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Abstract 

Background:  As part of malaria prevention and control efforts, the distribution and density of malaria mosquitoes 
requires continuous monitoring. Resources for long-term surveillance of malaria vectors, however, are often limited. 
The aim of the research was to evaluate the value of citizen science in providing insight into potential malaria vector 
hotspots and other malaria relevant information, and to determine predictors of malaria vector abundance in a region 
where routine mosquito monitoring has not been established to support vector surveillance.

Methods:  A 1-year citizen science programme for malaria mosquito surveillance was implemented in five villages of 
the Ruhuha sector in Bugesera district, Rwanda. In total, 112 volunteer citizens were enrolled and reported monthly 
data on mosquitoes collected in their peridomestic environment using handmade carbon-dioxide baited traps. 
Additionally, they reported mosquito nuisance experienced as well as the number of confirmed malaria cases in their 
household.

Results:  In total, 3793 female mosquitoes were collected, of which 10.8% were anophelines. For the entire period, 
16% of the volunteers reported having at least one confirmed malaria case per month, but this varied by village and 
month. During the study year 66% of the households reported at least one malaria case. From a sector perspective, a 
higher mosquito and malaria vector abundance was observed in the two villages in the south of the study area. The 
findings revealed significant positive correlations among nuisance reported and confirmed malaria cases, and also 
between total number of Culicidae and confirmed malaria cases, but not between the numbers of the malaria vector 
Anopheles gambiae and malaria cases. At the sector level, of thirteen geographical risk factors considered for inclusion 
in multiple regression, distance to the river network and elevation played a role in explaining mosquito and malaria 
mosquito abundance.

Conclusions:  The study demonstrates that a citizen science approach can contribute to mosquito monitoring, and 
can help to identify areas that, in view of limited resources for control, are at higher risk of malaria.
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Background
Malaria is a major public health concern in Rwanda, and a 
leading cause of morbidity and mortality [1]. Despite the 
progress made in reducing the malaria burden over the 
last decades [2], the country experienced an upsurge of 
malaria since 2012, putting the entire population, includ-
ing an estimated 443,000 pregnant women per year and 
1.8 million children under 5 years, at risk of malaria [3]. 
This increase of malaria cases was especially observed in 
the East and the South provinces of the country. Accord-
ing to the Health Management Information System of the 
Malaria and Other Parasitic Disease Division (MOPDD-
HMIS), these two provinces accounted for 79% of the dis-
ease burden [3].

Regardless of the malaria resurgence, Rwanda has 
made progress in vector monitoring by establishing 12 
entomological sentinel sites that are involved in the sur-
veillance of malaria vectors across the country [4]. This 
programme has given insight in the mosquito diversity, 
malaria vector and non-vector distribution and insec-
ticide resistance status, as well as in entomological 
inoculation rates as a measure of transmission intensity 
[5]. Vector surveillance implies continuous monitor-
ing of malaria mosquitoes [6]. This involves long-term 
sustained funding and trained entomologists, and also 
the physical infrastructure to accomplish such activi-
ties [6–8]. These activities receive external funding (70% 
from the Global Fund, President’s Malaria Initiative, and 
End Malaria Fund). Funds required to extend vector sur-
veillance to regions other than the 12 sentinel sites are 
not available [1, 4]. Importantly, effective surveillance 
requires locality-specific information on the diversity, 
and the spatial and temporal distribution of malaria vec-
tors to plan accordingly. This information helps to inform 
decision-making before outbreaks occur [9, 10]. Mostly, 
malaria prevention and control consists of early diagnosis 
and treatment as well as of vector control by the use of 
insecticide-treated bed nets (ITNs) and indoor residual 
spraying (IRS) [11]. The effectiveness of vector control is 
increased by accurate identification of the malaria vector 
population at the local level. Not identifying malaria vec-
tor hotspots can cause malaria prevention and control to 
fail [12, 13].

Several citizen science initiatives have demonstrated 
that citizens or community members can contribute to 
the monitoring of disease-carrying mosquitoes [14–21], 
but most of these have focused on settings outside of 
Africa. Innovation in malaria mosquito surveillance 
could therefore focus on how local communities and 
stakeholders, especially in a rural African context, can 
participate in citizen science with the aim of ensuring 
implementation and sustainability. Citizen science pro-
grammes represent a unique opportunity to involve the 

general public in the design, implementation, and evalua-
tion of such vector surveillance programmes [18].

The main goals of the current study were to evaluate 
the value of a citizen science programme in providing 
insight into potential malaria vector hotspots and other 
malaria related information, and to determine predictors 
of malaria vector abundance in a region where routine 
mosquito monitoring has not been established. For this 
purpose, two research questions were formulated. First, 
what are the spatial and temporal dynamics in and corre-
lations among (malaria) mosquito abundance, perceived 
mosquito nuisance and proportion of households report-
ing confirmed malaria cases in the study area? And sec-
ond, what are the environmental drivers explaining the 
spatial and temporal distribution of the malaria vector 
Anopheles gambiae sensu lato (s.l.) and other mosquito 
species? The outcomes of this study will help to better 
understand malaria transmission dynamics in the study 
area based on citizen science data.

Methods
Study area
The study was conducted in five selected villages of the 
Ruhuha sector (Fig.  1) in the Bugesera district, of the 
Eastern province of Rwanda. The Ruhuha sector is com-
posed of 35 villages grouped into five cells. The area 
covers 54 km2 and is located 42 km south of the capital 
Kigali [22]. The elevation varies from 1300 to 1573  m 
above sea level. It is surrounded by lowland marshes and 
water streams draining into the Akagera river system, 
and is separated from Burundi by Lake Cyohoha in the 
south [22]. The sector has an estimated population of 
24,000 people, living in approximately 5000 households 
[23]. Ruhuha has a predominantly rural agricultural set-
ting and is known as a malaria endemic area [22]. Ruhuha 
experiences two malaria transmission peaks associated 
with the rainy seasons observed generally from October 
to November and March to May [24].

Recruitment of participants and distribution of materials 
and tools
Volunteer participants were recruited through workshops 
conducted 3 months prior to the implementation of the 
citizen science programme for malaria mosquito surveil-
lance [25]. The list of volunteers consisted of the names 
of the participants and their contact details. Volunteers 
could indicate in which research activities they wanted 
to participate. This included filling forms with malaria 
relevant information and/or collecting mosquitoes. The 
citizen science programme kicked off with a launch event 
on 22 November 2018 in Ruhuha sector with participants 
from five selected villages of Ruhuha: Busasamana, Kaga-
sera, Kibaza, Kiyovu, and Mubano (Fig. 1). Based on their 
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preference, volunteers were requested to report every 
month the experienced mosquito nuisance and the num-
ber of malaria cases in their household, and to collect 
mosquitoes in their environment (Fig. 2).

To facilitate data collection, volunteers were grouped 
into groups of households (called isibo) close to each 
other. Each isibo consisted of a few households (3 to 10). 

A phone call was made by the researcher to the isibo 
leaders 1 or 2  days prior to data collection to remind 
them of their tasks and to collect the data properly. After 
four consecutive rounds of data collection, a dissemina-
tion workshop was organized to share the results from 
the data collected previously by the volunteers, and to 
motivate them to continue their active participation. 
Additionally, researchers could also check whether the 
correct procedures were followed in terms of filling the 
requested information on the paper forms or when and 
how to capture and conserve mosquitoes.

During the launch workshop, the data collection and 
reporting schemes of the observations were determined 
by the researchers in consultation with the volunteers. 
Paper forms, handmade traps, ingredients for production 
of carbon dioxide (sugar and yeast) for baiting the traps, 
batteries and torches were distributed during the launch 
workshop. These materials were used for the duration 
of the study except for some materials that needed to be 
replenished such as sugar, yeast, forms, and batteries. 
These were distributed monthly every last Friday by the 
isibo leader and distributed to the volunteers 3 days prior 
to the data collection during the monthly isibo meeting. 
Instructions on how to fill the forms and how to set up 
the traps as well as how to label the containers containing 
the mosquitoes and to store all the data collected, were 
given during the workshop. In addition, the isibo leaders, 

Fig. 1  Map showing Ruhuha with the five selected villages where the citizen science programme was implemented (Busasamana, Kagasera, 
Kibaza, Kiyovu and Mubano). The pink dots represent the locations of the volunteers from where observations were reported

Fig. 2  Diagram showing relations between variables and role of 
citizens in reporting data on these variables
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who represented the volunteers enrolled for the study 
in each selected village, were elected during the launch 
workshop as field data collectors. They were asked to 
assemble the data collected by the volunteers, and to sub-
mit these data to the researchers at Ruhuha health centre 
every last Friday of the month. Isibo leaders submitted 
the observations at the health centre three weeks prior 
to the next date of data collection. They also submitted 
a short report summarizing the data collected for the 
month and the challenges faced by the volunteers.

Data collection
Mosquito nuisance and confirmed malaria cases
Collection of mosquitoes, and the reporting of nuisance 
experienced in the peridomestic area and other relevant 
malaria information took place from 28 November 2018 
to 25 October 2019. The paper forms included two ques-
tions. One addressed the level of mosquito nuisance the 
participants perceived in their environment (indoors 
only, outdoors only and overall). The second question 
addressed whether participants had a confirmed malaria 
case in their household (diagnosed at the health centre 
using a blood sample) within the two weeks prior to the 
date of data collection. Next to these two questions, par-
ticipants included the date, and personal information on 
the forms.

Mosquito collection and laboratory processing
In each household, mosquitoes were collected by plac-
ing two handmade traps that were baited with carbon 
dioxide and a torch (Murindahabi et al., submitted). The 
torch was hung approximately at 5  cm above the open-
ing of the trap. One trap was placed indoors in the bed-
room on the floor next to a human sleeping under a bed 
net, at the foot end of the bed. Another trap was placed 
outside of the house of the volunteers, preferably near the 
main entrance of the house and positioned on the ground 
against the wall. Carbon dioxide was provided by mix-
ing 25 g brown sugar, 2 g of yeast and 250 mL of water 
at 9:00 a.m. In each trap, a gauze net was inserted to pre-
vent mosquitoes from drowning in the sugar–yeast solu-
tion. The bottle was wrapped with a black scotch tape. 
The next day, mosquitoes were transferred to a petri dish, 
labelled with the collection date and time, and name of 
the volunteer. The observations were handed to the isibo 
leader who gathered all the forms and mosquitoes, and 
who sent them later to the researchers at Ruhuha health 
centre.

All mosquitoes were transported to the Mareba health 
centre and identified to species level using standard 
taxonomic keys [26, 27]. Mosquitoes were also scored 
as fed or unfed, then pooled per study site and stored 
in Eppendorf tubes with silica gel for transportation to 

the national laboratory in Kigali for further molecular 
analysis. The head and thorax of each individual female 
An. gambiae s.l. was used to determine the presence of 
circumsporozoite protein (CSP) of Plasmodium fal-
ciparum using enzyme-linked immunosorbent assay 
(ELISA) techniques [28]. The ELISA results were read 
visually [29]. Additionally, 10% of the total An. gambiae 
s.l. collected were used for sibling species identifica-
tion by polymerase chain reaction (PCR) using the head 
and thorax of An. gambiae s.l. [30]. After DNA extrac-
tion, one microlitre of the DNA sample was used as the 
template for PCR amplification. Each amplified sample 
was run on a 2.5% agarose gel and visualized by a UV 
transilluminator.

Geographical data representing environmental drivers
To investigate whether publicly available data on geo-
graphic features within the sector could explain the 
observed patterns in mosquito abundance, variables 
were selected based on a review of relevant literature 
(Table  1). These environmental variables were mapped 
for the Ruhuha sector using publicly available data. 
From the Shuttle Radar Topography Mission (SRTM), 
the 30-m resolution Digital Elevation Model (DEM) was 
used to extract DEM derivates: Elevation, Slope, Aspect, 
hydrological Flow Accumulation, Topographical Posi-
tion Index and Topographical Wetness Index. Based on 
the Flow Accumulation derived from the DEM, a river 
network was constructed and (Euclidean) distance to the 
river network calculated. Satellite imagery from Sentinel 
2, level 2 A product, was used to derive 10-m resolution 
map layers for the Normalized Difference Vegetation 
Index (NDVI) and Normalized Difference Wetness Index 
(NDWI). Open water bodies were identified based on the 
NDWI and the Euclidean distance to these open water 
bodies was calculated. For the presence of marshland 
and the distance to it, data were used from the World 
Agroforestry Centre [31]. In addition, the population 
density of the area was collected from WorldPop [32] at 
a resolution of 3 arcseconds (approximately 100 m at the 
equator).

Data analysis
All collected citizen science data were aggregated in 
Microsoft Excel, and included a unique code for each 
of the volunteers, as well as their location (latitude and 
longitude of the house of the volunteer), the collection 
date, the mosquito species (indoors and outdoors) and 
its feeding status, the presence/absence of confirmed 
malaria cases in the 2 weeks prior to data collection, and 
the perceived mosquito nuisance expressed on a five-
point Likert scale [from ‘no nuisance’ (0) to ‘very much 
nuisance’ (5)].
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ArcGIS pro 2.4 (ESRI, Redlands, CA) was used to com-
pile geographic data and create maps of the study area. 
Locations of the selected households were used to make 
an interpolation of mosquito abundance using the inverse 
distance weighting (IDW) method [39].

Means, and proportions of confirmed malaria cases or 
perceived mosquito nuisance reported as well as mos-
quito species compositions were calculated. Spearman 
correlation coefficients were calculated using Statistical 
Package for the Social Sciences (Version 25.0, IBM Cor-
poration, New York, USA) to determine the relationships 
among perceived mosquito nuisance, confirmed malaria 
cases reported and the number of mosquitoes (Culicidae) 
or number of An. gambiae s.l. collected (Fig.  2). For all 
analyses, the results from the indoor and outdoor traps 
were summed per household. Calculations of these cor-
relations were made at different levels of aggregation: 
with raw data for individual households, resulting in 
approximately 1344 data points (i.e. 112 households × 12 
months), or with village averages, resulting in 60 data 
points (i.e. 5 villages × 12 months). In addition, to inves-
tigate the variability/consistency of correlations among 
villages, correlations were calculated separately for each 
village, using the raw data at household level.

Environmental factors (Table 1) were selected to evalu-
ate their impact on the abundance of mosquitoes (Culi-
cidae) and An. gambiae s.l. as collected via the citizen 
science approach in the study area. To do so, Pearson cor-
relations and multiple linear regressions were conducted 
to explore the relationship between mosquito abundance 
and selected environmental variables. The results were 

analysed at the sector level (all sampling points in the 
Ruhuha area). For the multiple regression analyses, the 
leaps package in R3.5 was used, which employs an itera-
tive process for finding one or more ‘best subsets’ of the 
explanatory variables [40]. To visually inspect cross-cor-
relations among the thirteen variables, principal compo-
nent analysis (PCA) was used. Finally, negative binomial 
GLMs (MASS package in R) were run to evaluate models 
that included or excluded ‘village’ as additional variable 
to account for spatial clustering of the observations.

Results
Overall, 112 volunteers participated in the current study 
by reporting perceived mosquito nuisance and confirmed 
malaria cases, and by submitting mosquitoes for a period 
of 12 months. In total, 51% of volunteers were male, and 
49% were female. The median age of the group was 42 
years (minimum 24 years, maximum 68 years). Participa-
tion varied from village to village, and included 12 vol-
unteers from Busasamana, 35 from Kagasera, 24 from 
Kibaza, 10 from Kiyovu, and 35 from Mubano (Fig.  1). 
Data collected by two volunteers who moved away from 
the selected villages during the study were excluded in 
the analyses.

Perceived mosquito nuisance
At village level, there was a clear spatial and temporal 
variation in the perception of mosquito nuisance. The 
highest average (± standard deviation) perceived mos-
quito nuisance for the whole period was reported from 
Busasamana (3.4 ± 0.5), followed by Kibaza (2.7 ± 0.1), 

Table 1  Overview of the thirteen environmental variables selected for this study

Variable Source Spatial resolution Temporal resolution Authors 
and year of 
publication

Elevation Shuttle Radar Topography Mission (SRTM) 30 m [33]

Slope SRTM 30 m [34]

Aspect—sines SRTM 30 m [34]

Aspect—cosines SRTM 30 m [34]

Flow accumulation SRTM 30 m [35]

Distance to marshlands World Agroforestry Centre (ICRAF) Shapefile [36]

Distance to river networks SRTM 30 m [37]

Distance to open water bodies Landviewer, Sentinel 2 L2A 10 m [35]

Topographic Position Index (TPI) SRTM 30 m [34]

Topographic Wetness Index (TWI) SRTM 30 m [34]

Normalised Difference Water Index (NDWI) Landviewer, Sentinel 2 L2A 10 m [35]

Normalised Difference Vegetation Index 
(NDVI)

Landviewer, Sentinel 2 L2A 10 m 27th of February 2019 [38]

27th of July 2019

15th of September 2019

Population density Worldpop 100 m [35]
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both in the south of the Ruhuha sector. Volunteers from 
Kagasera and Kiyovu in the eastern part of the sector 
experienced little nuisance (1.8 ± 0.4) followed by volun-
teers from Mubano in the north (1.8 ± 0.2). At a temporal 
scale, the highest average mosquito nuisance scores were 
reported in December (2.9 ± 1.3), January (3.0 ± 0.9), and 
February (3.1 ± 0.8) 2019 (Fig. 3A).

Confirmed malaria cases
Over the entire 1-year study period, every month on 
average 16% of the volunteers reported having at least 
one confirmed malaria case in the two weeks prior to 
sampling. However, 66% of the households reported 
at least one confirmed malaria case in their house-
hold throughout the study period. The highest aver-
age monthly percentage of households over the entire 
year having a confirmed malaria case was reported in 
Busasamana (28.7%), followed by Kibaza (23.1%), Kiyovu 
(16.3%), Mubano (14%), and Kagasera (10%). Over the 
year of the study, the month with the highest percentage 

of households reporting having at least one confirmed 
malaria case was March (27.7%), followed by January 
(25.5%) and February (25%). The months with the low-
est percentage of households having a confirmed malaria 
case were September and October 2019 with 3.2% each 
(Fig. 3B).

Mosquito species composition and molecular 
identification of members of the An. gambiae complex
A total of 3793 female mosquitoes were collected in the 
five selected villages using a handmade carbon diox-
ide baited trap over a period of 1  year. Of these, 51.7% 
(n = 1964) were collected indoors and 48.2% (n = 1829) 
were collected outdoors. These mosquitoes belonged to 
four genera and 10 species were identified. Of all mos-
quitoes, 89.4% (n = 3390) was morphologically identified 
as culicine and 10.6% (n = 403) as anopheline (Table  2). 
Among female anopheline mosquitoes collected, 90.8% 
(n = 366) were unfed and 9.2% (n = 37) were fed. Of 
the Anopheles species, 49.6% (n = 200) were collected 

Fig. 3  A Spatial and temporal distribution of variables determined. A average perceived mosquito nuisance, B proportion of households reporting 
at least one confirmed malaria case, C average number of mosquitoes (all species) per month, and D average number of An. gambiae s.l. per month 
reported in the five selected villages of Ruhuha sector, Rwanda
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indoors and 50.4% (n = 203) were collected outdoors. Of 
the total culicines, 76.6% (n = 2905) were Culex species, 
with Culex quinquefasciatus (74%) as the most abundant 
Culex species, followed by Mansonia (11.4%) and Coquil-
lettidia species (1.3%).

Of the Anopheles species, 53.3% were An. gambiae s.l. 
(n = 215), 40.2% were Anopheles ziemanni, and the other 
species were Anopheles pharoensis (4.2%, n = 17), Anoph-
eles maculipalpis (2%; n = 8) and Anopheles squamosus 
(0.2%; n = 1) (Table  2). Volunteers in Kibaza collected 
the highest proportion of Anopheles species (70.2%), fol-
lowed by Busasamana (17.9%), Mubano (8.7%), Kiyovu 
(1.7%) and Kagasera (1.5%) (Table  2). Kibaza had the 
highest proportion of An. gambiae s.l. (33.5%), followed 

by Busasamana (10.4%), Mubano (6.9%), Kiyovu (1.2%) 
and Kagasera (1.2%).

At sector level, relatively more mosquitoes were col-
lected in the south of Ruhuha sector than in the north. 
Especially in Busasamana and Kibaza, the villages that 
also reported the highest nuisance and malaria levels, 
more Culicidae and An. gambiae s.l. were collected in 
comparison with the three other villages (Fig. 4).

At sector level, the average (± standard deviation) 
number of mosquitoes (Culicidae) collected per house-
hold per month was 2.8 (± 1.2). Busasamana had the 
highest average number of mosquitoes (7.1 ± 6.3) per 
household per month, followed by Kibaza (6.3 ± 9.3). The 
lowest catch of mosquitoes was recorded in Kagasera 

Table 2  Species composition of mosquitoes collected during the citizen science programme in five villages in Ruhuha sector, 
Rwanda, November 2018–October 2019

Village name Busasamana Kagasera Kibaza Kiyovu Mubano Total % Species 
composition

An. gambiae s.l. 42 5 135 5 28 215 5.7

An. maculipalpis 0 0 5 0 3 8 0.2

An. pharoensis 4 0 12 0 1 17 0.4

An. squamosus 0 0 0 0 1 1 0.0

An. ziemanni 26 1 131 2 2 162 4.3

Total Anopheles spp. 72 6 283 7 35 403 10.6

Coquillettidia spp. 15 16 15 2 3 51 1.3

Culex spp. 732 213 1329 155 476 2905 76.6

Mansonia spp. 156 14 183 22 59 434 11.4

Total Culicinae 903 243 1527 179 538 3390 89.4

Total Culicidae 975 249 1810 186 573 3793 100

% Anopheles spp. 17.9 1.5 70.2 1.7 8.7

% Culicidae 25.7 6.6 47.7 4.9 15.1

Fig. 4  Maps of Culicidae (B) and An. gambiae s.l. (A) collected in the Ruhuha, Rwanda. Intensity of colouring represents estimated abundance 
based on inverse distance weighting as interpolation method
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(0.6 ± 1.6) followed by Mubano (1.4 ± 2.7) and Kiyovu 
(1.6 ± 3.0) (Fig.  3C). For An. gambiae s.l., volunteers 
from Kibaza had the highest average of An. gambiae 
s.l. (0.47 ± 1.5) per household per month followed by 
Busasamana (0.30 ± 1.6), Mubano (0.07 ± 0.4), Kiyovu 
(0.04 ± 0.2) and Kagasera (0.01 ± 0.1) (Fig. 3D). At a tem-
poral scale, most mosquitoes (Culicidae) were caught in 
January and February 2019 while the lowest numbers 
were caught in September and October 2019 (Fig.  3C). 
Both the months February and August 2019 had a peak 
in the number of An. gambiae s.l. in comparison with 
other months (Fig. 3D), and the number of An. gambiae 
s.l. dropped from March to May.

Sporozoite rates and molecular identification of members 
of the An. gambiae complex
The P. falciparum sporozoite infection rate for all 403 
female Anopheles was 0%. Of the 20% (42 out of 215) of 
An. gambiae s.l. tested, 62% (26/42) were Anopheles ara-
biensis, 31% (13/42) were An. gambiae sensu stricto and 
7% (3/42) did not yield a PCR product.

Correlation between number of mosquitoes collected 
and mosquito nuisance reported
Based on all data from the entire sampling period, there 
was a moderate, positive correlation between perceived 
mosquito nuisance reported per household per month 
and the number of mosquitoes (Culicidae) per house-
hold per month (rs = 0.459; P < 0.0001; Fig.  5A) and a 
weak, positive correlation between nuisance and number 
of An. gambiae s.l. per household per month (rs = 0.121; 

P < 0.0001; Fig.  5B). It should be noted that, in case of 
An. gambiae s.l. collections, only 7.2% of the collections 
contained one or more individuals in the trap (Fig. 5B), 
whereas this proportion was 42.5% in case of total 
Culicidae.

Interestingly, when the same data were aggregated 
and averaged by village, there was a strong correlation 
between the average nuisance level and average num-
ber of mosquitoes per month per village (rs = 0.798; 
P < 0.0001; Fig. 6A). In other words, the average perceived 
mosquito nuisance level could be explained by the aver-
age number of mosquitoes collected. However, there 
was no significant correlation between the average nui-
sance level and the number of An. gambiae s.l. (rs = 0.225; 
P = 0.084; Fig. 6B).

When correlations were investigated for each village 
separately, there were significant correlations between 
the level of perceived mosquito nuisance and the total 
number of mosquitoes (Culicidae) collected per house-
hold per month, except for Busasamana where no signifi-
cant correlation was found. Similar to the analyses for the 
entire sector, no significant correlations were observed 
between mosquito nuisance and the number of An. gam-
biae s.l. collected (Table 3).

Correlation between perception of mosquito nuisance 
and confirmed malaria cases
When data from households were aggregated and aver-
aged for each village, a moderate, positive correlation 
between perceived mosquito nuisance and proportion 
confirmed malaria cases per households per month 
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Fig. 5  Boxplots showing correlation between perceived mosquito nuisance and total mosquitoes collected. The correlation between perceived 
mosquito nuisance experienced per household per month with the total number of mosquitoes (Culicidae) (A) or An. gambiae s.l. (B) collected per 
household per month in five selected villages in Ruhuha sector, Rwanda is shown
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(rs = 0.473, P < 0.001) was found (Fig. 7). When this cor-
relation was investigated for each village separately, there 
was a significant, strong correlation for Kibaza (rs = 0.643, 
P = 0.023), while for Busasamana (rs = 0.567, P = 0.054), 
Kagasera (rs = 0.261, P = 0.413), Kiyovu (rs = 0.223, 
P = 0.486), and Mubano (rs = − 0.138, P = 0.670), correla-
tions were not significant.

Correlation between mosquitoes collected and confirmed 
malaria cases reported
At village level, a moderate, significant correlation 
(r = 0.468, P < 0.0001) was found between the average 
number of mosquitoes and the proportion of confirmed 
malaria cases reported per village per month (Fig. 8A). 

No correlation was found between the average num-
ber of An. gambiae s.l. collected and the proportion 
of confirmed malaria cases reported per village per 
month (r = 0.204, P = 0.124; Fig.  8B). When data were 
analysed separately by village, no significant correla-
tions were found between the number of mosquitoes or 
An. gambiae s.l. and the presence of confirmed malaria 
cases reported per village per month, except for Kibaza 
where a correlation (r = 0.581, P = 0.047) was found 
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Fig. 6  Scatter plots showing the correlation between perceived mosquito nuisance and number of mosquitoes. The correlation is between 
average perceived mosquito nuisance per village per month and average number of mosquitoes (Culicidae, A) and An. gambiae s.l. (B) per village 
per month reported by the volunteers in five selected villages in Ruhuha sector, Rwanda

Table 3  Spearman correlation coefficients for the relationship 
between nuisance level and the total number of Culicidae/An. 
gambiae s.l. separately for each village

In bold the significant correlations are highlighted

Mosquito group rs P 

Busasamana Culicidae 0.117 0.175

An. gambiae 0.044 0.613

Kagasera Culicidae 0.266 < 0.001 

An. gambiae 0.046 0.385

Kibaza Culicidae 0.371 < 0.001 

An. gambiae 0.056 0.374

Kiyovu Culicidae 0.392 < 0.001 

An. gambiae 0.057 0.583

Mubano Culicidae 0.413 < 0.001 

An. gambiae 0.037 0.507
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Fig. 7  Correlation between average mosquito nuisance and average 
proportion of confirmed malaria cases. Scatterplot showing the 
correlation between average mosquito nuisance level and average 
proportion of confirmed malaria cases reported per village per 
month by the volunteers in five selected villages in Ruhuha sector, 
Rwanda
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between number of Culicidae and confirmed malaria 
cases (Table 4).

Environmental risk factors explaining the spatial distribution 
of mosquitoes and malaria vectors
Thirteen variables identified from the literature were 
selected (Table  1). These included 12 environmental 
variables: elevation, slope, distance to marshlands, dis-
tance to open water, distance to the river network, flow 
accumulation, cosines of the aspect, sines of the aspect, 
Normalized Difference Vegetation Index (NDVI), Nor-
malized Difference Water Index (NDWI), Topographic 
Wetness Index (TWI), Topographic Position Index (TPI), 
as well as one demographic variable, population density. 

Data for these variables were extracted from different 
data sources (Table 1). Values for the different variables 
were derived and calculated from the extracted data spe-
cific to the area under study (Ruhuha sector; Figs. 9, 10, 
11, 12, 13 and 14) and linked to the locations of and data 
from the households under study.

Investigation of the bivariate correlations between the 
selected environmental variables and the abundance of 
mosquitoes (Culicidae and An. gambiae s.l.) revealed that 
there were significant, negative correlations between dis-
tance to marshland, distance to open water, distance to 
rivers, NDVI and population density for both mosquito 
groups (Table 5). For Culicidae, also the sines of aspect, 
slope and TPI showed a significant correlation.

At sector level, there was a relationship between eleva-
tion and the total number of mosquitoes (Table  5) and 
in this case there was a clear distinction between the 
south and the north of the area. In Fig. 15, the right oval 
encompasses data points from the villages in the north 
(Kagasera, Mubano and Kiyovu), whereas the left oval 
includes data points from the two villages in the south 
(Kibaza and Busasamana).

Prior to performing the multiple regression analysis, 
correlations among the thirteen selected variables were 
visually inspected by means of principal component anal-
ysis. This showed that NDWI and the sines of the aspect 
are highly correlated, as the direction and length of their 
vectors are similar. This also applies for correlations 
among the variables distance to river, distance to marsh-
lands, elevation and population. On the other hand, the 
variables NDVI and NDWI showed a negative correla-
tion as they diverge and form a large angle (Fig. 16).
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Fig. 8  Correlation between average proportion of malaria in households and number of mosquitoes. Scatter plots showing the correlation 
between average proportion of malaria in households per village per month and average number of mosquitoes (Culicidae) (A) and An. gambiae s.l. 
(B) per village per month reported by the volunteers in five selected villages in Ruhuha sector, Rwanda

Table 4  Pearson correlation coefficients between number of 
Culicidae/An. gambiae s.l. and presence of confirmed malaria 
cases in five villages of Ruhuha sector, Rwanda

Significant correlations are highlighted in bold

Village name Mosquito group r P 

Busasamana Culicidae 0.170 0.597

An. gambiae − 0.126 0.696

Kagasera Culicidae 0.560 0.058

An. gambiae − 0.183 0.569

Kibaza Culicidae 0.581 0.047 

An. gambiae 0.394 0.205

Kiyovu Culicidae − 0.241 0.450

An. gambiae 0.252 0.430

Mubano Culicidae − 0.154 0.632

An. gambiae 0.174 0.590



Page 11 of 18Murindahabi et al. Malaria Journal          (2021) 20:453 	

Multiple regression analyses, followed by ‘best sub-
set’ model selection in the leaps package of R, revealed 
that when using the Bayesian Information Criterion 
(BIC), only distance to the river network and elevation 
remained in the model (Fig.  17A). For the An. gambiae 
s.l. model, using BIC, only elevation remained in the final 
model (Fig.  17B). Elevation and distance to river thus 
seem to have a role in explaining (malaria) mosquito 
abundance, despite the high correlation among the two 
variables (Fig.  16). This could be interpreted as follows: 
the larger the distance is from the river network the lower 
the risk to encounter mosquitoes or collecting them, and 
the higher the elevation (where the population in Ruhuha 
is mostly concentrated), the lower the risk to encounter 
mosquitoes including An. gambiae s.l.

Based on the leaps variable selection, final negative 
binomial models were run that also included ‘village’ as 
a variable next to elevation and distance to the river net-
work. This was then compared to the model that excluded 
village. In this way, possible spatial variation in the data 
caused by differences among villages was accounted for. 
Consistent with the analyses in leaps, the model without 
village showed that, for An. gambiae, elevation is a sig-
nificant predictor (β = − 0.033, Z = − 3.39, P < 0.001), and 
distance to the river network is not (β = 186.0, Z = 0.95, 
P = 0.34). The addition of village to the model did not 
improve its performance, as a comparison among both 
models (with and without village) was not significant 
(Likelihood Ratio statistic = 8.97, df = 4, P = 0.062). Simi-
larly, for Culicidae, elevation was a significant predictor 

Fig. 9  Maps showing elevation (A), slope (B)

Fig. 10  Maps showing distance to river (A), sines aspect (B)
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(β = − 0.030, Z = − 4.27, P < 0.001), but in contrast to the 
leaps analyses, distance to the river network was not sig-
nificant in this model (β = 231.4, Z = 1.61, P = 0.11). The 
addition of village did not improve model performance, 
because there was no significant difference between the 
model that included and the model that excluded village 
(Likelihood Ratio statistic = 7.02, df = 4, P = 0.13). Based 
on these outcomes, it was concluded that there was no 
variation in Culicidae or An. gambiae that could be 
explained by village.

Discussion
The potential of employing mosquito collection tools 
with the aid of citizens was investigated in this study. 
In combination with data on perception of mosquito 

nuisance denoted in a questionnaire, data from these 
collection tools can be used as a proxy for areas with 
higher risk of malaria. More specifically, the findings 
from this study provide insights into the spatial and 
temporal dynamics of mosquitoes in five selected vil-
lages of Ruhuha based on citizen science data. This was 
further assessed for An. gambiae s.l. separately, as this 
is the most important malaria vector in the area [41]. 
Furthermore, the study highlighted environmental risk 
factors that explain these spatial dynamics indicating 
areas with higher risk of malaria, especially in the south 
of the study area, although parasite infection rate was 
zero for the An. gambiae s.l. collected during the study.

All the anopheline species found in the current study 
were also reported from other parts of Rwanda [5]. 

Fig. 11  Maps showing cosines aspect (A), distance to lakes (B)

Fig. 12  Maps showing flow accumulation (A), Normalized Difference Vegetation Index (NDVI) of the study area on the 27th of February 2019 (B)
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Anopheles gambiae s.l. was the most abundant of all 
anopheline species and was recorded every month in 
all five villages. However, populations were not highly 
abundant throughout the season. This can be partially 
explained by the fact that the handmade trap has a 
lower trapping efficiency in comparison to other trap-
ping technologies at household level. Most mosquitoes 
(Culicidae) were caught in the months of January and 
February 2019 during the short rainy season, but most 
malaria vector mosquitoes were collected in August 
2019 (long dry season). Although larval habitats in this 
period have dried out, this is also the period in which 
the second cycle of rice cultivation starts, leaving the 

irrigated fields with little vegetation, but with suffi-
cient water for mosquito breeding, thereby increas-
ing adult abundance. The villages of Busasamana and 
Kibaza (Fig.  1), both located in the south or Ruhuha, 
are good examples in this regard, because the peak in 
An. gambiae s.l. was especially observed here. Busasa-
mana has two irrigated fields, namely Nyaburiba, a 
rice field, and Nyagafunzo, used for irrigated cultiva-
tion of subsistence crops [42]. Kibaza has also one irri-
gated rice field nearby (known under the same name, 
i.e. Kibaza). Anopheles gambiae s.l. is generally associ-
ated with irrigated rice, and irrigation elevates relative 
humidity which enhances survival of these vectors [43]. 

Fig. 13  Maps showing Normalized Difference Vegetation Index (NDVI) of the study area on the 27th of July 2019 (A), NDVI of the study area on the 
15th September 2019 (B)

Fig. 14  Maps showing Topographic Wetness Index (TWI) (A), population density (B)
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Although no P. falciparum infection was found in the 
An. gambiae s.l. collected in the studied area, the citi-
zen science approach was able to identify areas with a 
relatively higher malaria vector abundance which are 
at higher risk for malaria as evidenced by the highest 
self-reported proportion of malaria cases in these two 
villages.

Similar to these results, a study from Ethiopia found 
that larval and adult abundance of the malaria vectors 
An. arabiensis and An. pharoensis, was higher in a village 
with nearby irrigation than in a village without nearby 
irrigation, as was malaria prevalence [44]. Another 
study conducted in Malawi showed that changes in the 

geography of breeding potential across irrigated spaces 
can have profound effects on the distribution of malaria 
risk for those living in close proximity to irrigated agri-
cultural schemes [45, 46].

Table 5  Pearson correlation coefficients between mosquito group and environmental factors (sector scale)

*P<0.05. **P < 0.01

Variables Culicidae An. gambiae s.l.

r R2 P r R2 P

Distance to marsh − 0.51** 0.25 < 0.01 − 0.40** 0.16 < 0.01

Distance to water − 0.67** 0.48 < 0.01 − 0.45** 0.2 < 0.01

Distance to river − 0.56** 0.30 < 0.01 − 0.42** 0.17 < 0.01

Elevation − 0.69** 0.47 < 0.01 − 0.49** 0.24 < 0.01

Flow accumulation − 0.10 0.01 0.31 − 0.02 0.00 0.81

Cosines of aspect − 0.15 0.02 0.12 − 0.13 0.02 0.19

Sines of aspect − 0.21* 0.05 0.03 − 0.15 0.02 0.12

NDVI 0.29** 0.09 < 0.01 0.20* 0.04 0.04

NDWI − 0.11 0.01 0.26 − 0.03 0.00 0.73

Slope 0.26** 0.07 0.01 0.18 0.03 0.06

TPI 0.20* 0.04 0.03 0.10 0.01 0.28

TWI − 0.14 0.02 0.15 − 0.09 0.01 0.38

Population density − 0.66** 0.44 < 0.01 − 0.48* 0.23 < 0.01

Fig. 15  Scatterplot showing correlation between total Culicidae and 
elevation (in metres)

Fig. 16  Biplot of the selected environmental variables. The variables 
include elevation (Elev), slope, distance to marshlands (Marsh), 
distance to open water (Water), distance to the river network (River), 
flow accumulation (Flow_Acc), cosines of the aspect (Cosines), 
sines of the aspect (Sines), Normalized Difference Vegetation Index 
(NDVI), Normalized Difference Water Index (NDWI), Topographic 
Wetness Index (TWI), Topographic Position Index (TPI), as well as one 
demographic variable, population density (Popul)
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In the present study, Kagasera had the lowest num-
ber of mosquitoes including An. gambiae s.l. The reason 
could be that the village is characterized by a higher qual-
ity of houses and that the village is located further away 
from the water network, which is not the case for Busasa-
mana and Kibaza. A study conducted in rural The Gam-
bia demonstrated that incorporating a ceiling made from 
locally available materials significantly reduced house 
entry by An. gambiae [47]. Another study conducted in 
The Gambia demonstrated that there were lower vector 
survival rates and less malaria in villages with a higher 
proportion of metal roofs. The indoor climate of metal-
roof houses, characterized by lower humidity and higher 
temperatures may reduce the survival of indoor-rest-
ing mosquitoes and may have even contributed to the 
observed reduction of malaria in parts of sub-Saharan 
Africa [48]. Another reason could be that Kagasera has 
a higher elevation compared to Busasamana (see Fig. 9A) 
and this could also have had an impact on the presence of 
An. gambiae s.l. A study conducted in Mambilla Plateau, 
Northeast Nigeria, demonstrated that indeed, altitude 
can influence mosquitoes and Anopheles species abun-
dance [49].

Findings on the role of environmental factors showed 
that in particular elevation and distance to the river net-
work contributed to the spatial distribution in numbers 
of mosquitoes and An. gambiae s.l. A study conducted 
in Mara River basin located in the southwestern part of 
Kenya and the north-eastern side of Tanzania demon-
strated that distance to nearby human habitation was 
another important factor influencing mosquito larval 
abundance. Most of the breeding habitats were recorded 
within a distance of 70–450 m from the nearest human 
habitation [50]. In the same study, it was found that in 
the river habitats, more mosquitoes were found in slow 

flowing streams and riverbeds with little vegetation as 
compared to open water, an indication that low-lying wet 
land with grassy vegetation such as marshlands may play 
an important role in harbouring malaria vectors [50].

It is concluded that perceived mosquito nuisance can 
be used as an indicator for mosquito density. However, 
although significant correlations between mosquito nui-
sance and the number of mosquitoes and An. gambiae 
s.l. were found when data were aggregated for all 12 
months of the study, the correlations with An. gambiae 
s.l. were absent when analysed separately for each village 
or when using village level averages. In other words, nui-
sance seemed to be strongly driven by the total numbers 
of mosquitoes, and not by the abundance of An. gam-
biae s.l. Interestingly, in an earlier cross-sectional study 
conducted in 2017 and 2018, a moderate and significant 
correlation with nuisance was found for both mosquitoes 
and An. gambiae s.l. One of the reasons of this difference 
could be that the total number of mosquitoes for both 
years was almost three times higher (9965) and almost 
two times higher for An. gambiae s.l. (974) than in the 
present study. Possibly, to detect correlations between 
mosquito numbers and nuisance a minimum number of 
mosquitoes needs to be collected.

Interestingly, significant correlations of similar strength 
between mosquito nuisance and proportion of malaria 
cases, and between number of mosquitoes collected and 
malaria cases (both r = 0.47) were shown (Fig. 18). At the 
start, the study aimed to investigate whether nuisance 
level can be used as an indicator for malaria risk. Results 
suggest that, in current study, nuisance is an equally 
strong indicator for malaria risk as the number of mos-
quitoes collected. Although a correlation between num-
bers of An. gambiae s.l. and malaria cases was expected 
to be found, the number of Anopheles individuals was 

Fig. 17  Multiple linear regression models showing selection of best subsets based on leaps package in R. Filled squares indicate the inclusion of a 
variable in a model. Performance of a model increases from the bottom to the top of each panel based on Bayesian Information Criterion (BIC in A 
and B)
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low compared to, for example, what was collected dur-
ing the baseline survey and, therefore, correlations were 
probably absent when using the citizen science data for 
this one species separately.

For the calculation of the correlations reported in this 
study, it would have been preferable to have all 112 vol-
unteers more homogeneously distributed over the sec-
tor, but this was not feasible for logistical reasons, and 
hence citizens in five village clusters were worked with. 
The model analyses showed that elevation was the most 
important factor explaining mosquito abundance, and 
that village as a factor did not add significant explanatory 
power. It is interesting to note that the proportion of con-
firmed malaria cases reported per village per month was 
correlated (r = 0.468, P < 0.0001) (Fig. 8A) with the aver-
age number of Culicidae collected, even though 89% of 
these mosquitoes were non-malaria vectors.

Busasamana and Kibaza both located in the south of 
the study area, had the highest number of An. gambiae 
s.l., mosquito nuisance and the highest percentage of 
households having a confirmed malaria case indicat-
ing that the highest intensity of malaria transmission in 
the study area strongly relates to land use and altitude 
(Figs. 9 and 10A). A same proportion of host-seeking An. 
gambiae s.l. was collected both indoors and outdoors 
suggesting that transmission can take place both indoors 
and outside the house.

Conclusions
The results demonstrate that a well-established citi-
zen science network provides valuable information on 
the bionomics of (malaria vector) mosquito species. 

In combination with reports on perceived mosquito 
nuisance, the citizen science network provides indica-
tions on the spatial and temporal variation in the risk 
of malaria. The study shows that especially elevation 
and distance to the river network explained the spatial 
variation of (malaria vector) mosquitoes at the sector 
level. An option to consider for Rwanda is the expan-
sion of the current surveillance network of 12 sentinel 
sites with a citizen science network to areas where no 
monitoring is established. Data collected through a 
citizen science programme may be similarly useful for 
the planning of malaria vector control strategies by 
public health departments in other African countries. 
In this way, such a citizen science network could even-
tually contribute to more effective spending of limited 
resources for vector control.
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