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Abstract 

Background:  Distribution of long-lasting insecticidal bed nets (LLINs) is one of the main control strategies for 
malaria. Improving malaria prevention programmes requires understanding usage patterns in households receiving 
LLINs, but there are limits to what standard cross-sectional surveys of self-reported LLIN use can provide. This study 
was designed to assess the performance of an accelerometer-based approach for measuring a range of LLIN use 
behaviours as a proof of concept for more granular LLIN-use monitoring over longer time periods.

Methods:  This study was carried out under controlled conditions from May to July 2018 in Liverpool, UK. A single 
accelerometer was affixed to the side panel of an LLIN and participants carried out five LLIN use behaviours: (1) unfurl-
ing a net; (2) entering an unfurled net; (3) lying still as if sleeping; (4) exiting from under a net; and, (5) folding up a net. 
The randomForest package in R, a supervised non-linear classification algorithm, was used to train models on 20-s 
epochs of tagged accelerometer data. Models were compared in a validation dataset using overall accuracy, sensitiv-
ity and specificity, receiver operating curves and the area under the curve (AUC).

Results:  The five-category model had overall accuracy of 82.9% in the validation dataset, a sensitivity of 0.681 for 
entering a net, 0.632 for exiting, 0.733 for net down, and 0.800 for net up. A simplified four-category model, combin-
ing entering/exiting a net into one category had accuracy of 94.8%, and increased sensitivity for net down (0.756) and 
net up (0.829). A further simplified three-category model, identifying sleeping, net up, and a combined net down/
enter/exit category had accuracy of 96.2% (483/502), with an AUC of 0.997 for net down and 0.987 for net up. Models 
for detecting entering/exiting by adults were significantly more accurate than for children (87.8% vs 70.0%; p < 0.001) 
and had a higher AUC (p = 0.03).

Conclusions:  Understanding how LLINs are used is crucial for planning malaria prevention programmes. Acceler-
ometer-based systems provide a promising new methodology for studying LLIN use. Further work exploring acceler-
ometer placement, frequency of measurements and other machine learning approaches could make these methods 
even more accurate in the future.
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Background
The distribution of long-lasting insecticidal bed nets 
(LLINs) is one of the main malaria control strategies in 
malaria-endemic countries. The World Health Organi-
zation (WHO) has called for universal access to LLINs 
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for each of the over 3  billion people worldwide at risk 
of malaria [1]. Household LLIN ownership is associated 
with an 18–23% reduction in all-cause child mortality [2] 
and LLINs accounted for an estimated 68% of the 40% 
reduction in malaria incidence between 2000 and 2015 
[3]. Since 2015, however, progress in malaria control 
has plateaued. In 2019, there were an estimated 409,000 
deaths due to malaria, despite 253  million LLINs being 
delivered to endemic countries [4]. The distribution of 
LLINs is increasingly seen as insufficient on its own to re-
ignite progress towards reducing the significant burden 
of malaria for the world’s poorest people.

A crucial question in evaluating future priorities for 
national malaria control programmes (NMCPs) is under-
standing usage patterns in households that receive LLINs 
after universal distribution. Whether the continuing 
effectiveness of LLINs for malaria prevention hinges on 
evolving mosquito pyrethroid resistance [5, 6], shifts in 
vector-biting behaviour [7, 8], net durability [9], increas-
ing access [10, 11] or other factors, accurate and precise 
measures of usage patterns are essential for planning 
the future role that LLINs should play in malaria pre-
vention. The most common approach to measure LLIN 
use involves a series of questions in a household survey 
on whether LLINs were used the night before and, if so, 
by which household member(s). While responses to this 
question provide estimates of use at a specific point in 
time, they do not capture temporal patterns of use, such 
as time spent under a net throughout the night or sea-
sonal variations in use, all of which can impact the level 
of protection provided [12]. Further, this method is sub-
ject to recall and social desirability biases that may result 
in inaccurate conclusions when characterizing bed net 
use in some contexts [13]. Night-time observations have 
been used in several settings to provide more detailed 
information on night-time activity and net use patterns 
but can be time and resource intensive [14]. Improved 
methodologies that can efficiently measure net use more 
granularly and over longer time scales could facilitate 
broader availability of actionable data for operational 
programmes, particularly for comparison against vector-
biting behaviours and resulting malaria risk.

To address these challenges, new remote adherence 
monitoring tools have been deployed that can produce 
objective records of LLIN use over weeks at a time [15, 
16]. These devices have been demonstrated to be accept-
able to local populations [17] and are providing novel 
insights into LLIN-use behaviours in endemic countries 
[18]. Nevertheless, current approaches have been limited 
to tracking the time and date when an LLIN is unfurled 
for use or folded up for storage above a sleeping area. 
Adding to a prior study of commercially available accel-
erometers for measuring LLIN use [15], the goal of this 

study was to assess the performance characteristics of an 
accelerometer-based approach for non-obtrusive meas-
ures of a range of LLIN use behaviours in a controlled 
setting.

Here, machine learning tools were utilized in a proof-
of-concept study to distinguish between five key behav-
iours with implications for malaria risk: (1) unfurling a 
net; (2) entering an unfurled net; (3) lying still as if sleep-
ing; (4) exiting from under a net; and, (5) folding up a net. 
The hope is to establish a new, more granular, method 
for studying how and when LLINs are used in real-world 
conditions. This will improve the understanding of LLIN 
effectiveness and inform future priorities for the many 
prevention programmes throughout the world that rely 
on LLINs as the backbone of their malaria prevention 
strategy.

Methods
Study location, laboratory set‑up and device configuration
This study was carried out in a furnished house in Liver-
pool, UK, under controlled conditions intended to mimic 
the ways that nets are typically hung, used and entered 
into/exited from in a malaria-endemic community. The 
study was carried out in two separate bedrooms from 
May to July 2018. One bedroom had a sleeping mat and 
the other bedroom had a bed with a mattress. The data 
were pooled for this analysis because there was no sig-
nificant difference in the results between the sleeping 
surfaces. Each sleeping area had a standard rectangular 
net (190 cm long × 180 cm wide × 150 cm high) that was 
purchased in a market in Cote d’Ivoire. The bed nets were 
attached from their four corners to the ceiling above the 
sleeping area. The accelerometers used in the study were 
GENEActiv (ActiveInsights, UK) wrist-worn sensors, 
with the straps removed. One device was fixed 25 cm up 
from the bottom in the midline on one of the long sides 
of each net (Fig. 1). The accelerometer was placed on the 
side where the participant was instructed to enter/exit 
from the net. Before starting data collection, the acceler-
ometers were calibrated, synchronized in time and set to 
collect data over 10-s epochs at a frequency of 10 Hz (10 
readings per second).

Sample size and participant recruitment
Based on experience from a previous study of accelerom-
eters [15], a sample size of at least 25 individuals was tar-
geted to reflect the variation of net-use actions, including 
both adults/children and men/women to evaluate the 
impact of individual size on accelerometer accuracy. 
This sample size represented a conservative estimate, 
informed by previous experience working with an older 
version of the accelerometers. Families were identified in 
the local community and approached for participation by 
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one of the study authors (GBK). After explaining to the 
selected families the purpose, risk and benefits of being 
part of the study, prospective participants were shown 
examples of the low-resolution images (144 × 24 pixels) 
that would be used in the study as verification of the bed 
net use. Adult participants provided written informed 
consent and children provided assent in the presence of 
their parents or legal guardians. Transportation was pro-
vided each day from participants’ homes to the study and 
a return home in the evening. A small stipend was pro-
vided for each day of participation to compensate partici-
pants for their time.

Capturing data from videos and accelerometers
After the participants consented and the sensors were 
attached to the nets, the participants were asked to 
mimic five basic motions: (1) unfurling a folded-up net 
(net down); (2) entering an unfurled net; (3) lying still 
as if sleeping under an unfurled net for 1  min; (4) exit-
ing from under an unfurled net; and, (5) folding up a net 
(net up). An assistant with a low-resolution camera was 
trained to film each motion to ensure that the timing and 
format of the motions were synchronized between the 
sensors and the motions. When each participant made 

a motion, the motion type was recorded in a notebook 
with the start and end time for completing the motion. 
The computer clock used to initialize/configure the 
device was used as the reference time for the motions. 
Participants were asked to mimic the five motions 14–15 
times each, with a 1-min break in between. Of the five 
basic motions listed above, children were only asked to 
perform the entering (No. 2), sleeping (No. 3) and exit-
ing (No. 4) motions (due to inability to reach high enough 
for net up and net down motions). Children performed 
all of their activities in 1 day, but some adults returned to 
perform the activities over 2–3 days depending on avail-
ability. Additional measurements of the accelerometer 
were obtained when no participants were present with 
the net folded up and the net unfurled. However, because 
these data were indistinguishable from the sleeping data 
gathered when the participants were lying still for a few 
minutes as above, they were pooled together in the final 
analysis and are referred to subsequently as ‘sleeping/no 
activity’.

Data extraction and device maintenance
Data extraction was done daily. The files were down-
loaded from the devices to .bin files and converted using 

Fig. 1  Photographs of accelerometer and placement when fixed on bed nets. Boxes identify where on the bed nets the accelerometers were fixed. 
In the photograph on the left, the device is visible just behind the bed post
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the GENEActiv software to .csv format. The raw (.bin) 
data files ranged in size from 24 mb to 125 kb. Depend-
ing on the size of the data files, it took between 4 min and 
30 s to download the data. In addition, at multiple points 
during the study, the times recorded by the observer 
were verified to match with those displayed by the digital 
camera and the computer. The notebook record with the 
motion type, start time and end time was recorded and 
applied to the corresponding observation from the accel-
erometer data. According to the manufacturers of the 
GENEActiv, the devices are capable of performing meas-
urements at 10 Hz for 45 days on a single charge. To be 
conservative, the two devices were recharged once each 
during the study, after 2 weeks, for 4 h.

Statistical analysis
Each data element for the analysis consisted of the 
observed record (tag) for the motion type applied to 20 s 
of accelerometer data. This was comprised of two 10-s 
time periods, with the average of the x, y and z values 
recorded 10 times per second over 10  s. This provides 
two x, y and z readings each per motion. In addition to 
the x, y and z dimension values, additional features were 
added to the data prospectively to increase the likelihood 
of identifying the motions of interest and classifying 
between them based on the distribution over time. These 
included, for each 10-s period, the standard deviations of 
each of the x, y and z dimensions and a value represent-
ing the sum of the magnitude of displacements in x, y and 
z dimensions. Overall, there were a total of 10 available 
features per observation.

As mentioned above, due to there being no significant 
difference in the results, data were pooled for the analy-
sis making no distinctions between data from (1) the 
bed versus the sleeping mat; (2) no participant present 
versus a participant lying still under the net; and, (3) dif-
ferences between men and women using the net. Thus, 
three separate analyses were performed. The first analy-
sis included all observations for the recorded motions 
pooled together, regardless of whether the bed net was 
used by an adult or a child. The second analysis included 
only children and was restricted to the three activities 
performed by the children (sleeping/no activity, enter-
ing and exiting). The third analysis included only adults 
and was similarly restricted, for comparison, to the three 
activities performed by the children.

Due to observed challenges in distinguishing between 
the entering and exiting motions, three separate classifi-
cation algorithms were trained: (1) a three-category clas-
sification of sleeping/no activity, net up or net down (with 
net down encompassing also both entering and exiting, 
as these occur only when the net is unfurled); (2) a four-
category classification of sleeping/no activity, net up, net 

down or entering/exiting combined; and, (3) a five-cat-
egory classification of each motion separately classified. 
Data were exported into R from the .csv format and split 
into 80/20 training and validation datasets. The classifi-
cation of the observations was performed in R (version 
4.0.2) using a supervised non-linear algorithm via the 
randomForest package [19]. Parameters for the random-
Forest algorithm were set to include 1000 trees and 4 
variables randomly sampled as candidates at each split 
(4 ≈  sqrt[10 available features]). The machine learning 
algorithms were trained on the training dataset and then 
the performance of the algorithms was assessed using 
each model’s prediction of the motion type in the valida-
tion dataset compared to the actual value. The specificity, 
sensitivity, accuracy, and receiver operating characteris-
tic (ROC) curves, including area under the curve (AUC) 
with 95% confidence intervals, were calculated for each 
motion type. According to convention, AUC and accu-
racy values ≥ 0.900 were considered excellent, 0.800 to 
0.899 good, 0.700–0.799 fair, and ≤ 0.600 poor. DeLong’s 
method, a non-parametric approach for comparing two 
ROC curves, was used to compare the performance of 
the two models that restricted to adults and children [20].

Results
Of a total of 30 individuals in 19 families approached, 
18 adults (8 women and 10 men; aged 18–48 years) and 
9 children (4 girls and 5 boys; aged 6 to 14  years) were 
enrolled. A total of 2506 observations were included in 
the analysis, comprising 1214 (48.4%) sleeping/no activ-
ity, 461 (18.4%) entering, 462 (18.4%) exiting, 185 (7.4%) 
folding net up, and 184 (7.3%) unfolding net. The full 
dataset was then randomly split into 2004 (80%) observa-
tions for the training dataset and 502 (20%) for the vali-
dation dataset.

The three-category model had an overall accuracy of 
96.2% (483/502) in the validation dataset. It performed 
well in identifying the combined category of net down/
enter/exit motions (AUC 0.9916 (0.985 to 0.998)) with 
excellent sensitivity (0.957) and specificity (0.966). The 
AUC for net-up motions was 0.987 (0.975 to 0.998) with 
excellent specificity (0.996), but sensitivity was only mod-
erate at 0.771 (Table  1 and Fig.  2). The net-up motions 
were more frequently misclassified as a net-down motion 
(8 of 13 misclassifications) than sleeping/no activity (5 of 
13) (Additional file 1: Table S1). 

In the four-category classification model, overall accu-
racy was nearly as high as the three-category model at 
94.8% (476/502). Sleeping/no activity continued to be 
easily identifiable (AUC 0.992 (0.984 to 1.000)). Net-
down motions (here restricted to unfurling a net with 
enter/exit having a separate category in this model) 
had an AUC of 0.981 (0.968 to 0.994) with moderate 
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sensitivity of 0.756. Net-up motions had a similar AUC of 
0.994 and a higher sensitivity of 0.829 than in the three-
category model. The combined category for entering 
or exiting an unfolded net had an AUC of 0.979 (0.965 
to 0.994) and excellent sensitivity (0.952) and specificity 
(0.952) (Table 2 and Fig. 3).

In the full five-category classification model, overall 
accuracy decreased but was still good at 82.4% (416/502). 

Sleeping/no activity continued to be identified well (AUC 
0.993). The AUC was also excellent for each of the four 
other categories, including 0.985 (0.973–0.996) for net 
down, 0.994 (0.989 to 0.999) for net up, and 0.930 (0.908 
to 0.952) and 0.906 (0.872 to 0.940) for entering and exit-
ing a net, respectively. The specificity remained good to 
excellent for all five categories. The sensitivity was mark-
edly lower, however, for identifying entering (0.681) and 
exiting a net (0.632) (Table 3 and Fig. 4). In the confusion 
matrix (Additional file 1: Table S2), entering and exiting 
were most commonly confused with each other, repre-
senting 83.3% (25/30) and 85.7% (30/35) of the classifica-
tion errors, respectively.

An importance plot was produced (Additional file  1: 
Fig. S1), to identify which of the variables in the classifi-
cation trees made the most difference in increasing clas-
sification accuracy. Across all three models, although not 
always in the same order, the top three variables were the 
average over the y dimensions in the first and second 10-s 
periods and the standard deviation of the first epoch in 
the y dimension. Not surprisingly, this suggests that early 
up and down motions of the accelerometer are espe-
cially important in distinguishing between the net use 
behaviours.

For the comparison of adults and children, sepa-
rate models were run for both by restricting the data to 
the three motions that the children performed: enter-
ing an unfurled net; sleeping/no activity; and, exiting 
a net. Comparing these models demonstrates that the 
model was more accurate for adults compared to chil-
dren (87.8% vs 70.0%; p < 0.001). The models identified 

Table 1  Performance of three-category classification model for bed net use behaviours in validation dataset

AUC​ area under the curve, CI confidence interval
a Comprises activities that occur when net is in use: unfurling net and entering/exiting unfurled net

Net use behaviour Observations Sensitivity Specificity AUC (95% CI)

Sleep/no activity 233 0.996 0.981 0.992 (0.983–1.000)

Net down/enter/exita 254 0.957 0.966 0.992 (0.985–0.998)

Net folded up 35 0.771 0.989 0.987 (0.975–0.998)

Overall accuracy 483/502 (96.2%)

Fig. 2  Receiver operating characteristics for the three-category 
classification model

Table 2  Performance of four-category classification model for bed net use behaviours in validation dataset

AUC​ area under the curve, CI confidence interval

Net use behaviour Observations Sensitivity Specificity AUC (95% CI)

Sleep/no activity 233 1.000 0.981 0.992 (0.984–1.000)

Net folded down 45 0.756 0.996 0.981 (0.968–0.994)

Net folded up 35 0.829 0.991 0.994 (0.989–0.999)

Enter or exit net 189 0.952 0.952 0.979 (0.965–0.994)

Overall accuracy 476/502 (94.8%)
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sleeping/no activity well for both adults and children 
(AUC of 0.994 vs 0.999; p = 0.323), but there were signifi-
cant differences favouring the adult models when com-
paring the AUC for entering (0.934 vs 0.798; p = 0.03) 
and exiting a net (0.927 vs 0.800; p = 0.03) (Table 4).

Discussion
This study adds to a previous study of the use of com-
mercially available accelerometers for the detection of 
bed net use [15] to demonstrate, in a controlled trial, that 
accelerometers can accurately classify real-world bed net 
use behaviours remotely over weeks at a time. The sys-
tem, aided by machine learning based on a robust clas-
sification tree algorithm, was able to distinguish with 
high accuracy when bed nets were unfurled and folded 
up. The algorithm also performed moderately well in 
the most complex classification, achieving 83% accu-
racy in identifying exiting and entering an unfurled bed 

net, in addition to basic net up or net down use behav-
iours. Overall, combining the robustness, battery perfor-
mance and the classification performance demonstrated 
here, accelerometer-based systems provide a promising 
new methodology for identifying with more granularity 
the temporal patterns of LLIN use in malaria-endemic 
regions.

The challenges of the current standard measurement 
tool, self-reported use the previous night, are well docu-
mented and render self-reported bed net use a reason-
able measure for widespread surveillance, but a more 
limited tool for measuring more nuanced bed net use 
behaviours [21, 22]. The accuracy of self-reported LLIN 
use is constrained by potential biases and limitations, 
including: (a) social desirability bias; (b) recall bias; and, 
(c) sampling bias related to queries focused on a sin-
gle night which may miss important seasonal and other 
temporal variations in use [12, 23]. Additionally, in most 
countries, surveillance with self-reported measures from 
household surveys occurs less than once per year, mak-
ing monitoring trends on even an annual basis challeng-
ing. Individual patterns of use and trends in use over time 
have crucial importance for understanding malaria risk 
[24]. Remote objective monitors help mitigate many of 
the biases inherent in current bed net use surveillance 
and can elucidate net use patterns that would other-
wise be infeasible without direct visual monitoring [18]. 
While these accelerometers have been found to be gen-
erally acceptable to local communities [17], future work 
will need to establish whether bed net use behaviours are 
affected by the monitoring itself.

One of the important findings of this study is the 
capability of the simple, unobtrusive accelerometers 
to identify more complex bed net use behaviours than 
have previously been possible. Both the three- and 
four-category classification models achieved excellent 
accuracy of 95% or greater and provide reliable data 
about whether the bed net is folded up (providing no 
protection) or unfurled. The high accuracy of the four-
category model was encouraging. While this model did 
not distinguish between entering and exiting a net, it 

Fig. 3  Receiver operating characteristics for the four-category 
classification model

Table 3  Performance of five-category classification model for bed net use in validation dataset

AUC​ area under the curve, CI confidence interval

Net use behaviour Observations Sensitivity Specificity AUC (95% CI)

Sleep/no activity 233 0.991 0.981 0.993 (0.984–1.000)

Net folded down 45 0.733 0.989 0.985 (0.973–0.996)

Net folded up 35 0.800 0.989 0.994 (0.989–0.999)

Enter net 94 0.681 0.917 0.930 (0.908–0.952)

Exit net 95 0.632 0.909 0.906 (0.872–0.940)

Overall accuracy 416/502 (82.9%)
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could still add significant insight into the patterns of 
bed net use as they relate to individual movements dur-
ing the night. Such patterns may play a significant role 
in individual residual malaria risk notwithstanding the 
high bed net use rates reported with current surveil-
lance methods. With lower accuracy and sacrificing 
some sensitivity, the five-category model was able to 
distinguish moderately well between entering and exit-
ing a net. Not surprisingly, the models that sought to 
classify entering and exiting were more accurate among 
adults, who presumably triggered an easier-to-identify 
signature given their larger size than children. All of the 
models here, even the lowest accuracy but highest com-
plexity, may arguably be a more realistic measure of 
actual bed net use behaviours than self-reports. Indeed, 

the measurement error inherent in the lower sensitiv-
ity categories in this study is on par with another study 
that attempted to quantify the bias in self-reports by 
comparing self-reported and objective measures [13].

Furthermore, there is reason to expect that the machine 
learning approaches used to perform the classification 
tasks in this study can be improved in multiple differ-
ent ways. First, this study provides insights into changes 
that may improve the current method in future applica-
tions. These insights include the identification of the first 
10 s as the most important in the classification, simplify-
ing the data gathering and signal identification. In future 
work, it would be valuable to explore whether shorter 
periods would result in higher accuracy. It was also clear 
that the y dimension (vertical axis) is a crucial compo-
nent in the classification system and may help to sim-
plify future analyses. Second, random forest classification 
trees are only one of many machine learning methods 
that might be suitable in this setting. Neural networks, in 
particular, may be a promising avenue for improving clas-
sification accuracies. Third, the devices in this study were 
set to gather data 10 times per second, but more frequent 
sampling could identify the more nuanced behaviours, 
such as entering and exiting a net, at a higher accuracy. 
GENEActiv devices can gather data up to 1000 times per 
minute with an estimated 12-h battery life. Optimizing 
the trade-off between battery life and sampling frequency 
will be an important area for future work. Finally, each 
of the net use behaviours here were classified indepen-
dently of each other. In real life, there are logical and tim-
ing constraints that can be utilized in an iterative fashion 
and leveraging model confidence to improve accuracy. 
For example, it is not possible to unfurl a bed net twice in 
succession. Thus, if the system identifies with high prob-
ability that a net has been unfurled, that information can 
be used to improve the accuracy of the next classification. 
These are all avenues for improvements in future work to 
create an even more accurate and flexible system.

Fig. 4  Receiver operating characteristics for the five-category 
classification model

Table 4  Performance of three-category classification model for bed net use behaviours in validation dataset

AUC​ area under the curve, CI confidence interval

Net use 
behaviour

Adults Children Comparison 
of AUC​

Observations Sensitivity Specificity AUC (95% 
CI)

Observations Sensitivity Specificity AUC (95% 
CI)

Sleep 1115 0.995 0.967 0.994 
(0.985–1.000)

99 1.000 0.951 0.999 
(0.995–1.000)

p = 0.323

Enter net 362 0.636 0.946 0.934 
(0.907–0.962)

99 0.556 0.810 0.798 
(0.684–0.911)

p = 0.026*

Exit net 363 0.730 0.902 0.927 
(0.900–0.953)

99 0.565 0.784 0.800 
(0.689–0.909)

p = 0.030*

Overall accuracy 318/368 
(86.4%)

Overall 
accuracy

42/60 
(70.0%)
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Remote adherence monitors will improve our under-
standing of how LLINs are used relative to malaria risk, 
sociodemographic factors, vector abundance, and vari-
ous climate variables such as temperature and humidity. 
Many studies have identified characteristics associated 
with poor bed net use by self-reports, but there remains 
a lack of precision in these measures to correlate patterns 
of bed net use with patterns of malaria risk that may 
vary season to season, month to month and even hour to 
hour [25]. Quantifying bed net use with more granular-
ity allows for deeper inquiries into how LLIN use fits into 
the daily lives of those at risk of malaria. This may allow 
us to identify groups of people at high risk of malaria 
and reveal the need for complementary malaria control 
interventions in addition to LLINs. Identifying high-risk 
groups relative to their use of LLINs, which remain the 
most prevalent malaria prevention tool in the world, 
can also help maximize the efficiency of limited health 
resources by promoting better and more highly targeted 
behaviour change and malaria prevention programmes.

This study has clear limitations beyond those specific 
to the measurement tool and analysis discussed above. 
First, the study took place in a controlled setting in a 
non-malaria-endemic region. While the study attempted 
to mimic real-life bed net use, it is plausible that the 
motions of bed net users in actual practice might be dif-
ferent than in this study, although significant differences, 
at least in unfurling and folding up a net, seem unlikely. 
Other environmental characteristics surrounding real-
world use of bed nets, on the other hand, are likely to be 
markedly different than those in this controlled experi-
ment, such as the number of net users, the type of sleep-
ing space, environmental (temperature, humidity, etc.) 
and other ‘noise’ factors (such as shaking of the net in a 
household environment due to other family members, 
domestic animals, or wind). There is evidence that the 
accelerometer approach may be robust to some of these 
variations, since the method was unaffected by whether 
the net was placed over a bed or a mat, for example. But 
the difference in performance in measuring the enter-
ing and exiting of children versus adults suggest that 
these noise factors deserve be explored more completely 
in future work, perhaps with more frequent measure-
ments in Hz and at increased granularity (compared to 
the 20-s periods used here). Second, in this study the 
accelerometer was positioned on only one side of the net, 
which makes the entering and exiting data only relevant 
for entering and exiting from that side. Future work will 
need to explore whether two accelerometers will be nec-
essary on both sides to capture accurate entering/exiting 
data, or whether an accelerometer can be placed on top 
of the net and still accurately obtain relevant data. Third, 
assessing each tagged motion as separate from each other 

as in this study raises the question of how to manage 
the data that will arrive from the field in one continuous 
stream. In future work, the classification system will need 
to identify, first, whether an ‘event’ has occurred from 
continuous data and, second, make an estimate as to the 
type of that event. It is likely that this will be a manage-
able challenge, given the ability of the system to identify 
at very high accuracy sleeping/no activity. Fourth, despite 
evidence showing the acceptability of remote adherence 
monitoring of bed net use in research settings [17], com-
munication with local communities about what exactly is 
being monitored will be essential to ensuring continued 
acceptability. Finally, there are limitations to the informa-
tion that this technology can provide. Additional work 
will be needed to link LLIN use data with specific indi-
viduals in a household. Further, net use patterns within 
the home must be paired with an understanding of 
broader night-time activity, movement patterns, and vec-
tor-biting behaviour for a more complete picture of when 
and where gaps in protection arise.

Conclusion
Beyond the coverage attained through LLIN distribu-
tions, how LLINs are used is a crucial bedrock of malaria 
prevention. An LLIN unused or used incorrectly does 
not prevent malaria, particularly in the era of pyrethroid 
resistance and waning community effect [26, 27]. A more 
detailed understanding of sleep timing and timing of 
potential exposure to vectors among the millions of LLIN 
users worldwide may have relevance for malaria preven-
tion on a broad scale, particularly considering the large 
share of malaria expenditure that goes toward LLINs [4]. 
Accelerometer approaches to remotely measure LLIN 
use represent an exciting new opportunity to understand 
malaria transmission and prevention as they intersect 
with human behaviour. This will improve our under-
standing of LLIN effectiveness and help improve malaria 
prevention where LLINs are relied upon as the backbone 
of malaria prevention strategies.
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