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Abstract 

Background:  Microscopic examination of Giemsa-stained blood films remains the reference standard for malaria 
parasite detection and quantification, but is undermined by difficulties in ensuring high-quality manual reading and 
inter-reader reliability. Automated parasite detection and quantification may address this issue.

Methods:  A multi-centre, observational study was conducted during 2018 and 2019 at 11 sites to assess the per‑
formance of the EasyScan Go, a microscopy device employing machine-learning-based image analysis. Sensitivity, 
specificity, accuracy of species detection and parasite density estimation were assessed with expert microscopy as the 
reference. Intra- and inter-device reliability of the device was also evaluated by comparing results from repeat reads 
on the same and two different devices. This study has been reported in accordance with the Standards for Reporting 
Diagnostic accuracy studies (STARD) checklist.

Results:  In total, 2250 Giemsa-stained blood films were prepared and read independently by expert microscopists 
and the EasyScan Go device. The diagnostic sensitivity of EasyScan Go was 91.1% (95% CI 88.9–92.7), and specific‑
ity 75.6% (95% CI 73.1–78.0). With good quality slides sensitivity was similar (89.1%, 95%CI 86.2–91.5), but specificity 
increased to 85.1% (95%CI 82.6–87.4). Sensitivity increased with parasitaemia rising from 57% at < 200 parasite/µL, 
to ≥ 90% at > 200–200,000 parasite/µL. Species were identified accurately in 93% of Plasmodium falciparum samples 
(kappa = 0.76, 95% CI 0.69–0.83), and in 92% of Plasmodium vivax samples (kappa = 0.73, 95% CI 0.66–0.80). Parasite 
density estimates by the EasyScan Go were within ± 25% of the microscopic reference counts in 23% of slides.

Conclusions:  The performance of the EasyScan Go in parasite detection and species identification accuracy fulfil 
WHO-TDR Research Malaria Microscopy competence level 2 criteria. In terms of parasite quantification and false 
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Background
Microscopic examination of Giemsa-stained blood films 
remains the primary reference method for the detection, 
identification and quantification of malaria parasitaemia. 
It continues to be routinely performed for laboratory 
confirmation of malaria infection in some countries, but 
is increasingly being replaced by rapid diagnostic tests 
(RDTs), which are much easier to use and do not require 
equipment or extensive training [1]. RDTs, however, are 
less sensitive for low-density infections, can only provide 
qualitative results, mostly only differentiate Plasmodium 
falciparum from all other plasmodial species, and are 
challenged by parasite lineages with deletions in genes 
coding for antigens detected by RDTs. The information 
on parasite density and species is required for clinical 
management of patients and is particularly important in 
the context of research studies on malaria prevention, 
diagnostics and treatment [2]. Thus microscopy remains 
a gold standard for clinical diagnosis and will continue to 
be used in malaria clinical research settings for the fore-
seeable future.

The validity and reliability of microscopy depend 
heavily on the availability and competence of labora-
tory technicians. Standardization of malaria microscopy 
is an ongoing challenge due to difficulties in attaining 
and maintaining high-quality manual reading and inter-
reader consistency [3–6]. Automated systems combin-
ing hardware that capture images from a blood slide 
with malaria detection algorithms for analysis of the 
images to deliver parasite detection, species identifica-
tion, and quantitation without user input may address 
some shortfalls of manual microscopy. Most research 
into algorithms has (i) focused on thin films, which are 
unsuitable for diagnosis and quantitation of lower-para-
sitaemia samples [7]; (ii) used small datasets without field 
validations [8]; and (iii) does not address the hardware 
step. However, some progress has been made on Giemsa-
stained thick film algorithms [9–13] which are central to 
clinical use-cases. These algorithms apply convolutional 
neural networks (CNNs), a machine learning method 
that has been highly successful in image-related tasks 
[14, 15]. Such methods hold great potential for auto-
mated recognition of malaria parasites from standard 

Giemsa-stained blood films. The current study assesses 
such an automated device and algorithms.

A brief history of the system and its previous field tri-
als, as reported in [10, 11, 16–19] is given here. A digital 
malaria microscopy device, with both hardware and soft-
ware developed by Intellectual Ventures’ Global Good 
Fund, and operating on thick films only, was first tested 
in field settings in Thailand in 2014–2015 [10]. A second 
version of the thick film algorithm targeted both Plasmo-
dium falciparum and Plasmodium vivax (as well as Plas-
modium ovale and Plasmodium malariae), though only 
the P. falciparum branch is described [11]. In a test at the 
same site in Thailand plus an additional site in Indonesia 
in 2016–2017 [18], this version of the thick film algorithm 
had (compared to expert microscopy) a diagnostic sensi-
tivity of 89%, a specificity of 97%, species identification 
(falciparum vs vivax) accuracy of 84%, and quantitation 
accuracy such that 30% of the parasite density estimates 
were within ± 25% of that derived by microscopic quan-
tification. This thick film algorithm was also tested in a 
field trial in Peru [16], where it performed slightly worse 
than expert microscopy: using PCR as a reference, diag-
nostic sensitivity was 72% (vs 68% for microscopy), 
specificity was 85% (vs 100% for microscopy), limit of 
detection was roughly 100–150  p/uL, and species iden-
tification accuracy was 90% on positive samples. An 
improved iteration of the software, with an added thin 
film module (described in [17]), was combined with the 
EasyScan GO, a production prototype device built by 
Motic using software also licensed to Motic, and tested 
on a standard WHO slide set [19]. It achieved WHO level 
1 diagnostic (implying a limit of detection of roughly 
100 p/uL), level 1 quantitation accuracy, and level 2 spe-
cies identification performance. The same setup was also 
tested in an extended trial at London’s Hospital for Tropi-
cal Diseases (manuscript in preparation). The EasyScan 
GO plus the thick film algorithm (no thin film module) 
was deployed in the study reported here, which evaluated 
the system in diverse transmission and epidemiological 
malaria contexts (11 sites in 11 countries).

The specific objectives of the study were to assess the 
diagnostic performance of the production prototype 
of the EasyScan Go with respect to parasite detection, 

positive rate, it meets the level 4 WHO-TDR Research Malaria Microscopy criteria. All performance parameters were 
significantly affected by slide quality. Further software improvement is required to improve sensitivity at low parasitae‑
mia and parasite density estimations.

Trial registration ClinicalTrials.gov number NCT03512678.

Keywords:  Malaria, Light microscopy, Digital microscopy, Artificial intelligence, Diagnostic accuracy, Machine-
learning
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species identification, and parasite density estimation 
using expert microscopy as a reference standard.

Methods
Study site, design, and oversight
A multi-centre, observational study was conducted dur-
ing 2018 and 2019 at 11 sites in 11 countries: Burkina 
Faso, Kenya, Republic of the Congo, Senegal, South 
Africa, Uganda in Africa, Bangladesh, Cambodia, Nepal, 
Thailand in Asia, and Brazil in South America (Fig.  1). 
The evaluation of the EasyScan Go device was conducted 
as a ‘sub-study’ alongside ongoing studies of malaria 
treatments or diagnostics in 6 sites (Bangladesh, Bra-
zil, Cambodia, Nepal, Senegal, and South Africa), or 
as a ‘stand-alone’ study in 5 sites (Burkina Faso, Kenya, 
Republic of the Congo, Thailand, and Uganda). Most 
studies used a cross-sectional design, except in Cam-
bodia and South Africa, where slides were collected at 
inclusion and during follow-up visits. Further, the study 
was conducted as a prospective evaluation except for 
South Africa, where slides were read and data collec-
tion was performed retrospectively. The study has been 
reported in accordance with the Standards for Reporting 
Diagnostic accuracy studies (STARD) checklist (Addi-
tional file 1) [20].

Ethical approval
The study was conducted in accordance with the Inter-
national Conference on Harmonization Guidelines for 

Good Clinical Practice (ICH-GCP), applicable regu-
latory requirements, and the Declaration of Helsinki. 
Approval for the multi-centre study was granted by the 
Oxford Tropical Research Ethics Committee (Ref 514-
18) and the national ethics committee and/or the insti-
tutional review board for each site. The multi-centre 
study was registered at ClinicalTrials.gov and assigned 
identifier NCT03512678. All study participants pro-
vided written informed consent.

Study participants and samples
Participants were enrolled using convenience sam-
pling with the following inclusion criteria: (i) age 
between 6 months and 75 years; (ii) history of fever in 
the past 48  h or measured temperature ≥ 37.5  °C; (iii) 
informed written consent or assent. Informed consent 
was obtained from parents of children under 18 years. 
Patients with signs of severe malaria at screening, as 
defined by the WHO, were excluded from the study 
[2]. A blood sample was obtained by finger prick or 
venepuncture to prepare Giemsa-stained blood films 
for microscopy and to perform RDT. After blood 
sampling, any patient with a diagnosis of malaria by 
microscopy or RDT received standard anti-malarial 
treatment in accordance with the national guidelines 
(stand-alone studies) or a treatment per the main trial 
protocol (sub-studies).

Fig. 1  Study sites (11 sites, n = 2250 slides)
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Examination of blood films by light microscopy
Microscopy procedures, including slide preparation, 
staining, reading, and quality control, were performed 
according to the methods described in the WHO-TDR 
Research Malaria Microscopy Guidelines [21]. A micro-
pipette was used to place 6  µL of blood for making a 
12  mm diameter thick film using a slide template and 
2–3 µL of blood for thin film. Both thick and thin films 
were stained with freshly prepared 3% v/v Giemsa solu-
tion in buffered water, pH 7.2 for 40–50  min, and air-
dried completely. Asexual parasite density was estimated 
using the ‘per High Power Field’ (HPF) method or by 
counting against 500 WBC if actual WBC count from a 
haematology analyser was available (Additional file 2). In 
cases with more than 200 parasites in 10 HPF, parasite 
density was estimated by counting 2000 RBCs on the thin 
film. A slide was considered negative if no asexual para-
sites were found after examining 200 HPF on the thick 
smear. Gametocytes were not assessed. Each slide was 
read by two microscopists (a different pair at each site).

Examination of blood films by the EasyScan Go
The EasyScan Go devices were donated by the Intellec-
tual Ventures’ Global Good Fund. Device set-up, cali-
bration and training on the operation were performed 
according to the accompanying manuals at the study ini-
tiation training at each site. The same slide was read by 
expert microscopists and on the EasyScan Go device. All 
slides prepared for manual microscopy were first read on 
the thick film using the EasyScan Go device, and a thin 
film read was performed only when the parasite count 
on thick film by the EasyScan device was over 10,000 
per µL. The first reading was usually performed imme-
diately after the manual microscopy was done. A second 
read with EasyScan Go was also performed either imme-
diately after the first read or after the recruitment of all 
participants.

Scanning
A comprehensive description of the imaging methods 
and the accompanying software developed by Intellec-
tual Ventures’ Global Good Fund are found in [19] and an 
image of the EasyScan GO is included in the Additional 
file  3: Fig. S1. Briefly, slides were prepared for imaging 
by placing a drop of immersion oil and a coverslip on the 
blood film. The slide was then slotted into a holder before 
inserting it into the EasyScan Go device. The EasyScan 
GO has a 40x, 0.75 NA objective, and captures a stack 
of colour images (2048 × 1536 pixels) with 8.3 pixels/um 
pixel pitch and 0.5 um vertical spacing. The image stacks 
are necessary to ensure in-focus thumbnails of objects 
at different depths in the blood film. A total of 144 fields 

of view (stacks) were captured, containing 1000 to 6000 
WBCs (~ 0.125 to 0.75  uL of blood). Capturing at least 
0.1 uL of blood ensures a high likelihood that the imaged 
blood contains at least one or two parasites given a 50 p/
uL parasitaemia infection, based on Poisson statistics (as 
reported in Supplementary material of [17]).

Algorithms
Full details of the malaria algorithm architecture and logi-
cal flow are found in [19]. Specific details of the thick film 
algorithm module are found in [11]. Thin film algorithms 
(not part of this study) are described in [17]. Briefly, the 
thick film algorithm automatically analyses the image 
stacks to detect and quantify parasites, and to identify 
species (i.e. falciparum vs vivax as a default for non-fal-
ciparum). The module first detects candidate objects by 
fast methods; then culls most of these objects with a fast 
(non-CNN) classifier; then applies a CNN model to the 
remaining candidates to classify them as parasite or dis-
tractor. Positive diagnosis depends on whether the count 
of suspected parasites (per WBC) exceeds a pre-set noise 
threshold. The algorithm also rates slide quality based on 
statistical characteristics of distractor objects, and raises 
a flag if poor quality is suspected.

The absence of a thin film module affects species iden-
tification and quantitation. While the thick film module 
readily distinguishes Plasmodium falciparum from non-
falciparum infections, it does not distinguish between 
non-falciparum species and instead defaults all non-fal-
ciparum reads to “vivax”. The algorithm’s thick film quan-
titation accuracy is consistent up to roughly 100,000  p/
uL, contrary to manual microscopy which switches to 
thin films at 16,000  p/uL [21]. Below 100,000  p/uL the 
much larger quantity of blood examined on thick film vs. 
thin film reduces the Poisson variability of the true para-
site count [as reported in Supplementary material [17]]. 
However, above 100,000  p/uL the automated thick film 
reads become unreliable due to crowding.

Output report
Upon completion of the image scanning and analysis, an 
automatically-generated report indicates the diagnosis 
(presence/absence of malaria parasites), WBC count, and 
the species and parasite density if the slide diagnosis is 
positive. The report also displays a mosaic of suspected 
parasite thumbnails, and clicking on a thumbnail brings 
up the relevant field-of-view to allow easy examination 
by a clinician. A screenshot of a typical report, with a 
selected field-of-view, is shown in Additional file  4: Fig. 
S2. The acquisition and processing time for the thick film 
was 20–30 min. In this study, the scanned images and the 
results generated from the device were stored in external 
hard drives provided with the EasyScan Go device.
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Algorithm versions and training data
During the study, an earlier algorithm version (1.11.6) 
was run, but it can be viewed as a placeholder. At the 
conclusion of the study, the saved image sets were re-ana-
lysed in the field with an updated version (1.15.17b, also 
used in [19]). For both versions, all diagnostic thresholds 
were pre-specified during algorithm development and 
targeted an operating point that would give specificity of 
90% on validation sets from sites that provided training 
slides [19]. No samples from the sites tested in this study, 
and no interim findings or results, were used during any 
part of algorithm training or tuning, for either algorithm 
version. Thus the results for algorithm version 1.15.17b, 
reported here, represent true hold-out performance at 
new sites in new countries.

Microscopy quality control measures
All sites used a standardized laboratory manual and 
standard operating procedures (SOPs) for malaria 
microscopy. Blood slide reading was performed indepen-
dently by two qualified microscopists, who were blinded 
to individual microscopy results. The Obare Method Cal-
culator (https://​www.​wwarn.​org/​obare-​method-​calcu​
lator) was used to identify discrepancies in the micros-
copy results requiring tie-breaker reads and to determine 
the consensus result [22]. The Obare Method Calcula-
tor is a Microsoft Excel-based tool to facilitate adher-
ence to the recommendations for internal quality control 
(IQC) as per the Research Microscopy Method Manual, 
WHO 2015. The tool helps researchers to make system-
atic assessments of whether the results of two blood 
film reads are concordant or require a third read and 
reports consensus results. Blinded External Quality Con-
trol (EQC) of blood slides was performed by an expert 
microscopist with certified WHO Competence Level 1 at 
the WWARN Asia–Pacific Regional Centre in Bangkok, 
Thailand. A random selection of slides (either 20% or 25 
positive and 25 negative slides per site, whichever was 
greater) were assessed for slide quality and diagnostic 
performance. Sites were classified as “first tier sites” vs. 
“second tier sites” by slide quality assessed with respect 
to the presence or absence of artefacts, staining quality, 
and smear quality (thickness, size). Standard indicators 
were calculated to assess diagnostic performance [21]. 
The study sites were provided with the EQC report and 
feedback on slide quality.

Statistical considerations
At each site, a minimum of 80 malaria slides confirmed 
by light microscopy and a minimum of 80 malaria-neg-
ative slides were assessed. The sample size was calcu-
lated based upon an assumed diagnostic sensitivity and 

specificity of 95%, to ensure a 10% accuracy (i.e. the 
width of the estimated 95% confidence interval < 10%), 
assuming that up to 10% of subjects would be excluded 
due to missing or incomplete data [23]. This sample size 
allowed estimation of the binary kappa statistics with an 
accuracy of 0.07 for kappa values between 0.5 and 0.94. 
The main study outcomes were diagnostic performance 
indicators—sensitivity and specificity for malaria parasite 
detection, kappa statistics for parasite species identifica-
tion [24], and Bland–Altman plots for parasite density 
estimation [25]. Intra- and inter-device reliability was 
also assessed by comparing results obtained by perform-
ing repeat reads on the same device at each site or a sec-
ond EasyScan Go device. Study data were collected and 
managed using the Research Electronic Data Capture 
(REDCap) tools hosted at the University of Oxford [26, 
27]. All analyses were conducted using Stata software, 
version 15.1 (StataCorp College Station, Texas, USA).

Results
In total, 2,250 slides were evaluated, of which 969 (43.1%) 
tested positive by light microscopy (Additional file  5: 
Table  S1). A majority of the slides were collected from 
male participants (53.9%, 1213/2250) with a mean (sd) 
age of 22.7 (17.4) years. Among microscopy positive 
slides, 624 (64.4%) were infected with P. falciparum, 327 
(33.7%) with P. vivax, 8 (0.8%) with mixed P. falciparum 
and P. vivax infections and the remaining 10 (1.0%) with 
other mixed or non P. falciparum/P. vivax infections. 
The results presented here were obtained using the most 
recent version of the algorithm available at the time the 
analyses were performed (version1.15.17b).

Parasite detection by the EasyScan Go
Compared to reference microscopy, the diagnostic sen-
sitivity of the EasyScan Go device was 91.1% (95% CI 
88.9–92.7) and specificity was 75.6% (95% CI 73.1–78.0) 
(Table  1). Sensitivity of the digital device was consid-
ered stratified into five parasite density groups: < 200, 
200–2000, > 2000–16,000, > 16,000–200,000, > 200,000 
p/µL. Sensitivity varied according to parasite density. 
It was 57.1% (n = 102, 95% CI 46.7–67.1) at < 200 p/µL, 
90.2% (n = 181, 95% CI 84.7–94.2) at 200–2000 p/µL, 
97.5% (n = 330, 95% CI 95.1–98.9) at > 2000–16,000 p/µL, 
94.6% (n = 327, 95% CI 91.5–96.8) at > 16,000–200,000 p/
µL, and 100% (n = 29, 95% CI 88.1–100.0) at > 200,000 p/
µL (Fig.  2A). Diagnostic sensitivity for P. falciparum, P. 
vivax, and mixed P. falciparum and P. vivax infections 
were 87.9% (n = 624, 95% CI 85.0–90.4), 96.5% (n = 327, 
95% CI 93.7–98.2), and 100% (n = 8, 95% CI 63.1–100.0), 
respectively (Fig. 2B).

https://www.wwarn.org/obare-method-calculator
https://www.wwarn.org/obare-method-calculator
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Table 1  EasyScan Go diagnostic performance using microscopy as the reference standard

* EasyScan Go reading missing, n = 98 due to invalid results

Based on EQC reports of smear and stain quality, sites were assessed according to relative percentages of good vs lower quality slides (“first tier sites” vs.“second tier 
sites”)

Parasite Detection Slides, n (Pos, Neg) Sensitivity, % (95% CI) Specificity, % (95% CI)

Overall 2152* (929, 1223) 91.1 (88.9–92.7) 75.6 (73.1–78.0)

First tier sitesφ 1464 (585, 879) 89.1 (86.2–91.5) 85.1 (82.6–87.4)

Second tier sitesφ 688 (344, 344) 94.2 (91.2–96.4) 51.5 (46.0–56.8)
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Fig. 2  Sensitivity (%) of the EasyScan Go stratified by—A parasite density and B parasite species. Pf = Plasmodium falciparum; Pv = Plasmodium 
vivax
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Species identification by the EasyScan Go
Among those positive samples that were labelled as posi-
tive, parasite species was identified accurately in 93% 
(499/537) of P. falciparum samples and in 92% (281/307) 
of P. vivax samples (counting a ‘mixed P. falciparum + P. 
vivax’ label as correct in either case; counting a ‘mixed’ 
label as incorrect gives 86% and 82% accuracies, respec-
tively). For P. falciparum and P. vivax species identifica-
tion, kappa coefficients were 0.76 (95% CI 0.69–0.83) and 
0.73 (95% CI 0.66–0.80); Table 2.

Parasite density estimation
Parasite density estimates by the EasyScan Go were 
within ± 25% of the microscopic reference counts in 23% 
(196/845) of slides. A Bland–Altman plot for assess-
ing agreement of parasite density estimations between 
microscopy and EasyScan Go, revealed a wide inter-
val agreement ranging from − 1.098 to 1.021 in a loga-
rithmic scale, corresponding to 0.08 to 10.50 in original 
scale with a mean difference of − 0.038 (n = 845, 95% 
CI − 0.075 to − 0.002) (Fig.  3A). Comparing parasite 
counts between the EasyScan Go 1st and 2nd readings 
(Intra-device reliability) showed the mean difference to 
be − 0.011 (n = 726, 95% CI − 0.029 to 0.007) and the 
limits of agreement − 0.487 to 0.465 on a logarithmic 
scale (0.33 to 2.92 in original scale) which corresponds 
to a maximum of roughly threefold over- or underes-
timation of parasite density (Fig.  3B). With respect to 
inter-device (field device vs another device in the refer-
ence laboratory in Bangkok) reliability assessment, the 
mean difference was − 0.016 (n = 222, 95% CI − 0.043 to 
0.076) and the limits of agreement in a logarithmic scale 
− 0.865 to 0.897 corresponding to 0.14–7.89 in original 
scale (Fig. 3C). While there was low variance on average 
between microscopy and the EasyScan GO and also with 
respect to intra- or inter-device comparisons, the agree-
ment intervals were large. These indicated that para-
site density estimates from EasyScan GO were over- or 
underestimated by up to roughly tenfold as compared to 
microscopy. Even when comparing repeat reads of slides 
on the same or different devices, parasite density esti-
mates varied by approximately 3- to eightfold, reflecting 
poor accuracy and precision in parasite density estima-
tion overall.

Slide quality sub‑groups analysis
A major challenge for automated algorithms is distin-
guishing between parasites and artefacts, and low quality 
slides increase this difficulty. Thus differential perfor-
mance may be expected based on slide quality. All pro-
spective sites followed a standardized laboratory manual, 
SOPs, and stringent EQC procedures for malaria micros-
copy. However, in field settings there were variations in 
the staining and quality of smears. Based on EQC reports 
of smear and stain quality, sites were assessed accord-
ing to relative percentages of good vs lower quality slides 
(“first tier sites” vs. “second tier sites”).

There were 1478 slides from first tier sites (409 falcipa-
rum, 162 vivax, 8 mixed, 9 other, 890 negative) and 705 
slides from second tier sites (198 falciparum, 156 vivax, 
0 mixed, 1 other, 351 negative). Diagnostic sensitivity of 
the EasyScan Go was slightly lower on the first tier vs 
second tier sites, at 89.1% vs. 94.2% (5.1% difference (95% 
CI 2.6–7.4%), P = 0.0001), whereas specificity was much 
higher, at 85.1% vs 51.5% (33.6% difference (95% CI 29.4–
37.7%), P < 0.0001). For P. falciparum species identifica-
tion, kappa values remained similar (0.77 in first tier vs 
0.74 in second tier), but for P. vivax species identification, 
kappa values were lower in the first tier sites (0.68 vs. 
0.79). Quantitations were more accurate in first tier sites: 
27% (141/521) of the parasite counts derived from the 
EasyScan Go were within ± 25% of the microscopic refer-
ence counts vs. 17% for second tier sites, a 10% difference 
(95% CI 4.2–15.4%, P = 0.0008). Figure 4 shows both first 
and second tier parasite density estimates.

Discussion
This large field evaluation, conducted in varied geograph-
ical and epidemiological settings, represents the real-life 
performance of a fully automated digital microscope with 
thick-film-only malaria detection algorithms. Because 
none of the slides from the current evaluation were 
used in the training of the algorithms, the results given 
are true hold-out performance. An important aspect of 
this study was the inter-site slide preparation variability. 
Some sites (“first tier sites”) had overall higher quality 
slides than others (“second tier sites”) as assessed during 
EQC, enabling assessment of the effects of slide quality 
on algorithm performance.

Table 2  Parasite species identification by EasyScan Go

* Based on EQC reports of smear and stain quality, sites were assessed according to relative percentages of good vs lower quality slides (“first tier sites” vs.“second tier 
sites”)

All sites First tier sites* Second tier sites*

Parasite Species Slides, n Kappa value, (95% CI) Slides, n Kappa value, (95% CI) Slides, n Kappa value, (95% CI)

P. falciparum 537 0.76 (0.69–0.83) 358 0.77 (0.68–0.85) 179 0.74 (0.63–0.85)

P. vivax 307 0.73 (0.66–0.80) 163 0.68 (0.60–0.77) 144 0.79 (0.68–0.90)
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On the 1478 slides from first tier sites, the device had 
overall parasite detection sensitivity 89%, specificity 85%, 
species identification accuracy 84% on positive-labelled 
slides (increasing to 90% if a ‘mixed’ label were counted 
as correct for P. falciparum or P. vivax,and vice versa), 

and 27% of quantitations within 25% error using expert 
microscopy as reference. Though this does not corre-
spond to the criteria for expert microscopy, it represents 
reasonable performance, potentially useful in clinical 
settings.

On the 705 slides from second tier sites, overall sensi-
tivity was 94%, but specificity dropped substantially to 
52% in comparison with the first tier sites. Quantitation 
accuracy also dropped substantially with 17% of quanti-
tations within the 25% error, whereas the corresponding 
figure for first tier sites was 27%. The lower specificity was 
in general due to abnormally high numbers of artefacts, 
which the algorithm labelled as parasites on poor quality 
slides. The algorithm assumes a certain noise floor (i.e. a 
certain FP object rate) based on assumptions about the 
expected numbers of parasite-like artefacts. If a slide pre-
sents many more parasite-like artefacts than expected, 
the noise floor is exceeded and an incorrect Positive slide 
disposition results (this can also lead to higher sensitivity, 
though sometimes for the wrong reason).

A somewhat strange finding pertaining to species iden-
tification of P. vivax samples was that second tier sites 
had a higher kappa value than first tier sites (0.79 vs. 
0.68) due to fewer vivax samples being misclassified as 
falciparum. This might have been due indirectly to higher 
levels of late-stage-like artefacts in second tier sites—the 
algorithm determines species of a slide based largely on 
the ratio of ring-stage to late-stage suspected parasites, 
since late stages are so rare in falciparum samples. A few 
extra late-stage suspects caused by artefacts could push a 
sample to the vivax label, despite possibly high numbers 
of ring-stage suspects, increasing the odds that a low-
quality vivax sample would be labelled vivax.

Competency levels
This field evaluation demonstrated a parasite detection 
sensitivity of 89% and species identification accuracy of 
84% on slides with acceptable quality when compared to 
expert microscopy. This corresponds to Level 2 criteria 
(80–90% for both sensitivity and species identification) 
as defined in the WHO-TDR Research Malaria Micros-
copy manual [21]. For comparison, the criteria for Level 
1 (“Expert”) competency are sensitivity and species 
detection accuracy of > 90%. On the other hand, specific-
ity was 85%, and only one-fourth of parasite counts by 
the automated digital device were within ± 25% of the 
microscopic reference counts, corresponding to a level 4 
WHO-TDR criteria (Table 3) [21]. Diagnostic sensitivity 
varied with parasitaemia, falling to as low as 40% in indi-
viduals with parasitaemia less than 200 p/µL, but increas-
ing to over 90% in those parasitaemia > 2000  p/µL. For 
parasite detection and species identification, the digital 
microscope showed good performance overall. Further 

Fig. 3  Bland–Altman plot for parasite density estimation: A Between 
microscopy and EasyScan Go (difference = microscopy count–
EasyScan Go count); B Intra-device reliability–EasyScan Go 1st and 
2nd reads; C Inter-device reliability–between two EasyScan Go 
devices
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software improvement is warranted to improve parasite 
density estimations, sensitivity at low parasite densities 
and diagnostic specificity.

Effects of slide quality
The differential performance of the digital device 
depending on slide quality highlights the need for high 
quality slide preparation when performing automated 
microscopy, which was not achieved in roughly 30% of 
the slides from the sites, despite procedures and adequate 
training conducted by research groups. Considerable var-
iations were observed in staining and blood film prepara-
tion across study sites. Expert microscopists were able to 
accurately process the “poor quality” slides in this study, 
consistent with findings in [16]. Thus, the issue of poor 
slide preparation is much more urgent for automated 
systems than for manual microscopy. This may partly 
explain the persistence of variable slide preparation 
issues: variable quality does not impact human micros-
copists to the same extent as it does automated systems 
wherein sensitivity to variable slide quality and staining 
is a central, difficult challenge. The current algorithm was 
trained on a diverse set of training slides from multiple 

sites. Adding training samples from more sites can slowly 
and expensively improve robustness; adjusting the ‘noise 
threshold’ for each site and rejecting results from slides 
flagged as being poor quality could be an interim meas-
ure (see below). However, new machine learning tech-
niques that directly address slide variability and enable 
on-the-fly adaptation to new sites are likely to be better 
solutions, although it is difficult to predict if or when they 
can be achieved.

Standardization of blood film staining and preparation 
by means of automated staining might improve consist-
ency in slide quality and thus aid automated systems. The 
automated staining technique with Giemsa stain, i.e. use 
of auto-spreading and auto-staining slides is challenging, 
expensive and not widely used. The EasyScan GO algo-
rithms have a module that detects and flags potentially 
poor quality blood films. Such feedback to field clinicians 
might improve the device’s diagnostic accuracy by help-
ing clinics address preparation issues affecting the device.

Prospects
Automated malaria microscopy platforms based on 
computer vision and machine-learning have been in 

Fig. 4  Estimated parasite density, EasyScan GO 1st read vs Microscopy. Log–log plot. Left: First tier (quality) sites. Right: Second tier sites. False 
Positives are the red dots along the y-axis. False Negatives are the dots along the x-axis. The green dotted lines show ± 25% quantitation accuracy 
boundaries

Table 3  EasyScan Go ‘competence level’ as per the WHO-TDR Research Malaria Microscopy criteria [21]

Parasite detection corresponds to sensitivity and false positive rate corresponds to 1–specificity. In the WHO Malaria Microscopy Quality Assurance Manual, sensitivity 
and specificity are combined as overall parasite detection accuracy [7]. Per this criterion, the performance of the EasyScan Go (parasite detection 82.3%) corresponds 
to Competence Level 2

Competence Level Parasite detection (%) Species identification (%) Parasite count within 25% of 
true count (%)

False positive rate (%)

1 90–100 90–100 50–100  ≤ 2.5

2 80–89 [EasyScan Go] 80–89 [EasyScan Go] 40–49  ≤ 5

3 70–79 70–79 30–39  ≤ 10

4 0–69 0–69 0–29 [EasyScan Go]  > 10 [EasyScan Go]
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development for over the past two decades [8, 28]. Some 
computer vision malaria diagnostic systems, such as Par-
asight using fluorescent stain, have advanced to com-
mercial platforms recently [29]. The EasyScan Go, now 
advanced to a production prototype and is built around 
low-cost Giemsa staining techniques following current 
microscopy standard practice. The use of Giemsa-stained 
blood films poses challenges for algorithm develop-
ment, but has considerable advantages in terms of large 
scale deployment and ease of use in the field. The most 
advanced digital malaria technologies, including the 
EasyScan Go, have achieved a limit of detection (LOD) 
around 100–150 parasites per microliter, matching the 
performance of a field microscopist. Remaining chal-
lenges include improving LOD and parasite density 
estimation, better addressing ovale and malariae, and 
handling the issue of variable slide quality (Additional 
file 6: Table S2).

This study had several limitations. The algorithm does 
not perform parasite staging, nor does it distinguish 
sexual from asexual stages. Although the software tested 
in this study readily distinguishes falciparum from non-
falciparum species, it does not differentiate between the 
non-falciparum species (P. vivax, P. ovale and P. malar-
iae) since it processed only thick films. A thin film mod-
ule has since been added to the EasyScan GO [17, 19]. 
However, it is unlikely that these factors would have 
affected the estimates of the performance parameters 
presented here. In addition, the study did not evaluate 
the performance of the EasyScan Go under routine field 
operation.

The results of this study provide considerable optimism 
for machine-learning-based algorithms to perform tasks 
that are currently dependent on highly trained techni-
cians in malaria Quality Assurance (QA) programmes 
(7). This could be achieved through supplementing the 
1st microscopy reading by the EasyScan Go 2nd reading, 
as well as cross-checking of blood slides in the context of 
a QC procedure in therapeutic efficacy studies. The QC 
for malaria microscopy is a tedious process that should 
be performed independently to verify microscopy results 
and identify systematic errors in anti-malarial drug 
efficacy assessments. Despite the importance of qual-
ity assurance of slide readings in the context of malaria 
research and routine surveillance, there are vast differ-
ences in operating procedures, including identifying and 
resolving discrepant results [30, 31]. The EasyScan Go 
device has the potential to perform as a QC tool in anti-
malarial drug efficacy assessments. In the current evalu-
ation, two versions of the algorithm (version1.15.17b 
and version1.11.6) were developed over the course of the 
trial. The results demonstrate that the accuracy of diag-
nostic specificity and parasite density estimation was 

improved with the newer version of the algorithm and 
suggest that it is possible to improve the performance 
further with additional software development work. For 
example, incorporating a dynamic update to noise floor 
parameters, based on a small batch of slides from a new 
site, might improve algorithm generalizability. Addition-
ally, automated image recognition is a rapidly developing 
field and applying new techniques to this problem may 
improve performance. Such changes can be done with-
out changes in the hardware or device. Enhanced per-
formance in estimating parasite density would open the 
possibility of using the device for parasite clearance rate 
estimations, which are also labour-intensive.

Conclusions
The digital malaria microscopy device EasyScan Go has 
the potential to facilitate cross-checking of blood slides 
as part of quality assurance. Further software improve-
ment is required to improve parasite density estimations 
and sensitivity at low parasite densities. High quality 
of smears and staining is paramount to allow machine-
learning-based image analysis to perform adequately. The 
aforementioned technological barriers need to be over-
come prior to implementing the EasyScan Go as a diag-
nostic tool in malaria research settings.
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