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An urban‑to‑rural continuum of malaria risk: 
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Abstract 

Background:  The urban–rural designation has been an important risk factor in infectious disease epidemiology. 
Many studies rely on a politically determined dichotomization of rural versus urban spaces, which fails to capture the 
complex mosaic of infrastructural, social and environmental factors driving risk. Such evaluation is especially impor-
tant for Plasmodium transmission and malaria disease. To improve targeting of anti-malarial interventions, a continu-
ous composite measure of urbanicity using spatially-referenced data was developed to evaluate household-level 
malaria risk from a house-to-house survey of children in Malawi.

Methods:  Children from 7564 households from eight districts throughout Malawi were tested for presence of 
Plasmodium parasites through finger-prick blood sampling and slide microscopy. A survey questionnaire was admin-
istered and latitude and longitude coordinates were recorded for each household. Distances from households to fea-
tures associated with high and low levels of development (health facilities, roads, rivers, lakes) and population density 
were used to produce a principal component analysis (PCA)-based composite measure for all centroid locations of a 
fine geo-spatial grid covering Malawi. Regression methods were used to test associations of the urbanicity measure 
against Plasmodium infection status and to predict parasitaemia risk for all locations in Malawi.

Results:  Infection probability declined with increasing urbanicity. The new urbanicity metric was more predictive 
than either a governmentally defined rural/urban dichotomous variable or a population density variable. One reason 
for this was that 23% of cells within politically defined rural areas exhibited lower risk, more like those normally associ-
ated with “urban” locations.

Conclusions:  In addition to increasing predictive power, the new continuous urbanicity metric provided a clearer 
mechanistic understanding than the dichotomous urban/rural designations. Such designations often ignore urban-
like, low-risk pockets within traditionally rural areas, as were found in Malawi, along with rural-like, potentially high-risk 
environments within urban areas. This method of characterizing urbanicity can be applied to other infectious disease 
processes in rapidly urbanizing contexts.
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Background
Considerable and diverse evidence demonstrates that 
health profiles differ between urban and rural areas 
across the globe, but especially in developing countries 
[1–14]. Underlying these differences are diverse, context-
specific factors involving the social and built environ-
ment that characterize and differentiate urban and rural 
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spaces, and thereby affect health profiles. Studies often 
use dichotomous classifications of urban and rural to 
explain differences in disease prevalence or incidence, 
but such designations have been usually created for gov-
ernmental administrative purposes [15], and may be 
unrelated to topographical, infrastructural and economic 
patterns that might serve as important determinants of 
disease risk. Some studies have evaluated specific dis-
ease risk factors in relation to a derived urbanicity scale 
[16], while others have created multi-country urbanicity 
metrics based on composite geographic, economic and 
political variables [17]. Studies of health and urbanicity 
gradients have primarily considered chronic diseases 
[18–20], but recent research has started to examine 
infectious outcomes as well [21, 22]. As developing coun-
tries urbanize and potentially create new opportunities 
for infectious disease transmission and health [23], devel-
oping and testing new measures of urbanicity becomes 
critical.

The need for a multifactorial, continuous "urbanicity" 
metric that can be generalized across different set-
tings has been recognized [22, 24], as it provides a more 
nuanced framework that captures the complexities of 
urban and rural environments and their impacts on 
health [25]. Vlahov and Galea [15] developed a theo-
retical framework for studying connections between 
urbanicity and health that included the social environ-
ment (spaces where people interact with one another 
through social and market exchanges), the physical envi-
ronment (nature of the physical spaces where people live 
and work), and health and social services (access to medi-
cal care and interventions). Lourenco [26] argued for rec-
ognizing a mosaic of rural and urban spaces, and for the 
need to consider a rural-urban continuum. Although the 
framework of a rural-urban continuum is not widely used 
in disease pattern studies, the features that contribute 
to a more health-relevant definition of urbanicity have 
been noted. Cuba, for example, understood the need to 
provide health care services in isolated and remote areas 
that were comparable in quality to those found in more 
affluent urban centres [27]. This has resulted in improved 
health profiles in isolated areas. Similarly, rural areas in 
Kenya with access to telecommunications services (e.g. 
cell phones and mobile banking) have significantly better 
health profiles than other, nearby, equally rural areas that 
lack these services [28]. Indeed, features associated with 
urbanicity may have more complex, indirect relationships 
to health. The building of improved transportation infra-
structure in rural areas, for example, might increase the 
economic profile of rural communities, but at the same 
time lead to increased road accidents [29–32]. Thus, a 
comprehensive, continuous measure of urbanicity should 
comprise relevant factors that differentiate rural and 

urban spaces in a manner that is associated with disease 
risks or health outcomes of interest. Some generic char-
acteristics of such a metric are likely to be similar; how-
ever, details of what is relevant will vary with the ecology 
and epidemiology of each disease. Ultimately, such an 
urbanicity measure might help improve forecasting 
capacity and specificity to prevention or control.

Any robust measure of urbanicity would ideally allow 
for both within- and among-country comparisons. Stud-
ies with a scaled measure of urbanicity typically have 
relied on local survey data to create this construct [33, 
34]. While comprehensive, these studies lack general-
izability and thus require local resources to collect the 
necessary data. A metric that uses readily available, spa-
tially-referenced, Geographic Information System (GIS)-
based data layers (e.g. census, environmental, economic) 
could be generalizable, while providing increased speci-
ficity for targeted interventions to high-risk regions.

Malaria is an example of a disease whose risks differ 
between rural and urban settings, and whose control 
strategies would benefit from a more nuanced under-
standing of which “rural” features might actually be pro-
tective, and which “urban” features could represent risk. 
Incidence of malaria is generally lower in urban com-
pared to rural areas [25, 35, 36]. Differences in malaria 
incidence between urban and rural spaces are partly 
explained by fewer opportunities for mosquito vector 
reproduction in urban areas and reduced blood feeding 
on humans [37–39]. Urban habitats are considered gen-
erally less favourable for most competent Anopheles spe-
cies due to the paucity of suitable breeding sites [40, 41]. 
In addition, urban house structures tend to restrict access 
of adult mosquitoes to humans at night, thus reducing 
transmission [42]. However, despite historical reports 
indicating that malaria is a “rural” problem, this disease is 
considered to be an emerging threat in rapidly urbanizing 
areas of sub-Saharan Africa [43, 44].

These complex relationships between malaria risk and 
urbanicity suggest that, in addition to malaria control 
programs that have promoted insecticide treated nets 
(ITNs), improved diagnostics and vector control, recent 
reductions in malaria incidence and mortality might be 
partly attributable to rapid urbanization and develop-
ment [45]. The lines between what were formerly consid-
ered rural and urban have become increasingly blurred; 
stronger connections between the city and country 
through human movement, increased “citylike” infra-
structure in rural areas, and increasing population den-
sity in peri-urban areas have rendered a dichotomous 
classification obsolete [21]. Factors that characterize very 
large urban settings are found within smaller urban and 
partly rural settings (e.g., improved housing, accessible 
and available health care, greater population density, as 
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well as access to transportation and markets). Conversely, 
characteristics associated with rural settings, such as 
small-scale cropping, standing water, poor housing, and 
inadequate health services, can also be found in some 
urban areas. A more thorough understanding of how 
specific features of urbanization could influence Plasmo-
dium transmission across the urban-to-rural landscape 
gradient should improve the effectiveness and efficiency 
of targeted interventions.

To develop and apply a new urbanicity measure rel-
evant to countrywide malaria risk in Malawi, the 
Lourenco [26] and the Vlahov/Galea [15] frameworks 
were integrated by creating a continuous, composite, 
scaled measure of urbanicity that comprises aspects of 
the social environment, the physical environment, as well 
as health and social services access. Using this compos-
ite urbanicity measure, the manner in which rural-like 
environments exist within, and proximate to, urban areas 
was analysed, as well as how urban-like contexts have 
emerged within otherwise rural settings. Malaria, a dis-
ease known to vary between urban and rural contexts, 
was evaluated for whether there are consistent and pre-
dictable patterns of risk along an urbanicity gradient.

Methods
Household survey and child infection data
The survey involved 7564 households in eight Districts 
throughout Malawi, conducted during April/May 2007 
[46]. Within each District, 16 to 30 Enumeration Areas 
(EAs) were chosen at random. Within each EA, 10 to 
81 households were randomly selected. The geographic 
location of each sampled house was recorded using a GPS 
unit. After obtaining informed consent from the head 
of household, demographic information on all house-
hold members was collected using a standard question-
naire. In addition, one child between 6 and 59 months of 
age was identified for inclusion in the survey. Although 
household and individual malaria risk data were gathered 
from all households, only 4684 households where eligible 
children were present were selected for testing for Plas-
modium infection. In households with more than one eli-
gible child, only one was selected for malaria testing. A 
finger-prick blood sample was taken and later examined 
by a trained microscopist for presence of any species of 
Plasmodium. There was no attempt to identify the Plas-
modium species, but a majority of infections in Malawi 
are known to be P. falciparum [47]. See Fig.  2 for loca-
tions of included households and parasitaemia status  of 
selected children.

Information on household-level material assets col-
lected by project enumerators included: type of house 
construction, water and light sources, type of toilet 
facilities, and presence of livestock, electronic goods and 

vehicles (bicycles, motorcycles and cars). All information 
was entered into a Microsoft Access database. Principal 
Components Analysis (PCA) was applied to these house-
hold-level material items. PCA [48] is a data dimension 
reduction technique that, given a set of p, possibly corre-
lated, variables yields p new, uncorrelated, and mutually 
orthogonal variables, called Principal Components (PCs). 
Each component is defined as a linear combination of the 
original p variables, with the coefficients of the original p 
variables in the linear combination called factor loadings. 
The PCs are ordered so that the first PC accounts for the 
largest amount of variation in the data, and the subse-
quent components explain a lesser amount. Dimension 
reduction via PCA is achieved by replacing the original 
p variables with an appropriate number r, where r ≤ p, of 
PCs that explain a significant percentage of the total vari-
ation in the data. The first PC was selected as a composite 
measure of material wealth and socio-economic status 
(SES) and divided into quintiles. The SES quintiles, repre-
senting SES "classes" for each household were then added 
to the database [49].

Data sources and urbanicity measure creation
To create a measure of urbanicity that does not require 
detailed, on-the-ground surveys, easily obtained, publicly 
available data were analysed, based on sources that could 
allow for cross-country comparisons. Six environmen-
tal, social, or infrastructural features commonly consid-
ered relevant to malaria risk, and that often differentiate 
urban and rural areas, were considered: population den-
sity, transportation infrastructure, and location of health 
services along with elevation and proximity to surface 
water (rivers and lakes). These components relate to the 
social environment, to the social/health services associ-
ated with the urban-to-rural continuum of interest and 
to environmental factors that characterize rural regions 
in this context [15]. Increased population, proximity to 
roads and health services all characterize development, 
access to areas of economic activity and the ability to 
receive government services. Low elevation and prox-
imity to water characterize extremely rural and unde-
veloped regions in this context such as areas along Lake 
Malawi or in the low lying regions along the border with 
Zambia [50].

Spatially-referenced data for elevation, water bodies, 
and transportation networks in Malawi were downloaded 
from the website of DIVA-GIS [51]. Mean population 
within a 1 km buffer around each household location was 
extracted from a 30  m resolution raster-based compos-
ite of census and remotely sensed data on locations of 
human settlements obtained from the WorldPop Pro-
ject [52]. These environmental and population data were 
integrated into a GIS database using ArcGIS [53] (Fig. 1). 
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In addition, both public and private health facility loca-
tions in Malawi, that had been comprehensively surveyed 
in 2003 by the Japan International Cooperation Agency 
(JICA), were obtained. The geo-coordinates for each 
health facility, as well as the health facility type, owner-
ship and funding source, were included in the database 
[54].

For point features (e.g. health facilities), point-to-point 
distances were calculated. For linear features (e.g. roads), 
distance to the nearest point on the closest line was cal-
culated. Computing distances using the Euclidean dis-
tance formula provides measures that some research has 
shown to be reasonable proxies for distances generated 
by other, more complex methods that measure actual 
travel routes [55, 56]. However, other studies have sug-
gested that measures of access to health services based 
on Euclidean distances can overestimate access for a 
significant percentage of a given population compared 
with more complex metrics (e.g. road networks) due to 
underestimation of true travel distances [57]. Though 
Euclidean distances tend to underestimate true travel 
distances, they are correlated with true travel distances 
[58, 59]. Given this finding, and lacking information on 
actual travel routes from households to health facilities, 
Euclidean distances were used as a proxy for travel times 
required to receive health services.

From the human population data layer, 1  km buff-
ers around each point of interest were created, and the 
mean population within each buffer was extracted and 
recorded. To construct a measure of urbanicity for the 
entire country of Malawi, a 1 km grid of points covering 

Malawi was constructed. Distances from a household, 
or any other point of interest, to any other point, line, or 
polygon feature were calculated, and raster values were 
extracted based on GPS location.

To derive the composite measure of urbanicity, PCA 
was applied to the six gridded variables that were con-
sidered relevant to the multi-dimensional concept of 
urbanicity, namely, distance to health facility, road, lake 
and river, as well as population and elevation, all appro-
priately normalized. Each household was assigned the 
values of the PCs relative to the grid centroid closest to 
its location.

Statistical analyses
To investigate specific patterns of association between 
features of urbanicity and Plasmodium infection, con-
trolling for potential confounders, multivariate logistic 
regression models were developed. To assess whether 
the proposed composite measure of urbanicity pro-
vided a better explanation of Plasmodium infection than 
other readily available indicators of urbanicity, such 
as population density or a binary indicator of urban vs. 
rural areas obtained from government statistics, three 
logistic regression models were fitted. The three models 
regressed the logit of observed malaria occurrence on: (i) 
the composite urbanicity measure defined by the first and 
second Principal Components; (ii) population density; 
and (iii) a binary urban/rural indicator. The three models 
were compared based on their Akaike’s Information Cri-
teria (AIC) value [60], recognizing that the model with 
the lowest AIC is the model that best fits the data and 

Fig. 1  GIS layers for locations of health facilities, roads, water (rivers and lakes), elevation and population
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better explains the variability in the observed occurrence 
of infection. In addition, receiver operating characteris-
tic (ROC) curves [61] were developed to compare model 
performance between the continuous measure produced 
in this research and the dichotomous measure. All anal-
yses were performed using R (ver. 3.5.1) statistical soft-
ware [62].

Results
Plasmodium infection survey
Of 4684 children tested for Plasmodium infection, 966 
(20.6%) were found to be slide-positive (Fig.  2). More 
than half (57%) of these children reported sleeping under 
an ITN the previous night (Table  1). The mean age of 
children tested for infection was 17.1 months (Table 1). 

Children who were tested were younger and slightly 
poorer compared to those who were not tested (Addi-
tional file 1: Table S1).

Infection and geographic features
Children with Plasmodium infection lived further from 
the nearest health facility and closer to a lake body com-
pared to those who tested negative (5.1  km vs. 3.8  km 
and 13.1 km vs. 27.7 km, p ≤ 0.001, respectively). Infected 
children, however, did not live closer to a road (2.6 km vs. 
2.7 km, p = 0.6) nor to a river (2.3 km vs. 2.3 km, p = 0.9). 
Infected children resided in significantly less densely 
populated areas (z = 1.12 vs. z = 1.64, p ≤ 0.001), and at 
a lower elevation (z = -0.57 vs. z = − 0.28, p ≤ 0.001) than 
children who were not infected (Table 1).

Urbanicity measure and government classification
Results of the PCA showed that all six urbanicity vari-
ables were strongly represented in the first and second 
PCs (Table  2). In particular, the six variables tended to 
fall into two distinct groups. The first PC weighted more 
heavily those aspects of urbanicity that are related to 
human and infrastructural factors, such as population 
density, roads and health facilities. On the other hand, 
the second PC is a combination of variables involving 
biogeographic aspects of urbanicity, e.g. elevation, prox-
imity to lakes, and proximity to rivers and streams, which 
should be important to vector mosquito abundance. 
The first two PCs together account for 49% of the total 
variation in the data and represent different aspects of 
urbanicity. Because these two PCs are both dominant and 
more interpretable than the remaining four, a composite 
measure of urbanicity was defined as the first two PCs. 
Figure 3 provides maps of how this urbanicity measure, 
representing the sum of the first two principal compo-
nents, is geographically distributed throughout Malawi.

This PCA-derived composite urbanicity measure was 
compared with official government urban and rural des-
ignations to assess whether the new measure identified 
“urban-like” spaces in areas designated as “rural” by the 
official classification, and conversely, whether there were 
“rural-like” spaces in areas officially designated as “urban.” 
Each household location was re-classified as “rural” if the 
urbanicity measure was below the median, or as "urban" 
if above the median. This new, PCA-derived, urban–rural 
re-classification was then compared with the official 
governmental designation of urban or rural to evaluate 
which household locations were classified differently. 
Nearly half (45.6%) of the household locations defined 
as rural by the Malawian government were classified as 
urban by the PCA-derived urbanicity measure. Likewise, 
there was heterogeneity within the survey areas that were 
officially defined as urban, with 4.4% of study households 

Fig. 2  Maps of Malawi showing locations of households and the 
parasitemia status of the child in each household in the Northern, 
Central and Southern Regions surveyed during the 2007 sampling 
period
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(all within the two largest cities) being classified as rural 
according to the urbanicity-measure driven classification.

Relationships of urbanicity to Plasmodium infection
To assess the predictive utility of the PCA-derived com-
posite measure, it was compared with the dichotomous 
urban–rural classification in the Malawi census data 

using receiver operating characteristic (ROC) curves 
(Fig. 4). For the government dichotomous classification, 
the curve mostly rests on the diagonal, while for the 
PCA-derived composite, the curve extends closer to the 
upper left corner. This indicates that the PCA compos-
ite classification is a superior predictor of Plasmodium 
infection compared to the official census-based measure.

Table 1  Characteristics of children and their households, aggregated and stratified by Plasmodium infection in eight Districts of 
Malawi, 2007

Univariate Odds Ratios (OR) compare parasitaemia positive versus negative children by each characteristic. All data are reported as counts unless specified

Total Sampled Plasmodium Negative Plasmodium Positive
N = 4684 N = 3718 N = 966 OR [95% CI]

Slept under ITN (fraction) 0.57 (0.50) 0.60 (0.49) 0.47 (0.50) 0.59 [0.52;0.69]

Age (months) 17.1 (6.86) 16.9 (6.83) 18.0 (6.90) 1.02 [1.01;1.04]

Male (fraction) 0.50 (0.50) 0.50 (0.50) 0.52 (0.50) 1.09 [0.94;1.25]

Wealth quintile

 Ultra poor 1142 (24.4%) 810 (21.8%) 332 (34.4%) Ref

 Very poor 1104 (23.6%) 858 (23.1%) 246 (25.5%) 0.70 [0.58;0.85]

 Poor 954 (20.4%) 776 (20.9%) 178 (18.4%) 0.56 [0.45;0.69]

 Less poor 828 (17.7%) 719 (19.3%) 109 (11.3%) 0.37 [0.29;0.47]

 Least poor 656 (14.0%) 555 (14.9%) 101 (10.5%) 0.44 [0.35;0.57]

Water source

 Borehole 2677 (57.2%) 2088 (56.2%) 589 (61.0%) Ref

 Piped into Yard 596 (12.7%) 504 (13.6%) 92 (9.52%) 0.65 [0.51;0.82]

 Public Faucet 527 (11.3%) 484 (13.0%) 43 (4.45%) 0.32 [0.23;0.43]

 Traditional public well 388 (8.28%) 245 (6.59%) 143 (14.8%) 2.07 [1.65;2.59]

 Piped 281 (6.00%) 224 (6.02%) 57 (5.90%) 0.90 [0.66;1.22]

 River/Lake/Canal 215 (4.59%) 173 (4.65%) 42 (4.35%) 0.86 [0.60;1.21]

Toilet type

 Pit latrine 3591 (76.7%) 2951 (79.4%) 640 (66.3%) Ref

 Other toilet 928 (19.8%) 667 (17.9%) 261 (27.0%) 1.80 [1.53;2.13]

 Flush toilet 117 (2.50%) 72 (1.94%) 45 (4.66%) 2.88 [1.95;4.21]

 Bush toilet 32 (0.68%) 15 (0.40%) 17 (1.76%) 5.22 [2.57;10.7]

 Ventilated improved pit latrine (VIP) 16 (0.34%) 13 (0.35%) 3 (0.31%) 1.11 [0.24;3.49]

Roof material

 Grass 3386 (72.3%) 2588 (69.6%) 798 (82.6%) Ref

 Tin 1298 (27.7%) 1130 (30.4%) 168 (17.4%) 0.48 [0.40;0.58]

Floor material

 Dirt 3671 (78.4%) 2855 (76.8%) 816 (84.5%) Ref

 Cement 1013 (21.6%) 863 (23.2%) 150 (15.5%) 0.61 [0.50;0.73]

 Elevation 788 (274) 800 (273) 706 (267) 1.00 [1.00,1.00]

Population 1.53 (4.31) 1.64 (4.59) 1.12 (3.01) 0.96 [0.94;0.99]

Distance to nearest

 Health facility 4.08 (3.16) 3.81 (2.90) 5.11 (3.84) 1.13 [1.11;1.15]

 Road (km) 2.69 (3.41) 2.70 (3.53) 2.63 (2.91) 0.99 [0.97;1.02]

 Lake (km) 24.7 (20.5) 27.7 (20.5) 13.1 (15.5) 0.96 [0.95;0.96]

 River (km) 2.32 (2.09) 2.32 (2.11) 2.31 (2.03) 1.00 [0.96;1.03]

Urban or rural

 Rural 4249 (90.7%) 3346 (90.0%) 903 (93.5%) Ref

 Urban 435 (9.29%) 372 (10.0%) 63 (6.52%) 0.63 [0.47;0.82]
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Regression‑based associations
Logistic regression models indicated that ITN use 
was highly predictive of reduced infection risk, and 
there was no difference by gender (Table 3). Using the 
poorest SES quintile as a reference, SES was inversely 
related to Plasmodium parasitaemia, with the wealthier 

groups experiencing the lowest likelihood of testing 
positive. In other univariate logistic regression models, 
age, distance to nearest health facility, distance to lake, 
and population density were all significantly associated 
with parasitaemia, but distance to river and road were 
not (Table 3).

Table 2  Principal Component Analysis (PCA) loadings, percentage of variance explained, and cumulative proportion of variance 
explained by the six principal components

The first two principal components are used in subsequent analyses as the urbanicity metric

Variable PC1 PC2 PC3 PC4 PC5 PC6

Distance to health facility − 0.65 − 0.03 − 0.05 − 0.20 − 0.17 − 0.71

Distance to road − 0.60 − 0.09 0.19 − 0.42 0.08 0.64

Distance to river − 0.10 − 0.41 0.78 0.44 0.11 − 0.10

Distance to lake 0.04 0.66 0.35 − 0.20 0.61 − 0.18

Population 0.41 − 0.05 0.44 − 0.64 − 0.46 − 0.11

Elevation − 0.18 0.63 0.20 0.37 − 0.61 0.17

Standard deviation 1.30 1.11 1.00 0.92 0.89 0.68

Proportion of variance 28.00% 20.50% 16.50% 14.10% 13.30% 7.70%

Cumulative proportion 28.00% 48.50% 65.00% 79.00% 92.30% 100.00%

Fig. 3  Urbanicity measure represented as the sum of the first two principle components for A  all of Malawi, and in greater detail for the cities of B 
Blantyre and C Lilongwe. Higher values signify more urban
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To evaluate these relationships further, all covariates 
were included in a single multivariate logistic regres-
sion model (Table  3). Again, gender and distance to 
river were not significantly associated with parasitae-
mia risk when controlling for all the other covariates. 
ITN use was still protective against infection, although 
at a reduced magnitude. After accounting for other 
spatial indicators, the association between SES and 
infection disappeared. Older age, increased distance to 
health facilities and roads, decreased distance to lake, 
and increased population density were all associated 
with an elevated risk. A model including only the com-
posite urban–rural measure indicated that increased 
levels of urbanicity were associated with decreased 
risks of being positive for Plasmodium infection 
(Table  3). Based on AIC values for logistic regression 
models with binary outcomes of parasitaemia status, 
the composite urbanicity measure performed better 
(AIC 4347) than one with a single predictor for popula-
tion density (AIC 4758) and also better than one with 
only the urban/rural indicator variable (AIC 4760.)

Malaria risks in Malawi are heterogeneous within 
politically defined urban and rural areas. For example, 
23% of rural survey locations exhibited low risk char-
acteristics of an urban designation (based on the lower 
25th percentile probability of parasitaemia). On the 
other hand, 4% of the urban survey locations exhib-
ited high risk characteristics of a rural designation 

(based on the upper 25th percentile of the probability 
of parasitaemia.).

Predicted malaria risk based on the composite measure
Using the composite measure of urbanicity and logis-
tic regression, infection risk was calculated at each grid 
point over the entire map of Malawi (Fig. 5). Although 
areas along the lake were “high risk,” low lying areas of 
low population density such as those in and around the 
wildlife parks also had elevated levels of malaria risk. 
However, the prediction errors in these areas, where 
data are  lacking, were very high. Finally, the estimated 
infection risk for households based on the PCA-derived 
composite measure was compared with the official cen-
sus-based urban/rural designation of household loca-
tion (Fig.  6). While the mean composite measure risk 
for rural areas was higher than that for urban areas, 
there was considerable overlap between the two, par-
ticularly at the second quartile. Many outlier household 
location points designated as “urban” had risk equiva-
lent to points at the high end of “rural” risk. Indeed, 45 
household locations designated as “urban” had Plas-
modium infection risk equivalent to that of the high-
est quantile of risk among “rural” areas. Likewise, 295 
households designated as “rural” had infection risk 
equivalent to that of the lowest risk among households 
designated as “urban.” 

Fig. 4  ROC curves comparing predicted parasitemia for households classified using A the dichotomous measure of urban and rural from the 
government-sponsored census and B the PCA-weighted composite measure
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Discussion
The analyses of this study applied different methods 
that created a more informative and relevant geosocial 
classification of malaria risk along an "urban-to-rural" 
continuum, indicate that there is a graded relationship 
with urbanicity. Indeed, the results suggest the value of 
creating a more complex, nuanced characterization of 
urbanicity when assessing Plasmodium transmission 
risk than what a classical binary classification offers. 
There are a number of special features in the results 
that are worth noting.

The analyses found that while Plasmodium parasi-
taemia status was strongly associated with distance to 
lakes, this was not so with proximity to rivers. Lake-
fronts may provide breeding opportunities for Anophe-
les, particularly Anopheles funestus [63, 64]. In addition, 

lake water is generally more seasonally stable in volume 
than that of rivers. However, the water layers used for 
this study did not include information on river width, 
depth or degree of water flow. A more comprehensive 
map of waterways for Malawi could yield more detailed 
results. Different river widths create environments that 
are more or less amenable to Anopheles species-specific 
reproduction, and might include conditions that are 
similar to lake and other still water bodies.

Other community-level factors such as greater dis-
tances to health services and roads were also found to be 
important risk factors (Table 3). Appreciating these com-
munity contexts, and thereby identifying specific areas 
at higher potential risk, will be important to developing 
more focused prevention. This process will lead to a bet-
ter understanding of the causal mechanisms underlying 
risk and may unveil the manner in which closer proximity 

Table 3  Univariate and multivariate models of parasitaemia risk

Multivariate model 1 includes the individual components of the composite urbanicity measure except for the last two variables. Here, component 1 and 2 were 
included in one model. Multivariate model 2 includes the continuous urbanicity composite measure

Model 1 with standard predictors Model 2 after backwards selection Model 3 with urbanicity measure

Predictors Odds Ratio CI p Odds Ratio CI p Odds Ratio CI p

(Intercept) 0.23 0.15–0.34 < 0.001 0.29 0.22–0.38 < 0.001 0.53 0.38–0.73 < 0.001

Slept under ITN 0.43 0.36–0.52 < 0.001 0.63 0.55–0.73 < 0.001 0.44 0.37–0.54 < 0.001

Age 1.03 1.01–1.04 < 0.001 1.03 1.02–1.04 < 0.001 1.03 1.02–1.05 < 0.001

Gender 1.08 0.91–1.29 0.388 1.02 0.89–1.19 0.74 1.1 0.92–1.32 0.287

Water Source

 Piped into Yard 0.9 0.61–1.32 0.581 1.09 0.72–1.63 0.69

 Public Faucet 0.22 0.13–0.37 < 0.001 0.24 0.14–0.40 < 0.001

 Traditional Public Well 1.73 1.30–2.31 < 0.001 1.01 0.76–1.36 0.932

 Piped 1.2 0.75–1.94 0.447 1.1 0.67–1.78 0.71

River/Lake/Canal 0.73 0.49–1.11 0.139 0.82 0.54–1.24 0.354

Tin Roof 0.64 0.42–0.97 0.035 0.6 0.40–0.91 0.016

Cement floor 1.83 1.13–2.99 0.015 1.72 1.06–2.80 0.029

Wealth

 Very poor 0.83 0.66–1.05 0.13 0.76 0.63–0.92 0.006 0.89 0.70–1.13 0.344

 Poor 0.75 0.56–1.00 0.048 0.61 0.49–0.75 < 0.001 0.76 0.57–1.03 0.073

 Less poor 0.37 0.23–0.59 < 0.001 0.39 0.31–0.50 < 0.001 0.44 0.27–0.71 0.001

 Least poor 0.51 0.25–1.05 0.068 0.47 0.37–0.60 < 0.001 0.57 0.27–1.21 0.141

Distance to nearest

 Health Facility 1.04 1.01–1.07 0.004 1.02 1.00–1.04 0.079

 Road 0.98 0.95–1.02 0.271 1.01 0.98–1.03 0.549

 Lake 1.01 1.00–1.01 0.004 0.99 0.99–0.99 < 0.001

 River 1.19 1.13–1.26 < 0.001 1.09 1.05–1.13 < 0.001

Elevation 1 1.00–1.00 0.007

Population 1 1.00–1.00 0.014

PC 1 PC 2 0.97 0.97–0.98 < 0.001

Observations 2811 4684 2811

Cox & Snell’s R2 /

Nagelkerke’s R2 0.130 / 0.186 0.045 / 0.070 0.169 / 0.243
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Fig. 5  Spatial distribution of predicted Plasmodium infection risk given the PCA-derived composite measure of urbanicity

Fig. 6  PCA-derived composite Plasmodium infection risk boxplots for households designated as urban or rural by official government classification
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to certain features of more urbanized environments miti-
gates against Plasmodium infection in children.

In addition to the community-based urbanicity metric, 
various household-level factors, such as greater material 
wealth (a measure of SES) and the use of ITNs, were also 
found to be associated with reduced malaria risk in chil-
dren. The analysis suggests that higher SES, greater ITN 
use, and living in more urbanized contexts each acted 
independently to decrease malaria risk. Thereby, the 
important household-level causal pathways appear to be 
more than house construction and condition, as is often 
posited. Considerably more work is needed to untangle 
the relationships between household- and community-
level factors, and their relationships with malaria. The 
issue of urban–rural classification, a community-level 
construct, will become ever more salient as sub-Saharan 
African (SSA) countries continue to develop, and urbani-
zation continues to expand.

This study and others have demonstrated the limita-
tions of using a politically defined urban–rural construct. 
Within a politically defined urban or rural environment, 
there exists heterogeneity with respect to geographic, 
economic and socio-political risk factors. In general, the 
urban designations in use are not consistently defined 
across the countries of SSA. As this study in Malawi has 
shown, where fewer areas are classified as “urban”, peo-
ple might be considered residents of rural areas even 
though their communities share indicators of urban set-
tings. The reverse is also true. As other researchers have 
noted, independent of population density or remoteness, 
some “rural” communities experience better standards of 
living, increased economic opportunities, and city-like 
services such as health care and schools [15]. Inversely, 
small-area environmental conditions (family gardens, 
lowland springs, river edges) in urban settings might cre-
ate highly suitable breeding sites for Anopheles vectors of 
malaria, much like what is typically thought of as rural.

The limitations of using a dichotomous definition of 
urbanicity have practical implications. When providing 
anti-malaria interventions, some “rural” communities 
may have areas with low disease risk, yet receive exten-
sive prevention support, leading to a waste of resources 
that could be better targeted elsewhere. Similarly, rural-
like areas near large and dense human settlements may 
be overlooked during anti-malaria interventions. Uneven 
geographic distribution of malaria risk and inadequate 
knowledge of the locations of transmission foci have 
been recognized as challenges to the spatial targeting of 
malaria control [54] in settings of heterogeneous trans-
mission across geographic locations [65]. Results from 
the present study confirm that the transmission profile 
throughout a holoendemic country like Malawi var-
ies considerably over space. These same analyses offer 

measurable and easily obtained markers that could 
potentially be used to aid in efficient targeting of anti-
malaria interventions.

Another important aspect of the urban–rural con-
tinuum involves the level of connectivity between more 
rural and more developed contexts. In Malawi, however, 
ease of transport between areas along the developmental 
gradient is challenging. One study showed that people in 
extremely rural areas must rely on animal-drawn carts to 
receive basic medical services and must spend money to 
reach better secondary and tertiary care facilities located 
in larger cities and towns [66]. Transportation expenses 
have been shown to be a major barrier to receiving 
prompt care for serious health conditions in other Afri-
can contexts [67]. Travel distance has been shown to be 
an obstacle to obtaining HIV care in Malawi [68]. While 
the present research used a simple measure of access to 
roads and health facilities as a proxy for spatial access to 
areas that provide economic opportunities and govern-
ment services, future efforts might employ more detailed 
measures that take into account different types of trans-
port infrastructure or travel times.

To further refine the use of a continuous urbanicity 
metric, at least three major areas need further consid-
eration. First, although this study created a malaria-rel-
evant urbanicity measure based on data that are readily 
available for any developing country, the lack of more 
specific markers of social and ecological contexts and 
economic development hampered the analysis. Data on 
the locations of schools or markets, for example, might 
have helped to make the results more focally accurate. 
Given the experiences and knowledge of the authors in 
Malawi, however, this analysis suggests that the compos-
ite measure is a reasonable representation of the gradient 
of urbanicity in Malawi. Second, associations with river 
and lake locations may not to be generalizable for cross-
country comparisons. With some exceptions, colonial 
powers tended to establish SSA cities far from swamps 
and fresh water bodies. Residents of rural areas, on the 
other hand, often live near surface water. Even within cit-
ies, wealthier areas tend to be located at higher elevations 
and away from areas where water usually collects. These 
SSA generalities stand in contrast to European contexts 
which tended to favor locations amenable to trade by 
water routes. Third, the cross-sectional malaria data that 
were used may ignore important temporal effects of sea-
sonal malaria. Seasonal transmission of Plasmodium has 
been demonstrated in Malawi in other studies [69, 70], 
although transmission does occur throughout the year. 
Data used in the present study were collected to assess 
infection prevalence toward the end of peak transmis-
sion, but seasonal patterns of transmission may also dif-
fer by urbanicity and developmental context. Regardless, 
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seasonal variation cannot confound the relationship 
between urbanicity and parasitaemia, because the 
urbanicity measure does not vary in time in this analysis. 
It is recognized, however, that the data were collected in a 
single year and may not be representative of other years.

Conclusions
Policy makers need more accurate classification of urban 
and rural spaces to make better use of limited interven-
tion resources [24]. Control and prevention strategies 
that inappropriately target all “rural” areas may unneces-
sarily expend costly resources where they are not needed, 
while underserving truly remote and disconnected areas 
that face crushing malaria incidence and mortality [36, 
43, 71–77]. The complement to this involves “urban” 
areas that are ignored because of a governmental des-
ignation. Malaria control policies are likely to be more 
cost-effective if governments encouraged a more scien-
tific, context and disease-specific analysis of the complex 
urban–rural continuum. The analysis of measures associ-
ated with urbanicity in this Malawi study demonstrated 
a rural–urban gradient of associated malaria risk, but 
with urban-like pockets in areas traditionally classified as 
rural, and vice versa. Additionally, malaria risk showed a 
graded association with levels of the new urbanicity met-
ric that were developed. Governments might encourage 
use of such an approach in developing policies to more 
effectively target anti-malaria interventions to popula-
tions with scarce resources.
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