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Abstract 

Background:  Cytoadhesion and sequestration of Plasmodium falciparum infected red blood cells (iRBC) in the micro-
vasculature of vital organs are a major cause of malaria pathology. Several studies have provided evidence on the 
implication of the human host intercellular adhesion molecule-1 (ICAM-1) as a major receptor for iRBCs binding to P. 
falciparum erythrocyte membrane protein 1 (PfEMP1) in the development of severe and cerebral malaria. The genetic 
polymorphism K29M in the immunoglobulin-like domain of ICAM-1, known as ICAM-1Kilifi, has been associated with 
either increased or decreased risk of developing cerebral malaria.

Methods:  To provide more conclusive results, the genetic polymorphism of ICAM-1Kilifi was assessed by PCR and 
sequencing in blood samples from 215 Beninese children who presented with either mild or severe malaria including 
cerebral malaria.

Results and conclusions:  The results showed that in this cohort of Beninese children, the ICAM-1kilifi variant is 
present at the frequencies of 0.27, similar to the frequency observed in other African countries. This ICAM-1kilifi variant 
was not associated with disease severity in agreement with other findings from the Gambia, Tanzania, Malawi, Gabon, 
and Thailand, suggesting no evidence of a direct link between this polymorphism and the pathogenesis of severe and 
cerebral malaria.
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Background
Malaria presents a heavy burden on people living in 
endemic areas, with an increase in global mortality to 
627,000 in 2020 compared to 405,000 registered in 2019 
attributed to the Covid-19 pandemic consequences. 
Fifteen to 25% of case fatality rate occur among Afri-
can children with cerebral malaria [1–4]. Plasmodium 

falciparum, the deadliest species, causes several clini-
cal manifestations ranging from asymptomatic and mild 
infections to life threatening severe malaria, including 
cerebral malaria. The disease severity has been asso-
ciated with sequestration of infected red blood cells 
(iRBCs) within the brain micro-vessels, leading to inflam-
mation, reduction of the blood–brain barrier (BBB) 
integrity and brain swelling increasing intracranial pres-
sure [3, 5–7]. Furthermore, the accumulation of iRBCs 
results in microvascular clogging, hypoxia, and activa-
tion of inflammatory cytokines, which in turn increase 
the expression of endothelial cell adherence molecules 
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(eCAM) and accelerate the accumulation of iRBCs capil-
lary beds [8].

Several receptors, including: thrombospondin, clus-
ter of differentiation 36 (CD36), intercellular adhesion 
molecule 1 (ICAM-1), vascular cell adhesion molecule 1 
(VCAM-1), platelet endothelial cell adhesion molecule/
cluster of differentiation 31 (PECAM/CD31), neural cell 
adhesion molecule (NCAM), P and E-selectin, integrin 
αvβ3, globular C1q receptor (gC1qR), chondroitin sulfate 
A (CSA), and haemagglutinin (HA), have been shown to 
be implicated in iRBC cytoadhesion [9–16].

ICAM-1 was found to be up-regulated in endothelial 
cells and co-localized with iRBCs in brain tissue of chil-
dren who died from cerebral malaria [17, 18]. In  vitro 
static and flow cytoadhesion experiments showed that 
ICAM-1 mediates attachment of P.  falciparum iRBCs to 
cell membrane [19]. Compared to controls, the plasma 
concentration of soluble form of ICAM-1 is increased 
in malaria-infected patients [20–23]. ICAM-1 is also 
expressed constitutively on monocytes, which are often 
present with the parasites at sites of cerebral micro-
haemorrhages in cerebral malaria [24].

ICAM-1 remains a receptor of major interest, and 
several authors have investigated its role in the patho-
genesis of severe malaria [25–31]. Specific ICAM-1 bind-
ing to brain microvessels is mediated by the β variant of 
Duffy-binding like domain (DBLβ) of type A P. falcipa-
rum erythrocyte membrane protein 1 (PfEMP1) [32]. 
Recently, parasite strains able to bind both ICAM-1 and 
Endothelial Protein C Receptor (EPCR) have been iso-
lated and characterized, strengthening the potential role 
of these two receptors in cerebral malaria [27, 33, 34].

Other studies have focused on the genetic polymor-
phism of ICAM-1, but these studies have led to contra-
dictory conclusions. A single nucleotide polymorphism 
(SNP) corresponding to a mutation at locus 56 of the 
coding sequence, corresponding to position 29 on the 
mature protein, has been observed at a high frequency 
in Africa. This non-synonymous coding polymorphism 
(A/T) leads to a lysine to methionine change (K29M) 
in the N-terminal domain of ICAM-1. This mutation, 
known as the ICAM-1Kilifi genotype, was found to 
predispose children to cerebral malaria in Kenya and 
Nigeria [35, 36]. However, in other studies conducted 
in Gambia, Malawi, and Kenya, this mutation was not 
associated with severe malaria, but was rather asso-
ciated with protection from severe malaria in a study 
performed in Gabon [37–40]. Consequently, ICAM-
1Kilifi mutation has generated more interest for its 
potential implications in the mechanisms of pathogen-
esis of severe and cerebral malaria and has been exten-
sively investigated in cytoadhesion functional studies 
[41, 42]. Besides, it has also been reported a marginal 

association of another mutation on exon 6 (rs5498) 
of ICAM-1with the susceptibility to severe malaria in 
a case–control study performed in Nigeria [36]. This 
mutation and the ICAM-1Kilifi have not been found 
to be associated with susceptibility to severe malaria 
in whole genome associated study [43]. In the light of 
these contradictory findings in earlier studies, the fre-
quency of ICAM-1Kilifi was investigated in Beninese 
children with distinct clinical conditions of malaria, 
including uncomplicated malaria (UM), severe non 
cerebral malaria (SNCM) and cerebral malaria (CM), 
to assess the potential association of ICAM-1Kilifi poly-
morphism with malaria severity.

Methods
Patients
This study was conducted in Cotonou, southern Benin 
during malaria transmission periods from June to Sep-
tember 2012 and from May to July, 2013. South of Benin 
is characterized by a subtropical climate, with 2 rainy 
seasons where P. falciparum malaria is endemic with 
approximately 33 infective bites per person annually [27]. 
Children less than six years of age presenting at Cen-
tre Hopitalier Universitaire Mère-enfant de la Lagune 
(CHUMEL), Centre National Hospitalier Universitaire 
Hubert Koutoucou Mega (CNHU-HKM), or to Hôpi-
tal Suru-Léré were screened by rapid diagnostic test 
for malaria (DiaQuick Malaria P. falciparum Cassette, 
Dialab®; Hondastrasse, Austria) and were admitted in 
the study if they meet the criteria defined by the World 
Health Organization (WHO) [28]. All malaria cases 
had microscopically-confirmed P. falciparum infection. 
Three clinical groups were formed including, (1) Cerebral 
Malaria group (CM) which consisted in children with 
severe malaria and coma as defined by Blantyre coma 
score ≤ 2, with the exclusion of any other causes of coma, 
(2) Severe non-cerebral malaria group (SNCM) which 
includes children presenting with one or more of the fol-
lowing symptoms; pulmonary edema, acute respiratory 
distress syndrome, acute kidney failure, abnormal liver 
function, hemoglobinuria, or severe anemia with absence 
of coma BCS > 2, (3) Uncomplicated Malaria group (UM): 
defined as P. falciparum parasitaemia with fever, head-
ache, or myalgia without signs of severe malaria and/or 
evidence of vital organ dysfunction.

After obtaining informed and written consent from 
children parents or guardians, 2 to 7 ml of venous blood 
samples were collected into tubes containing citrate 
phosphate dextrose adenine and 20  µl of each sample 
were spotted and dried on Whatman (3MM) filter paper. 
All participants were treated according to the guidelines 
established by the Beninese Ministry of Health.
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DNA extraction and PCR
DNA was extracted using Chelex® beads [44]. Briefly, a 
2 mm diameter disc was cut from Whatman filter paper 
and incubated at 4 °C overnight in 0.5 mL of phosphate-
buffered saline (PBS) containing 0.5% saponin. The filter 
paper was washed twice in saponin-free PBS, placed in 
100 µl of distilled water containing 10% Chelex® (Biorad, 
Marnes-la-Coquette, France), then incubated at 100  °C 
for 20  min to elute DNA. Tubes were centrifuged at 
12000xg, and the supernatant transferred to a new tube. 
One microlitre of this suspension was used to perform 
PCR for immunoglobulin (Ig)-like domain of icam-1 
gene using the primers and PCR conditions described by 
Fernandez-Reyes et  al. [35]. The 263-bp amplified frag-
ment spanning codon 29 was sequenced from the 5′- and 
3′-ends using an automated DNA sequencer (ABI Prism; 
Perkin Elmer Corp, Eurofins, Paris, France).

Statistical analysis
The statistical analysis was performed on Prism v7 soft-
ware (GraphPad Software, Inc., San Diego, CA, USA). 
Quantitative variables were compared between the three 
groups using the non-parametric Kruskall-Wallis test. 
Association between the ICAM-1Kilifi genotype and clini-
cal groups was performed using a chi-square test to com-
pare genotypes as well as allele frequencies. P-value from 
the global chi-square assessing if there is at least one dif-
ference between the three groups are reported. The level 
of statistical significance was set at 0.05.

Results
Clinical and biological characteristics of patients
The base line characteristics, the clinical and the biologi-
cal parameters of the children enrolled in the study are 
summarized in (Table 1). Briefly, we included 74 children 
with cerebral malaria (CM), 71 with severe non cerebral 

malaria (SNCM) and 70 with uncomplicated malaria 
(UM). There was no significant difference in age, male to 
female ratio, temperature, and parasitaemia. However, 
haemoglobin level was significantly different between 
clinical groups with a P-value of P < 0.0001. As expected, 
the deaths occurred among children in the group of CM 
and SNCM with a high mortality rate of 43% in chil-
dren with CM compared to 17% in children with SNCM, 
P = 0.014.

Allelic frequency at ICAM‑ 29 position of enrolled children
Fragments of the N-terminal immunoglobulin-like 
domain of ICAM-1, were successfully amplified and 
sequenced in 215 individuals after genomic DNA extrac-
tion from blood samples. Hardy Weinberg Equilibrium 
test performed in UM sample to detect potential popu-
lation stratification or problems in genotyping showed 
no deviance from the expected frequencies of genotypes 
(P = 0.78). The allelic frequencies of the mutant were 0.22 
in CM group and 0.3 in both SNCM and UM groups. 
Even if we observe a higher frequency of wild type K29/
K29 genotype in cerebral malaria group, the comparison 
of allelic and genotypic frequencies between the clini-
cal groups showed no significant difference (respectively 
P = 0.18 And P = 0.19 global chi2 test) in the proportions 
of wild-type and mutant alleles or genotypes. The allelic 
and genotypic frequencies are presented in (Table 2).

Discussion
The biological mechanisms driving towards severe 
malaria pathology involve parasite virulence, host immu-
nological backgrounds and host genetic factors. Among 
these factors parasite proteins expressed on the surface 
of erythrocytes such as PfEMP1 and host endothelial 
receptors play a major role. The results of the present 
study which aimed to investigate the possible association 

Table 1  Clinical and biological characteristics of P. falciparum-infected children enrolled in the study

* The difference between different groups was statistically significant for haemoglobin (P < 0.0001) and the number of deaths (P = 0.014). 95% CI, 95% confidence 
interval

Characteristics Clinical groups

Cerebral malaria Severe non-cerebral malaria Uncomplicated malaria

Number of patients 74 71 70

Age, median (range), months 36 (5–72) 30 (9–60) 36 (5–60)

Sex ratio (male/female) 1.46 (44/30) 0.86 (33/38) 1.12 (37/33)

Geometric mean parasitaemia (95% CI; [range]) 
asexual parasites/µl

44,400 (15,100–34,900)
[2,720–864,000]

21,800 (32,700–83,900)
[156–650,000]

22,300 (16,000–42,900)
[75–247,000]

Body temperature, median (range) °C 38.5 (35.5–40.9) 38.0 (36.0–41.0) 38.5 (36.0–40.7)

Haemoglobin, median (range) g/dl* 6.0 (0.8–12.9) 8.6 (3.1–11.5) 8.6 (5.0–13.6)

Blantyre score, median (range) 2 (0–2) 3.5 (3–5) 5 (–)

Number of deaths (%)* 32 (43.2) 12 (16.9) 0
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between the ICAM-1Kilifi genotype and the predisposi-
tion to cerebral or severe malaria in African children 
from Benin show a high frequency of this mutation which 
reached (0.27%) consistent with earlier finding in other 
African countries. However, no association between the 
ICAM-1Kilifi variant and the occurrence of cerebral or 
severe malaria has been found. These results are in agree-
ment with those found in studies obtained on 2685 Gam-
bian children, 200 Gabonese and 477 Thai individuals, 
but in contradiction to those of the initial study carried 
out on 547 Kenyan children [35, 37–39]. The impor-
tance of ICAM-1 receptor in the pathogenicity of severe 
malaria and the unequal distribution of the ICAM-1Kilifi 
which reached frequencies between 20 to 30% in high 
malaria transmission region of Africa, around 5% in 
lower transmission area of East-Asia, and at only 0.4 to 
1.1% in non-endemic area suggest a selective pressure 
exerted by malaria at this locus [38].

Functional studies showed that the iRBCs binding site 
is part of the two first domains of ICAM-1, overlaps but 
is distinct from that of Lymphocyte functional associ-
ated Antigens (LFA), Macrophage receptor 1 (Mac-1) 
and human rhinovirus [45, 46]. Indeed, another study 
showed that the conformational changes produced 
by the ‘Kilifi polymorphism’ occur at the L43 loop of 
domain 1 ICAM-1 and the monoclonal antibody 15.2 
that maps to this region blocks the binding of iRBCs to 
both ICAM-1ref and ICAM-1Kilifi forms. Furthermore, 
both static and dynamic cytoadhesion experiments 
showed that phenotypic differences in the binding char-
acteristics between these two ICAM-1 variants may 
depend on P. falciparum strains used in experimental 
assays. Thus, P. falciparum ITG iRBCs binds equally to 
ICAM-1Ref and ICAM-1Kilifi, however P.  falciparum A4 
iRBCs strain binds weakly to ICAM-1Kilifi [41]. The dif-
ference in binding was more important in the dynamic 
assays, suggesting that ICAM-1Kilifi may select high-
affinity binding parasites at sequestration sites within 
the brain microvessels [47]. These observations were 
confirmed later using three different parasite lines (ItG, 
JDP8, A4) with different binding ability to wild type 
ICAM-1ref to evaluate their adherence-capacities to a 

panel of mutant ICAM-1 proteins (ICAM-1K29M(Kilifi), 
ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A) both 
under flow and static conditions. The results showed 
that iRBCs binding to some ICAM-1 mutants was 
reduced to 80% or completely abolished for some iso-
lates, while the iRBCs binding to ICAM-1Kilifi was 
reduced in only 50% of isolates, emphasizing the 
importance of parasite PfEMP1 variants used in the 
interaction with ICAM-1 [48].

More recently, the ICAM-1Kilifi mutation was shown 
to be significantly associated with child hospitalisation 
in Tanzania supporting the link between this muta-
tion with malaria severity, but independent from the 
cytoadherence pattern of iRBCs on ICAM-1, which can 
also depend on binding of these isolates to other recep-
tors rather than ICAM-1 in these [49].

These findings may explain the contradictory results 
on the association of this variant with cerebral malaria 
[37, 39, 40] which, seems to also depend on PfEMP-1 
and non PfEMP1 variants expressed at the surface of 
iRBCs and support the frequency-dependent model 
of selection explanation proposed by Fry et  al. [38]. a 
mechanism which have been proposed among others 
to underlie host-parasite evolutionary dynamic. This 
model is based on an established equilibrium between 
polymorphism frequency in human and that of parasite 
strains due to competition between strains preferring 
binding on either ICAM-1Kilifi or ICAM-1ref, the change 
in host in allele frequency will favor the expansion of 
the corresponding high binding parasite strains which 
will select in return against the most frequent allele in 
host bringing the system to equilibrium at which all 
individuals will have the same risk of developing severe 
or cerebral malaria irrespective of their ICAM-1 geno-
type [38]. The ICAM-1Kilifi mutation was also linked 
to the protection from highly prevalent non-malarial 
febrile illness in sub-Saharan Africa such as sepsis, 
suggesting that this polymorphism play a role in the 
modulation of inflammatory response to pathogens by 
ICAM-1 and may subsequently explain the high fre-
quency of this polymorphism within African popula-
tions [49, 50].

Table 2  Genotypes and allelic frequency at ICAM-1- 29 loci

K29/K29 are wild-type homozygous patients; K29/M29 are heterozygous individuals; M29/M29 indicate homozygous patients with the ICAM-1Kilifi mutation. n, 
number of patients or samples

Clinical group Genotype (n, %) Frequency

K29/K29 K29/M29 M29/M29 K29 M29

Cerebral malaria (n = 74) 49 (66.2) 17 (23.0) 8 (10.8) 0.78 0.22

Severe non-cerebral malaria (n = 71) 40 (56.3) 18 (25.4) 13 (18.3) 0.69 0.31

Uncomplicated malaria (n = 70) 36 (51.4) 26 (37.1) 8 (11.4) 0.70 0.30

Total (n = 215) 125 (58.1) 61 (28.4) 29 (11.4) 0.72 0.27
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Conclusion
The results of the present study indicate that ICAM-
1Kilifi polymorphism is not directly associated to severe 
or cerebral malaria development. However, a role in the 
pathogenesis, depending on the parasite variants impli-
cated in the interaction with ICAM-1 Kilifi cannot be 
completely excluded.
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