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OPINION

Time to scale up molecular surveillance 
for anti‑malarial drug resistance in sub‑saharan 
Africa
Christian Nsanzabana1,2*   

Abstract 

Artemisinin resistance has emerged and spread in the Greater Mekong Sub-region (GMS), followed by artemisinin-
based combination therapy failure, due to both artemisinin and partner drug resistance. More worrying, artemisinin 
resistance has been recently reported and confirmed in Rwanda. Therefore, there is an urgent need to strengthen 
surveillance systems beyond the GMS to track the emergence or spread of artemisinin and partner drug resistance in 
other endemic settings. Currently, anti-malarial drug efficacy is monitored primarily through therapeutic efficacy stud-
ies (TES). Even though essential for anti-malarial drug policy change, these studies are difficult to conduct, expensive, 
and may not detect the early emergence of resistance. Additionally, results from TES may take years to be available 
to the stakeholders, jeopardizing their usefulness. Molecular markers are additional and useful tools to monitor 
anti-malarial drug resistance, as samples collected on dried blood spots are sufficient to monitor known and vali-
dated molecular markers of resistance, and could help detecting and monitoring the early emergence of resistance. 
However, molecular markers are not monitored systematically by national malaria control programmes, and are often 
assessed in research studies, but not in routine surveillance. The implementation of molecular markers as a routine 
tool for anti-malarial drug resistance surveillance could greatly improve surveillance of anti-malarial drug efficacy, 
making it possible to detect resistance before it translates to treatment failures. When possible, ex vivo assays should 
be included as their data could be useful complementary, especially when no molecular markers are validated.
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Background
The development of resistance to the currently used anti-
malarial drugs is threatening the major gains in malaria 
control and elimination made over the last decade. Arte-
misinin resistance, defined as delayed parasite clearance 
following treatment with artemisinin monotherapies 
or artemisinin-based combination therapy (ACT), has 
been associated with specific mutations in the Plasmo-
dium falciparum kelch 13 gene (Pfk13) [1]. Those vali-
dated molecular markers were initially observed in the 
Greater Mekong Sub-region (GMS), followed by ACT 

failures due to both artemisinin and partner drug resist-
ance [2–9]. The recent reports of a validated molecular 
marker of artemisinin resistance in Rwanda [10, 11], 
and its association with delayed parasite clearance [12], 
are a major threat to malaria control and elimination in 
sub-Saharan Africa. Even though the continuous high 
efficacy of the first- and second-line anti-malarial drugs 
(artemether-lumefantrine and dihydroartemisinin-pipe-
raquine) in Rwanda is reassuring, an improved scheme 
for monitoring anti-malarial drug resistance is warranted 
to mitigate the spread of artemisinin resistance, and 
ACT failure. Currently, the World Health Organization 
(WHO) recommends therapeutic efficacy studies (TES) 
for monitoring drug efficacy and resistance [13], whereas 
molecular markers and ex vivo monitoring are optional. 
There is no doubt that anti-malarial drug policy change 
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should be based on TES results; however, molecular and 
ex  vivo data have played an important role in confirm-
ing and monitoring artemisinin and partner drug resist-
ance in the GMS [3, 9, 14, 15]. Indeed, partial resistance 
to artemisinin is difficult to assess in  vivo, especially in 
high transmission settings where acquired immunity is 
a major confounding factor [16–18]. Moreover, TES are 
time and resources consuming, and may be difficult to 
conduct in low transmission settings, where the risk of de 
novo emergence of resistance is highest [19–21], due to 
the low number of patients.

Molecular markers as early warning tools
Molecular markers offer an additional strategy to moni-
tor the early emergence and spread of anti-malarial drug 
resistance, are not impacted by host immunity, and may 
be more cost effective when implemented for routine 
surveillance. Retrospectively, it has been suggested that 
partial sulfadoxine-pyrimethamine resistance had multi-
ple origins including areas of high transmission in East-
ern Africa [22, 23] and, interestingly, the same region 
seems to be a hotspot for partial artemisinin resistance 
[12, 24]. Today, tools (molecular markers) to closely 
monitor the early emergence and spread of artemisinin 
and partner drug resistance are available. This knowledge 
should be used to establish a comprehensive molecular 
surveillance system to avoid the mistakes from the past, 
when the spread of resistance to anti-malarial mono-
therapies has been detected at a late stage, contributing 
to thousands of deaths in the meantime. Molecular mark-
ers cannot predict treatment outcome at an individual 
level, however their increase often precedes that of treat-
ment failures [25]. While monitoring Pfk13 mutations 

is of paramount importance, monitoring partner drug 
resistance molecular markers is also crucial [26]. Indeed, 
high prevalence of Pfk13 validated molecular markers is 
not usually associated with treatment failure [27], as evi-
denced by recent data from Rwanda where the efficacy of 
both first and second-line treatments is still high despite 
the increasing prevalence of the Pfk13 561  H mutation 
(Table 1). Currently, molecular surveillance is often done 
retrospectively based on convenience sampling, and does 
not provide an accurate estimation of resistance on a 
national or sub-regional level. For example, when look-
ing at available molecular data for Rwanda, there are 
large spatiotemporal gaps [10–12, 28], and no clear trend 
is discernible (Table 1). However, high prevalence of the 
confirmed artemisinin resistance marker 561  H at two 
sites (Masaka and Rukara) are worrisome, especially as 
samples have been collected in 2018, and the current sit-
uation could be worse. Moreover, the prevalence of this 
marker has increased from 7 to 20% in Masaka between 
2015 and 2018 (Table  1), even though the small sample 
size does not allow for definitive conclusions, but it is 
likely that the prevalence is even higher now, and only 
routine molecular monitoring could accurately assess the 
trend. 

Molecular routine surveillance to inform TES
Molecular routine surveillance should not only be con-
ducted in a few sentinel sites, but rather on a large 
network of health facilities to capture the complex spa-
tial dynamics of evolving resistance [29]. Samples col-
lected from patients attending selected health facilities 
in the different regions of a country, should be analysed 
on a regular basis and generated data used to map the 

Table 1  Prevalence of  PfKelch13  mutations associated with artemisinin resistance in five different sites in Rwanda from 2012 to 2019

Study site Reference Study 
year(s)

441L 449A 469Y 469F 561H 574L 675V

Nyarurema
(n=73)

[2] 2012-2015 0 
(0%)

0 
(0%)

0 
(0%)

1 
(1·3%)

0 
(0%)

0 
(0%)

0 
(0%)

Masaka
(n=134)

[2] 2012-2015 0 
(0%)

0 
(0%)

0 
(0%)

0 
(0%)

1 
(0·7%)

0 
(0%)

0 
(0%)

Masaka
(n=257)

[2] 2013-2015 0 
(0%)

0 
(0%)

1 
(0·5%)

0 
(0%)

19 
(7·4%)

1 
(0.5%)

0 
(0%)

Huye
(n=66)

[16] 2015 0 
(0%)

0 
(0%)

0 
(0%)

0 
(0%)

0 
(0%)

3 
(4·5%)

3 
(4·5%)

Masaka
(n=51)

[3] 2018 1 
(2%)

1 
(2%)

0 
(0%)

1 
(2%)

10 
(20%)

0 
(0%)

0 
(0%)

Rukara
(n=82)

[3] 2018 3 
(4%)

3 
(4%)

0 
(0%)

3 
(4%)

8 
(22%)

2 
(1%)

0 
(0%)

Bugarama
(n=85)

[3] 2018 1 
(1%)

1 
(1%)

1 
(1%)

1 
(1%)

0 
(0%)

0 
(0%)

0 
(0%)

Huye
(n=66)

[1] 2019 0 
(0%)

0 
(0%)

0 
(0%)

3 
(4·5%)

3 
(4·5%)

0 
(0%)

3 
(4·5%)

Each colour represents data from the same sites
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spatiotemporal dynamics of molecular markers of inter-
est [29–32]. The data could be then used to inform and 
calibrate mathematical models of malaria transmission 
aiming at guiding interventions strategies, for example 
to select the sites for TES, using specific thresholds for 
artemisinin and partner drug resistance markers preva-
lence, to assess either delayed parasite clearance or treat-
ment failure, respectively [21, 33]. Indeed, it is difficult to 
predict where resistance will emerge, and a more flexible 
scheme with rotating sites for TES based on molecular 
markers prevalence and models prediction may be more 
appropriate for early detection of resistance. Mathemati-
cal models could be used as well to predict when treat-
ment failure could occur based on the molecular markers 
prevalence, giving more time for policymakers to prepare 
the change in anti-malarial drug treatment policy [34, 
35].

Logistically, sample collection would require only dried 
blood spots collection at selected health centres when 
patients have a confirmed malaria diagnosis. The molec-
ular analysis could be centralized at regional, national or 
sub-regional laboratory to maximize the cost effective-
ness of the surveillance system [36]. With the increasing 
availability of high throughput techniques and assays for 
molecular markers of resistance genotyping in malaria 

endemic countries, there is an opportunity to strengthen 
the capacity of National Malaria Control Programmes 
(NMCPs) for molecular monitoring of anti-malarial 
drug resistance [37, 38]. Cross-border collaboration 
is also critical, especially in regions such as the Great 
Lakes (Fig.  1), where validated resistance markers have 
been detected in different countries, including Rwanda, 
Democratic Republic of the Congo, Kenya, and Tanzania 
(Fig. 1). Regional monitoring is key to track resistance, as 
parasites will spread quickly from one country to another. 
The establishment of regional reference laboratories 
associated with regional data repositories could facilitate 
the prompt detection of resistance and early implementa-
tion of mitigation strategies; and the malaria community 
must leverage on the different initiatives on the continent 
to improve access to the infrastructure and technical 
expertise for high throughput molecular analyses [39].

Ex vivo assays: a useful,but difficult tool to implement
Ex vivo assays have played an important role in moni-
toring artemisinin resistance in the GMS [3, 15, 40, 41]. 
Even though they are often used for phenotypic assays 
to validate molecular markers of resistance, where avail-
able they can be useful to monitor resistance. Indeed, as 
for molecular markers, immunity is not a confounding 

Fig. 1  Map showing countries with WHO validated (in red) and candidate (in blue) artemisinin resistance markers in the Great Lakes region. 
(adapted from [11, 12, 24])
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factor for ex  vivo assays, even though parasite culture 
may reduce the complexity of the infection by preferen-
tially selecting specific clones. However, ex  vivo assays 
can be a valuable tool for drugs with no validated molec-
ular markers, such as lumefantrine and pyronaridine, the 
former being the partner drug of the most widely used 
ACT, and the latter, the most recent ACT partner drug 
approved by the WHO. Moreover, compared to molecu-
lar markers, ex vivo assays are difficult to implement, as 
fresh blood is required for parasite culture and the high 
intra and inter-assays variability limits their ability for 
spatiotemporal dynamics assessment [42].

Conclusions
Anti-malarial drug resistance is a serious threat to 
malaria control and elimination, and resistance monitor-
ing is crucial to maintain the high efficacy of the current 
anti-malarial drugs. Anti-malarial drug efficacy monitor-
ing schemes should take the full advantage of molecular 
and ex vivo culture techniques, as they may be the most 
appropriate tools to provide early warning signals of anti-
malarial drug resistance in high transmission settings. 
Reinforcing routine molecular surveillance programme 
could help detecting the emergence and spread of arte-
misinin and partner drug resistance at an earlier stage, 
before it translates to treatment failures.

Abbreviations
ACT​: Artemisinin-based combination therapy; GMS: Greater Mekong Sub-
region; NMCP: National Malaria Control Programme; TES: Therapeutic efficacy 
study; WHO: World Health Organization.
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