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Abstract 

Background:  Access to healthcare is important in controlling malaria burden and, as a result, distance or travel time 
to health facilities is often a significant predictor in modelling malaria prevalence. Adding new health facilities may 
reduce overall travel time to health facilities and may decrease malaria transmission. To help guide local decision-
makers as they scale up community-based accessibility, the influence of the spatial allocation of new health facilities 
on malaria prevalence is evaluated in Bunkpurugu-Yunyoo district in northern Ghana. A location-allocation analysis 
is performed to find optimal locations of new health facilities by separately minimizing three district-wide objectives: 
malaria prevalence, malaria incidence, and average travel time to health facilities.

Methods:  Generalized additive models was used to estimate the relationship between malaria prevalence and travel 
time to the nearest health facility and other geospatial covariates. The model predictions are then used to calculate 
the optimisation criteria for the location-allocation analysis. This analysis was performed for two scenarios: adding 
new health facilities to the existing ones, and a hypothetical scenario in which the community-based healthcare facili-
ties would be allocated anew. An interactive web application was created to facilitate efficient presentation of this 
analysis and allow users to experiment with their choice of health facility location and optimisation criteria.

Results:  Using malaria prevalence and travel time as optimisation criteria, two locations that would benefit from new 
health facilities were identified, regardless of scenarios. Due to the non-linear relationship between malaria incidence 
and prevalence, the optimal locations chosen based on the incidence criterion tended to be inequitable and was dif-
ferent from those based on the other optimisation criteria.

Conclusions:  This study findings underscore the importance of using multiple optimisation criteria in the decision-
making process. This analysis and the interactive application can be repurposed for other regions and criteria, bridg-
ing the gap between science, models and decisions.
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Background
Access to quality health care is an important health sys-
tem goal [1]. In particular, achieving universal health 
coverage, which includes access to quality health care, 
medicines, and vaccines for all, is emphasized in the 

United Nations Sustainable Development Goals [2]. 
While there are many factors that contribute to health-
care accessibility, such as cost [3, 4] and social network 
systems [5], geographic distance or travel time is often 
recognized as a significant impediment to effective treat-
ment [6–8]. In the case of malaria, accessibility (distance 
or travel time) to nearby health facilities has long been 
recognized as a significant factor for controlling malaria 
burden [9, 10] and a significant predictors of malaria 
prevalence [11–13]. In this study area in northern Ghana, 
distance to health facilities, alongside other geospatial 
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predictors such as distance to urban centre, amount of 
vegetation, and elevation were found to be significantly 
associated with malaria infection [14, 15]. As a result, 
adding new health facilities in the district may reduce 
overall travel time to health facilities and, as a result, may 
help decrease malaria transmission.

Ghana has been expanding the coverage of the Com-
munity-based Health Planning and Services (CHPS) 
programme through the Ghana Essential Health Inter-
vention Project (GEHIP) [16, 17]. CHPS aims to improve 
geographical access to health care with an initial focus 
on remote and rural areas. The primary function of the 
CHPS program is to train and place community health 
officers (CHOs), who are nurses with two years of train-
ing, in a CHPS zone, which is a demarcated area consist-
ing of a number of under-served communities. The CHOs 
provide local level health services and health promotion, 
including reproductive, maternal and childhood services, 
provision of diagnostic testing and treatment for acute 
respiratory illness, diarrhoea and malaria, and referral of 
more severe cases to higher care level [17, 18]. Although 
CHOs typically travel monthly from nearby health centre 
or hospital to serve the CHPS zone, a health post known 
as CHPS compound located at the community is highly 
desirable. CHPS compounds are equipped with medical 
supplies and simple diagnostic tests and they serve as 
a service delivery point as well as the CHO’s residence. 
Ultimately, the CHPS compound enables the community 
to have prompt access to the CHOs and the services they 
provide instead of requiring community members to wait 
for the monthly visit or to travel to a higher health care 
facility. The programme enjoys broad support from the 
Ghana Health Service and remains a strong platform for 
increasing access and availability of malaria case manage-
ment [19].

While CHPS are not specific to malaria, malaria is 
strongly associated with many of their evaluation indica-
tors, such as child mortality rates and health of children 
under five, particularly in highly endemic areas such as 
northern Ghana [17]. The CHPS programme has been 
shown to achieve 49% reduction in under-five mortality 
rates relative to comparison districts [20, 21]. This study 
focuses on estimating the effects of accessibility to health 
facilities on malaria, which can then be used to conduct 
location-allocation analysis, i.e., to determine locations 
for new health facilities that optimises some criteria 
[22]. With this analysis, the maximal level of reduction 
in area-wide malaria prevalence or incidence associated 
with the placement of hypothetical new health facilities 
can be determined.

Interactive visualizations can be particularly useful 
for location-allocation analyses given that these analy-
ses can result in many charts and maps depending on 

the number of evaluated scenarios and optimisation cri-
teria [23, 24]. Importantly, previous research has dem-
onstrated that interactive information can have greater 
impact than passive information [25, 26]. Furthermore, 
the application can also serve as an interactive simulator 
that allows users to create and explore their own scenar-
ios regarding health facility allocation and how this influ-
ences accessibility and health outcomes [27].

In this study, an interactive decision support applica-
tion is created to enable users to place hypothetical new 
health facilities (or replace existing ones) and test how 
the new spatial configuration of health facilities may 
influence malaria burden. This decision support tool 
can also be used to determine the optimal location of 
health facilities. To create the application, the malaria 
prevalence is modelled using travel time to health facili-
ties among other covariates. Then, the optimal locations 
for new health facilities are determined based on one of 
three criteria: overall malaria prevalence, incidence, and 
the average travel time to nearest health facilities. Based 
on these results, the optimal vs. the current location of 
health facilities are compared, revealing two new areas 
in the district that could substantially benefit from CHPS 
compounds. The differences arise when using each of 
these three criteria highligh the importance of using a 
multi-criteria strategy to optimise the location of health 
facilities.

Methods
Malaria data
The Bunkpurugu-Yunyoo district (Fig. 1), a rural district 
in northeastern Ghana bordering Togo, has historically 
been hyperendemic for malaria and has experienced high 
transmission during the rainy season. In 2010 and 2013, 
six cross-sectional household surveys were conducted 
to assess the impact of an indoor residual spraying 
(IRS) campaign on malaria parasitemia in Bunkpurugu-
Yunyoo. Baseline end-of-rainy season (peak) and base-
line end-of-dry season (trough) surveys were conducted 
in 2010 to 2011. Annual IRS was introduced at the end 
of the 2011 dry season. Peak and trough season surveys 
were repeated in 2011–12 and 2012–13, for a total of six 
surveys [15, 28]. During this period, both IRS and ITN 
coverage were universal and high throughout the district, 
indicating little room for improvement using these inter-
vention strategies.

In each survey, households were selected using a multi-
stage randomized cluster sampling approach, with clus-
ters sampled with probability proportional to population 
size and households randomly selected within these clus-
ters. Children under five years of age in these selected 
households were tested for malaria using both RDT 
(Rapid Diagnostic Test) and microscopy. Between 1311 
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to 2040 children were sampled in each survey. The survey 
datasets were enhanced by the incorporation of remote-
sensed data on environmental risk factors for malaria. 
Details of the survey design and epidemiological evalua-
tion can be found in [15, 28]. Importantly, spatial hetero-
geneity of malaria prevalence was high, ranging from 19 
to 90% across the district [15] (Fig. 1).

In this study, the datasets from the three peak-season 
surveys in 2010 to 2012 was used, as the overall preva-
lence, and spatial variation in prevalence, among the 
three surveys were similar. In these datasets, each sam-
ple was geocoded according to their cluster (i.e., children 
within the same cluster shared the same geographical 
coordinates). The binary microscopy outcome was used 
as the malaria infection status (0 = negative, 1 = positive).

Spatial prediction of malaria prevalence
A Generalized Additive Model (GAM) was used to deter-
mine the relationship between malaria prevalence and 
geospatial covariates, including travel time to the nearest 
health facility.

Geospatial covariates
The geospatial covariates used in the model are travel 
time to the nearest health facility, distance to urban cen-
tres, elevation, normalized difference vegetation index 
(NDVI), and population density (see Additional file 1 for 
their spatial distribution). These were the most important 
spatial covariates according to the output of a variable 
selection procedure adopted in previous studies using the 
same dataset [14, 15].

The travel time to the nearest health facility was calcu-
lated using the 2015 global travel time surface based on 
motorized transport provided by the Malaria Atlas Pro-
ject [29]. This comprehensive dataset estimates how long 
it takes humans to travel through a landscape by combin-
ing political, infrastructural, and environmental informa-
tion sources to create a 1 km2 resolution “friction surface” 
for the entire globe. Using this friction surface, the time 
(in minutes) it takes to travel to the nearest health facil-
ity was calculated using the least cost path algorithm 
[30] with geo-coordinates obtained from Ghana Health 
Services. This analysis accumulates the cost of moving 
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Fig. 1  Map of Ghana (top left) and the Bunkpurugu-Yunyoo District (right), which is highlighted in blue on the Ghana map. Roads and existing 
health facilities are shown together with the predicted malaria prevalence of children under five during the 2012 high transmission season. The 
prevalence map is from [15]. Nakpanduri and Bunkpurugu are the urban areas in this district, while Nasuan, Yunyoo and Najong 1 are highlighted 
larger villages
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through each pixel to estimate a more realistic path (and 
therefore time/distance) than Euclidean distance. The 
least-cost path analysis was performed using the gdis-
tance package in R [31].

In relation to the other geospatial variables, distance 
to the nearest urban centre (in kilometres) was based on 
Euclidean distance to the nearest two settlements with 
population larger than 5000, namely Bunkpurugu and 
Nakpanduri (Fig.  1). Elevation (metres above sea level) 
was based on the 90 m resolution digital elevation map 
from Consortium for Spatial Information [32] whereas 
vegetation was represented using the Normalized Dif-
ference Vegetation Index (NDVI) from MODIS, calcu-
lated as the maximum monthly index 30 days prior to the 
survey. Finally, population density was sourced from the 
five-year stratified WorldPop 2014 population estimates 
[33].

All covariates, except for distance to health facilities, 
were raster-based covariates that were interpolated from 
the nearest four cells of a given coordinate. A summary of 
all the data used by this study is provided in Table 1.

Model fitting and prediction
The individual malaria infection status was modelled 
using the GAM with a logit link function. A thin-plate 
cubic spline was applied only on the elevation, which 
was found to exhibit a strong non-linear pattern. All 
other predictors were fitted as linear predictors without 
splines. This was the best configuration in terms of cross-
validation errors based on the preliminary analysis. The 
survey year was also added to the model as a categorical 
variable, allowing the intercept to vary from year to year. 
The GAM was fitted using the mgcv package in R [34].

A 1 km2 resolution grid was created over the district 
and prevalence was estimated for each grid cell. Travel 
time to health facilities was calculated using the centroid 

of each grid cell and other covariates were extracted from 
the rasters using similar methods described in previous 
section. The fitted GAM model was then used to predict 
malaria prevalence in each pixel across the district.

District‑wide metrics as optimisation criteria
The location of new health facilities was optimised using 
one of the three district-wide metrics that are likely 
to be relevant for decision-makers when placing new 
health facilities: (a) the expected malaria prevalence of 
all children under five in the peak season, (b) expected 
incidence of malaria cases for all ages per person year 
observed during the high transmission season, or (c) 
expected travel time to the nearest health facility. The 
malaria prevalence and incidence metrics are key meas-
ures of morbidity, being directly related to strategy objec-
tives listed in Ghana’s Malaria Operational Plan [18].

The predicted prevalence of each pixel was weighted 
according to its population, yielding the district-wide 
malaria prevalence:

where p̂i and mi are the predicted prevalence and popula-
tion under five for pixel i , respectively, and N  is the total 
number of pixels across in the district.

To calculate the expected incidence per year, the pre-
dicted prevalence for children under 5 was first converted 
to prevalence of children of two to ten years old using the 
method outlined by [35]. Using the equations from [36], 
the predicted prevalence of 2 to 10 years old children was 
then converted to the expected incidence per person-
year for children under five, older children (5 to 15 years 
old) and adults (> 15  years old). Finally, the expected 
incidence per year over all age groups in the district was 

1
∑N

j=1mj

N∑

i=1

p̂imi

Table 1  Summary of data used for this study

Variable Description

Malaria Prevalence (Dependent variable) Calculated based on 2010 to 2012 annual household surveys conducted during peak transmission seasons. 
Prevalence for each cluster (e.g., village) is the proportion of under five children who tested positive for 
malaria. Geographical coordinates of each village were available

Location of health facilities Geographical coordinates of the existing health facilities at the time of the survey were provided by Ghana 
Health Services

Travel time to nearest health facility Calculated using the global travel time surface estimated by Malaria Atlas Project. For each location (pixel), 
the travel time to each health facility was calculated using the least-cost path method and then the shortest 
travel time was assigned

Distance to nearest urban centre For each location (pixel), the Euclidean distances to Bunkpurugu and Nakpanduri are calculated; the shortest 
distance is assigned

Elevation Extracted from 90 m resolution digital elevation map from Consortium for Spatial Information

Normalized Difference Vegetation Index Extracted from MODIS

Population density Extracted from WorldPop
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estimated using the population of each pixel, and the age 
structure of the northern region estimated from the 2014 
Demographic Health Survey [37].

The travel time to the nearest health facility was esti-
mated for each pixel using the method outlined in 
‘Geospatial covariates’ section. Then, the district-wide 
expected travel time was calculated as the population 
weighted average of travel time among all pixels. Notice 
that, differently from malaria prevalence and incidence, 
the expected travel time to the nearest heath facility is 
not a malaria specific criterion and, as a result, is not 
influenced by the GAM results. This optimisation crite-
rion may maximize overall access to healthcare.

Projecting the impact of new health facilities
One of the main goals of this modelling exercise is to pre-
dict changes in malaria prevalence and incidence if new 
CHPS compounds (onwards referred to as new health 
facilities) were to be created. The procedure to do this 
consists of two steps. First, with a given set of coordinates 
for the proposed new health facilities, the travel time to 
the nearest health facility is recalculated by rerunning the 
least-cost path analysis (described in ‘Geospatial covari-
ates’ section) using the new set of health facilities (i.e., the 
existing and proposed health facilities). Second, the pre-
dicted malaria prevalence is updated using the new travel 
time surface (i.e., the new predicted probabilities repre-
sent the projected prevalence if the new health facilities 
are created). For example, the expected prevalence in a 
particular location (or pixel) i , E(Pi) would be:

where β0 is the intercept term, Di is the travel time to 
nearest health facilities and βD is the corresponding coef-
ficient, f  is some spline or linear function and Xi rep-
resents other covariates. When new health facilities are 
added, Di is expected to either remain the same because 
the nearest health facility is still one of the existing facili-
ties or decrease because one of the new health facilities 
is now nearer to the location i . The other spatial covari-
ates ( Xi ) and parameters are assumed to be unchanged. 
As a result, given that βD > 0 , expected prevalence will 
remain the same or decrease when new health facilities 
are added.

The optimal locations of one up to five new health 
facilities were determined using this procedure. The 
optimisation algorithm was ran multiple times, once for 
each criterion to be minimized and each number of new 
health facilities. Identifying the optimal location of new 
health facilities can be a relatively high-dimensional opti-
misation problem (e.g., five proposed new facilities imply 
optimisation of ten values [two coordinates per facility]) 

E
(
P̂i

)
= logit−1

[
β̂0 + β̂DDi + f̂ (Xi)

]

and can lead to local minima problem. To alleviate this 
problem, the optimisation was performed using the 
genetic algorithm in the GA package in R [38].

The optimal locations of health facilities were investi-
gated under two scenarios: adding new facilities to the 
existing set of health facilities (Scenario 1) and adding 
new facilities after excluding the existing CHPS com-
pounds (Scenario 2). In the latter scenario, the expected 
prevalence was computed by updating the travel time to 
health facilities assuming that the original CHPS com-
pounds did not exist. This scenario can be used to exam-
ine whether the current location of CHPS compounds is 
close to optimal or not.

Interactive decision support tool
A web-based application was created to let users add 
hypothetical new health facilities to the district and see 
how the spatial distribution of malaria risk and the dis-
trict-wide summary metrics would change correspond-
ingly. The application was developed using shiny package 
in R [39].

The user is shown a map of Bunkpurugu-Yunyoo Dis-
trict, overlaid by the predicted prevalence, incidence, 
or travel time map. The user can propose multiple new 
health facilities by point-and-click interactions with the 
tool. The prevalence, incidence, and travel time maps, 
alongside with the predicted district-wide metrics, are 
updated once all new health facilities are added. Addi-
tionally, the user can also visualize the locations of new 
health facilities proposed by the optimisation algorithm. 
To do this, the user is required to choose the number of 
health facilities to be added (from 1 to 5 health facilities) 
and the optimisation criterion of choice (i.e., minimi-
zation of the district-wide malaria prevalence for chil-
dren under 5  years of age, malaria incidence across all 
age groups, or travel time). The tool can be accessed at 
https://​kokbe​nt.​shiny​apps.​io/​hf-​update/.

Results
Relationship of malaria prevalence and covariates
Fitting the GAM model to the data revealed that all of the 
selected covariates had statistically significant associa-
tions with malaria prevalence ( p < 0.001 for all covari-
ates except NDVI with p < 0.05 ). Expected prevalence 
was positively correlated with travel time to health facili-
ties and distance to urban centre, and negatively corre-
lated with the other covariates (Fig. 2). The fitted GAM 
model explained 65.8% deviance based on McFadden’s R 
square value calculated under grouped binomial setting.

Optimal locations for new health facilities
For any optimisation metric, the optimal locations 
chosen when optimizing for a smaller number of new 

https://kokbent.shinyapps.io/hf-update/
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facilities were a subset of the optimal locations when 
optimizing for a higher number of new facilities. For 
instance, let A and B be the optimal locations chosen 
by the algorithm when optimizing for two new facilities 
using prevalence criteria. A and B are also optimal loca-
tions (or at most 2 km away from the optimal locations 
found earlier) when optimizing for three to five new 
facilities using the same criteria. As a result, the locations 
can be grouped together and the importance of a location 
group in reducing the selected metric is ranked based on 
the frequency it appeared in the set of optimal locations 
when optimised for one to five new facilities.

Scenario 1: Adding new facilities to the set of existing 
health facilities
Optimal locations obtained by minimizing either preva-
lence or travel time criterion were similar with only one 
disagreement, and these locations were remarkably dif-
ferent from those based on incidence criterion (Fig.  3). 
The discrepancy between the optimisation results based 
on malaria prevalence versus malaria incidence can be 
attributed to the highly uneven spatial distribution of 
the population and the fact that the relationship between 

malaria prevalence and incidence is non-linear. In par-
ticular, the addition of a new health facility may decrease 
prevalence in areas with high malaria prevalence but have 
little effect on the expected number of cases per year.

When the locations of health facilities (HFs) were 
optimised using overall prevalence as criteria, adding 
one up to five health facilities is predicted to reduce 
districtwide prevalence by 0.3, 0.5, 0.6 and 0.7 and 
0.8% (95% CI 0.30 to 0.33 for one HF, 0.74 to 0.81 
for five HFs), respectively. Similarly, for district-wide 
incidence rates during high transmission season, the 
reductions were equal to 0.35, 0.70, 0.83, 0.95 and 0.99 
cases per 1000 person-year (95% CI 0.16 to 0.59 for 
one HF, 0.58 to 1.40 for five HFs), respectively. Finally, 
the reductions for travel time per person were 1.5, 
2.4, 2.8, 3.2 and 3.5  min. Despite the relatively small 
changes in districtwide metrics, these proposed health 
facilities often have strong local impacts. For instance, 
Fig. 3a reveals that the top priority health facility (i.e., 
HF 1) reduces prevalence in the surrounding area by 
6 to 10%. Importantly, these proposed health facilities 
do not spatially improve the prevalence and incidence 
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Fig. 2  Modelled associations between malaria prevalence and covariates (mean and 95% confidence interval) during peak transmission season
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around them in a uniform way (i.e., forming concentric 
circles around new health facilities), as illustrated in 
Fig. 3. This is because travel time can differ even when 
geographical distance is identical, and reduction in 
travel time to the nearest health facility is dependent 
on the locations of the other health facilities.

Scenario 2: Adding new facilities in the absence 
of the original CHPS compounds
A hypothetical scenario was created in which all current 
CHPS compounds did not exist and determined the opti-
mal locations for five new health facilities. The results 
reveal that incidence-based optimisations favoured 
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Fig. 3  The optimal location of five new health facilities (HFs) that minimizes each of the 3 different district-wide criteria: a malaria prevalence 
of children under five years of age, b incidence of all-age malaria cases per 1000 person years observed, or c travel time to health facilities (in 
minutes), under Scenario 1. In this scenario, proposed new facilities are added to the existing facilities. The color of each pixel shows the change 
in the predicted metrics (without new HFs minus with new HFs). The number associated with each proposed HF indicates their priority: location 1 
had highest priority and most reduced the metric used for optimisation, while location 5 was lowest in priority and least reduced the optimisation 
metric
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locations in the northern part of the district, where pop-
ulation density is greatest, while prevalence-based and 
travel time-based optimisations resulted in one and two 
locations in the less densely populated central and south 
regions, respectively.

Regardless of criteria, at least two of the optimal 
locations overlap with the existing CHPS compounds 

(Fig.  4), suggesting that the position of existing CHPS 
compounds were generally well chosen to reduce 
malaria risk. Interestingly, the location around CHPS B 
(in the map of Fig. 4) ranked the most important using 
prevalence or travel time criteria, while CHPS C was 
the second most important based on incidence criteria.
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Fig. 4  The optimal location of five new health facilities (HFs) that minimizes each of the 3 different district-wide criteria: a malaria prevalence of 
children under 5 years of age, b incidence of all-age malaria cases per 1000 person years observed, or c travel time to health facilities (in minutes), 
under Scenario 2. In this scenario, the absence of existing CHPS compounds (labeled as A to C here) was assumed. The color of each pixel shows the 
changes in the predicted metrics (without new HFs minus with new HFs). The number associated with each proposed HF indicates their priority: 
location 1 had highest priority and most reduced the metric used for optimisation, while location 5 was lowest in priority and least reduced the 
optimisation metric
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Discussion
The malaria prevalence during the high transmission sea-
son was modelled using travel time to health facilities, 
distance to urban centres and other environmental fac-
tors as predictors. Based on the fitted model, the optimal 
locations of up to five new health facilities were deter-
mined under two scenarios (adding new health facilities 
to the ones that already existed vs adding new health 
facilities while assuming that no CHPS compounds 
existed) and three different optimisation criteria (maxi-
mal reduction in district-level prevalence, incidence, or 
travel time). A web based interactive visualizer and simu-
lator application was created, which effectively incorpo-
rates the various components involved in this analysis 
and helps stakeholders determine the best location for 
new health facilities.

Past study using the same dataset, Millar et  al. [14] 
found a non-linear relationship between distance to 
health facility and prevalence. However, it is important 
to note that these results are not directly comparable to 
this study because Millar et  al. relied on Euclidian dis-
tance whereas we relied on travel time. Furthermore, 
the regression model used by Millar et al. [14] included 
individual-level covariates (e.g., gender, health insur-
ance, ethnicity, age, occupation, and education), which 
were not used in this study because incorporating these 
covariates precludes spatial predictions. Finally, a linear 
relationship between travel time to nearest health facility 
and prevalence was used because it yielded the smallest 
cross-validation errors based on the preliminary analysis.

Since travel time and malaria prevalence are assumed 
to have a linear relationship on logistic scale, minimizing 
either parameters yielded very similar results. However, 
there were some important differences (compare panel A 
and C in Figs. 3 and 4). These differences likely arise due 
to the influence of other spatial covariates on prevalence. 
For instance, in an area predicted to already have low 
malaria prevalence due to the other spatial covariates, 
adding a new health facility may substantially decrease 
local travel time in this area without decreasing district-
wide prevalence significantly. Additionally, a new health 
facility may not improve travel time or prevalence evenly. 
For example, adding a new health facility in Yunyoo area 
(Location 1 in Fig. 3c) can reduce travel time much more 
to the neighbouring area to the west than to the east. The 
reason for this is that the reduction in travel time and the 
predicted prevalence is dependent not only on the fric-
tion surface, but also on the locations of other health 
facilities. Patterns like these are not immediately obvious 
and intuitive and interactive tools are important to help 
users better understand these relationships.

The optimisation results were substantially differ-
ent when minimizing incidence, as compared with 

minimizing population-weighted travel time or preva-
lence, because of the non-linear relationship between 
incidence and prevalence. While this relationship was 
mostly linear for infants and young children, incidence 
plateaus at moderate and low level of prevalence for older 
children and adults, respectively [36]. Because of this pla-
teau, reducing prevalence from 80 to 60%, for instance, 
would not lead to a substantial decrease in overall inci-
dence. On the other hand, in settings with low preva-
lence, adding new health facilities can both decrease 
prevalence and incidence [36]. Thus, the spatial optimiser 
based on the incidence criterion explicitly avoided high 
transmission areas even if the expected drop in preva-
lence was large, confining the optimal locations to the 
northern and eastern regions of the district. In the first 
scenario, the optimiser even chose the Bunkpurugu 
town which already had two health facilities as an opti-
mal location. These results underscore the importance of 
using multiple optimisation criteria to highlight impor-
tant tradeoffs and assumptions inherent to these crite-
ria. For example, the use of incidence as the optimisation 
criterion here would be at odds with current healthcare 
policies that aim to reduce barrier to geographical access 
to health care.

Despite these differences, there were some general 
agreements in optimal locations of health facilities 
when using these objectives. Under scenario 2, two out 
of three existing CHPS compounds matched the opti-
mal locations found by the algorithms. These results 
highlight that the current positions of CHPS com-
pounds were nearly optimal based on the model. Nev-
ertheless, the model often places a single health facility 
in proximity of the two existing CHPS compounds near 
the eastern border (CHPS B and C in Fig. 4). This study 
focused purely on accessibility but not availability, 
which is another important access dimension of health-
care system [40]. CHPS zones are drawn according to 
population and a CHPS compound may not be availa-
ble to villagers from other CHPS zones even if they can 
access it. In addition, the capacity of the health facili-
ties was not considered in this exercise. Two CHPS 
compounds with small capacity that are close to each 
other may be necessary if the communities they serve 
are highly populated. Finally, areas close to Yunyoo and 
Najong 1 (see Fig. 1) would strongly benefit from new 
health facilities (Location 1 and 2 in Fig. 3a). Both loca-
tions experienced moderate-to-high malaria prevalence 
during rainy season and had relatively high travel time 
to nearest health facilities given their population den-
sity. In the context of malaria control, children health 
and survival, and the importance of reducing barriers 
to healthcare, this analysis suggests that these locations 
could be prioritized for new CHPS compounds.
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Intervention based on reducing travel time by add-
ing new health facilities is likely insufficient: while they 
can reduce malaria risk in their vicinity, their impact on 
district-wide metrics is minimal. Even with the most 
optimal placement of health facilities, five additional 
health facilities are expected to reduce district-wide 
prevalence and incidence by less than 1% and less than 
1 case per 1000 person-year observed (See Sect. 3.2.1). 
It is important to note that creating new health facili-
ties is not the only way to reduce travel time and, as a 
result, decrease malaria risk. Improving travel time 
by having better infrastructure and better outreach 
of the community-based health care system may also 
play important role in ensuring that people have better 
access to healthcare.

This analysis is done based on the best estimates based 
on the data available with some important limitations and 
assumptions. For example, the proof-of-concept decision 
support tool is based on malaria data from 2010 to 2012, 
and more up-to-date information is needed to confirm 
if its recommendations are still valid. Importantly, this 
study focuses on statistically learning from the interven-
tions that are captured by the high-quality datasets from 
2010 to 2012. As a result, evaluation and comparison 
with other potential interventions are not conducted as 
they would require a different modelling approach (i.e., 
simulation-based models).

Additionally, correlation does not imply causation: hav-
ing a new health facility in a particular location does not 
necessarily and automatically reduce the malaria preva-
lence in its vicinity. The travel time to health facility may 
serve as a proxy of built environment that is not captured 
in the other covariates (e.g., distance to urban centre, veg-
etation index and population density). However, the rela-
tionship between distance to health facility and malaria 
is strongly supported by current literature. For example, 
early diagnosis and treatment of malaria is well known to 
contribute to reduced disease transmission and malaria 
death [41, 42], and accessibility to healthcare, which 
includes proximity to health facility, is widely acknowl-
edged to decrease malaria prevalence [43–46]. Moreover, 
the travel time to health facility remains a strong predic-
tor of malaria prevalence in the Bunkpurugu-Yunyoo 
district even after accounting for wide suite of other indi-
vidual and geospatial covariates [14, 15]. Taken together 
with the finding that distance to CHPS and health cen-
tres was stronger predictor than that of distance to health 
centres alone, location of health facilities does influence 
malaria transmission in a way that is independent of built 
environment.

It is assumed that the associations between malaria 
prevalence and the other spatial covariates (i.e., distance 
to nearest urban centre, elevation, vegetation index, and 

population density) will remain unchanged, which may 
not be the case. Moreover, since malaria incidence in 
the Bunkpurugu-Yunyoo district was not readily avail-
able, the observed prevalence was converted to incidence 
based on a model ensemble analysis which relied on data 
from 30 sites in Sub-Saharan Africa collected from 1981 
to 2011, only one of which was from Ghana [36]. These 
sites may not be necessarily representative of the study 
district and using the formula to convert prevalence to 
incidence may not have adequately captured the rela-
tionship between these malaria indicators for this study 
site. Moreover, uncertainties in this study were calcu-
lated based on fitting the GAM: uncertainty with respect 
to model choices (e.g., linear vs non-linear effects) and 
uncertainty regarding the conversion of prevalence to 
incidence were not accounted. Another important limi-
tation is the lack of information about the location of 
health facilities on neighbouring districts. Consequently, 
it is implicitly assumed that there are no health facilities 
close to the districts borders or that people do not go to 
them, particularly when that entails crossing the eastern 
international border to Togo.

The global surface friction used here was created based 
on the fastest mode of transportation for each location 
[29], without accounting for seasonal variation. As a 
result, the resulting travel time should not be interpreted 
as the actual travel time a specific person would take to 
travel to the nearest health facility but rather just a bet-
ter measure of distance when compared to Euclidean 
distance. Although a 2020 travel time surface with and 
without motorized transportation was recently published 
[47], model fit was worse using these updated travel time 
surfaces. The 2015 global surface friction better matches 
the accessibility patterns in the 2010–2013 malaria data-
sets. For this reason, all results reported here are based 
on the 2015 global travel time surface.

The optimal locations determined here may seem 
attractive on the paper but may be impractical or unsuit-
able on the ground. For this reason, it is important for 
decision-makers and other stakeholders to be able to 
interact with the model themselves (e.g., via an interactive 
decision support tool) to explore other locations that may 
be more feasible and yet close to optimal. Furthermore, 
the analysis framework in this study can be extended to 
other malaria or non-malaria criteria if the correspond-
ing datasets are available. For example, malaria deaths, 
which is an important Global Technical Strategy goal 
for malaria [48], can be incorporated to the framework if 
these data are available at the household or village level. 
The benefit of the tool created in this study is likely to be 
more limited in settings where malaria is not the top pri-
ority. However, it is important to emphasize that this tool 
can be extended to other target indicators of the CHPS 
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programme such as diarrhoea and acute respiratory ill-
ness [49] if the corresponding data (e.g., prevalence data 
with spatial coordinates and location of health facilities) 
are available. Furthermore, even if data on these other 
diseases are not available, the malaria-focused tool can 
still be highly useful because it can be used together with 
other maps and expert opinion on these other diseases to 
determine the optimal location of health facilities.

Conclusions
Instead of only using statistical models to estimate the 
well-documented relationship between travel time to 
health facilities and malaria transmission, scenario analy-
sis within the interactive tool is a much more informative 
way to communicate the implications of the modelling 
results. In this case study, location-allocation analysis 
can leverage a relatively standard risk factor model to 
create actionable decisions by integrating other pieces of 
information such as population distribution, estimated 
travel time, and prevalence to incidence conversion. 
Importantly, this analysis, together with the use of mul-
tiple optimisation criteria, can uncover patterns that are 
not immediately obvious when gleaning any single piece 
of information. For example, prioritizing incidence over 
prevalence might have overlooked the barrier to health-
care access for communities in the southern, less popu-
lated, and higher burdened areas of Bunkpurugu-Yunyoo 
District. Additionally, although travel time to health facil-
ities is an important spatial predictor to malaria risk, this 
analysis indicates that reducing average travel time by 
having more health facilities per se may only have little 
effect to the district-wide malaria conditions.

The complexity of such analysis can be efficiently 
communicated through a web based interactive deci-
sion support tool. Instead of static maps and figures, 
an interactive tool allows stakeholders to experiment 
with their own choices of locations with a few mouse 
clicks. This is particularly important because modeler-
initiated analysis like this can rarely account for all the 
criteria and constraints that a decision maker may con-
sider. As a result, the interactive tool enables decision 
makers to use inference from the statistical model and 
optimisation results in conjunction with any additional 
criteria that they might have to make an informed 
decision, helping to bridge the gap between decision 
makers and modelers. Adding new optimisation crite-
ria (e.g., focusing on other endemic diseases or health 
conditions) would be relatively straightforward once 
the statistical framework and interactive tool are cre-
ated. The code for the interactive tool is publicly avail-
able (at https://​github.​com/​kokbe​nt/​byd-​hf-​update) 
because the tool can be repurposed for other regions 

and criteria with appropriate data, and potentially be 
enhanced by incorporating cost information (as in 
[50]).

Creation of an interactive tool to support decision 
making process requires stakeholder participation and 
this proof-of-concept tool is by no means a finalized 
product. However, by allowing others to visualize a 
statistical or mathematical model in a straightforward 
fashion, a prototype like this can facilitate discussions, 
consensus building and lead to future iteration of a tool 
that is more impactful. Importantly, public health sci-
entists can now, more than ever before, create interac-
tive applications without deep knowledge in computer 
science. Harnessing such technologies will be impor-
tant in bridging the gap between science, models, and 
decisions.
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