accuracy with high limits of detection of the 
SNPs or the MOI, robust validity performance, deals with 
missing MOI and the ability to return the probabilities of 
possible haplotype combination in each individual and 
the uncertainly probability of the haplotype frequencies.

It was considered important to recognize the techni-
cal limitations of genotyping so three values for levels 
of detection (LoDSNP and LoDMOI) were investigated. 
There are differences between the statistical methods 
especially with increasing LoDMOI and LoDSNP, the true 
MOI is under-estimated in around 5% of patients even 
if the LoDMOI are zero [16]. The MHF method is accu-
rate and valid when the LoDMOI and LoDSNP are zero, 
but increased LoD dramatically decreased the accuracy 
and the validity of the result. The R-EM method presents 
the opposite, its accuracy and the validity increase when 
the LoDSNP and LoDMOI increases. The Bayesian method 
appears exhibits accurate and valid when the LoDSNP and 
LoDMOI are zero but increasing the LoDs dramatically 
decreases the accuracy and the validity of the results. 
The EM method obtains highly accurate and valid results 
irrespective of the LoDSNP and LoDMOI values. The 
MCMC and Gibbs method obtains results that are sensi-
tive to LoD levels, its accuracy and validity both increase 
as the LoDSNP and LoDMOI increase. All the methods 
suffer from dimensionality, but the novel method still 
gave better results than the existing methods over all 
combinations of different limits of detection (LoD) of 
the SNPs and the MOI 0.0/0.0, 0.1/0.05, 0.2/0.1, 0.3/0.15, 
respectively.

Differences in the sources of data and assumptions for 
different methods can arise for several reasons. Firstly, 
the assumption that blood samples are representative 
of the population and incorporation of patient-level 
MOI estimates, or not use this assumption and regard 
the MOI as a fixed quantity. Second, assumptions about 
independence of different loci in the same infections 
(i.e., linkage disequilibrium) or about independence 
of the co-infecting clones and linkage disequilibrium. 
Third, assumptions about detectability of different 
clones, whether and how this varies, and whether dom-
inant clones affect the detection of minor clones. 
Finally, assumptions about the resolution of the typ-
ing system and its ability to resolve genetically related 
clones arising from distinct inoculations or from inocu-
lation of sibling clones arising from the same meiosis 

in the mosquito. The statistical methods are algorithms 
for optimization, iterative, starting with an initial value 
that belongs to the parameter space. At each step of 
the algorithms a new parameter value is chosen, hope-
fully a value closer to the terminal target value than 
the previous one. The algorithms are stopped when it 
converges, namely when the new value is very close to 
the current value. The value of the parameter that was 
selected when the algorithm converged is declared to 
be the maximiser.

There are differences between the statistical methods 
validity performance because the differences way the 
CI was calculated. The MHF method calculate 95% CI 
boundaries as occurring when the likelihood is less than 
2 log units below the maximum-likelihood. The R-EM 
method calculate 95% CI from the standard error of the 
estimated haplotype frequencies. The Bayesian methods 
calculate 95% CI as quintiles from haplotype frequency 
matrix. The EM, MCMC and Gibbs statistical methods 
calculate 95% CI base on exact binomial tail areas. When 
LoD is zero the EM, MCMC and Gibbs methods produce 
very narrow CI, while MHF is about correct containing 
95% of the values while the Bayesian method produces 
CI that are too wide with only about 85% of true values 
being contained within the CI. The MHF and Bayesian 
methods produced haplotype estimates that lay 25% out-
side the CI when molecular detection increases.

To estimate the haplotype frequency, the Gibbs sam-
pler methods used two required inputs, genotypes, 
and MOI, or one if the MOI was missing. The Gibbs 
sampler draws iteratively from conditional distribu-
tions particularly useful and lower in dimension rather 
than drawing directly from the joint distribution with 
which it may not be always easy to work. While the 
Gibbs sampler relies on conditional distributions, the 
Bayesian and MCMC methods bases on Metropolis–
Hastings sampler uses a full joint density distribution 
to generate a candidate draws. The candidate draws 
are not automatically added to the chain but rather an 
acceptance probability distribution is used to accept 
or reject candidate draws. These methods are sensi-
tive to the step size between draws. Either too large 
or too small of a step size can have a negative impact 
on convergence. The Gibbs algorithm sampling likely 
haplotypes for all subjects does not need to consider 
every possible haplotype unlike the EM-algorithm 
which must sum over every possible haplotype during 
the E-step. This property of the Gibbs sampler makes 
it better suited to deal with situations where there are 
many possible haplotypes, many markers, and MOI. 
While the EM-algorithm will converge to a maximum, 
it may be only a local maximum. However, the Gibbs 
sampler may get trapped in a local mode, but it does 
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have a chance of escaping such a mode and finding the 
true regions of parameter space with high probability.

The convergence diagnostics plots present in the Addi-
tional file  1: Figures  S1–S6 demonstrates clear conver-
gence. The algorithm successfully converged to reach a 
stationary distribution after a few runs. The chain did not 
get stuck in certain areas of the parameter space, indicat-
ing poor mixing. The median of the shrink factor does 
not increase above 1.1 among all haplotype frequency 
groups. The Gelman and Rubin’s convergence diagnos-
tic the scale reduction factors for each parameter is 1.09 
maximum value at each parameter for 500 iterations and 
it decreases to 1.05 maximum value at each parameter 
for 1000 iterations. A factor of 1 implies that between 
and within chain variances are equal, larger values sug-
gest that there is still a notable difference between chains. 
Shrink values below 1.1 or 1.05 acceptable for practical 
purposes [29]. Gelman and Rubin [30] and Brooks and 
Gelman [31] suggest that the maximum Gelman–Rubin 
diagnostic across all model parameters values greater 
than 1.2 for any of the model parameters should indicate 
non-convergence. In addition, the mean plots present 
how well the chains are mixing and how the two chains 
go in the same direction. More iteration cause further 
decreases in the scale reduction factor however, Raftery 
and Lewis [32, 33] test the number of iterations and sug-
gest a minimum of 300 iterations. These diagnostics tend 
to be conservative so that more iterations may be nec-
essary. Heidelberg and Welch diagnostic [34, 35] calcu-
lates a test statistic to change the null hypothesis that the 
Markov chain is from a stationary distribution, the chain 
passes the test, so the chain does not need to run longer. 
In addition, the chain passes the Geweke diagnostic test 
[36] that takes two nonoverlapping parts the first 0.1 and 
last 0.5 proportions of the Markov chain and compares 
the means of both parts, using a difference of means test 
to see if the two parts of the chain are from the same 
distribution (null hypothesis). Accordingly, the current 
algorithm runs 500 iterations and 200 burn ins. The algo-
rithm allows the user to choose the number of iterations, 
number of chains and number of burn in.

The Gibbs sampler methods examines possible haplo-
type combination in an individual that could plausibly 
give rise to the observed genotype and obtain the prob-
ability that any given patient harbours a drug resistant 
haplotype. The presence of a putative resistant haplotype 
can be inferred in individual patients and the probability 
of their presence used as a weighting in a logistic regres-
sion predicting the therapeutic outcome (cure/fail) of 
drug treatment. A positive impact of the putative-resist-
ant haplotype on therapeutic outcome would indicate it 
truly affects resistance levels.

The R-EM, Bayesian, EM, MCMC and Gibbs can cal-
culate the haplotype frequencies when MOI information 
on a patient was unmeasured or missing. Every one of 
the methods makes a prior assumption on the probabil-
ity distribution on the number of infections per-individ-
ual. The Gibbs method (Additional file 1: Tables S2–S6) 
obtain higher values among correlation (R2) and similar-
ity index (IF) in addition, to lower values among MSE, 
average change coefficient (C), and haplotype frequencies 
that fall outside the CIs that represents more accurate 
frequency estimates. Furthermore, the Gibbs method 
was slightly less affected by LoD of the SNPs and the 
MOI than compared to the related statistical approaches. 
The haplotype frequencies estimate shows excellent cor-
relation with the population or sample values even in the 
absence of MOI information among the Gibbs method.

While all the methods have similar accuracy, they differ 
in important aspects. The MHF method has a faster runt-
ime for analyses but is limited to analysing up to three 
SNPs and cannot deal with missing values. The R-EM 
method can deal with missing values, analyse more than 
three SNPs but required a considerable amount of com-
putational time. The Bayesian method base on prior dis-
tribution has a fast runtime, but limited to handling up 
to seven SNPs, although it can deal with missing values. 
The EM method is fast, can deal with missing values, and 
analyse more than three SNPs. The MCMC method is 
fast, can deal with missing values, and analyse more than 
three SNPs. The Gibbs method is fast, can deal with miss-
ing values, is unlimited by the number of SNPs analysed 
but calculating the frequencies of haplotypes that are 
defined at a large number of SNPs increases the compu-
tational time, the magnitude of this increase depending 
on the computer memory (Additional file 1: Table S1.1).

The simulations were limited to two and three SNPs 
to simplify the comparison. Results from haplotypes 
defined at two SNPs are presented in Additional file  1: 
Table  S7–S11, the same pattern irrespective of whether 
haplotypes are defined at two or three loci. The examples 
were limited to three SNPs because the complexity of cal-
culations rises exponentially with the number of SNPs 
and it is rarely necessary in practice to analyse more than 
three SNPs simultaneously [14] when investigating drug 
resistance haplotypes. However, calculating large number 
of SNPs increases the calculation time and depends on 
available computer memory. The reduction in time taken 
to run the analyses is that as LoD increases, the observed 
MOI and genetic diversity within patients tends to 
decrease, consequently the datasets become slightly sim-
pler and their analysis faster. These statistical methods 
work on Bi-allelic SNPs and are not created to deal with 
multiallelic SNPs. The Gibbs method can be extended 
to deal with multiallelic SNPs, like most algorithms for 
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optimization this situation will increases the parameter 
space, the iterative process, and the computational time. 
Multiallelic SNPs are not observed very frequently (< 2%) 
but often taken as a sign of a noisy region where artifacts 
are likely, unless looked at in very large cohorts [37, 38]. 
It is requested very high number of genes under multi-
allelic balancing to explain any genetic pattern, and this 
high amount has never been seen in the literature. The 
Gibbs sampling method presented in this work is only 
applied to simulated data and has not been tried on real 
data.

Conclusion
It is shown that the Gibbs method proposed has advan-
tages over previous methods of inferring haplotype fre-
quencies. It is robust to chance misclassification of MOI 
and to genotyping detection limits if MOI information 
is absent. The Gibbs method converges on accurate esti-
mates of haplotype frequencies irrespective of initial 
assumptions of haplotype and MOI frequencies. The R 
code used for these simulations and analyses are freely 
available on request to GKD.
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