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Systems biology of malaria explored 
with nonhuman primates
Mary R. Galinski1,2,3* 

Abstract 

“The Primate Malarias” book has been a uniquely important resource for multiple generations of scientists, since its 
debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumen-
tal for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs 
have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, 
vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria 
control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium 
falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, 
others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian 
species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these 
four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies 
for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-
NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to study-
ing longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal 
infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With 
quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be antici-
pated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmis-
sion, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria 
Host–Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of 
educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective 
interventions against malaria.
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Introduction
Malaria continues to be an intractable disease, ravish-
ing communities in about 100 countries [1]. The cause 
of this disease—Plasmodium parasites transmitted by 
Anopheles mosquitoes—has been known since the late 

nineteenth century [2]. The World Health Organization’s 
Global Malaria Eradication Programme’s strategic use of 
the insecticide dichlorodiphenyltrichloroethane between 
1959 and 1965 was halted, between costs concerns and 
as experts recognized that a multi-pronged approach 
would be required to achieve the goal of malaria eradica-
tion (reviewed in [3]). Once molecular biological meth-
ods took hold in the 1970s, attempts to make a malaria 
vaccine became the envisioned panacea (reviewed in 
[4]). These efforts continue today, with the full recogni-
tion that making and introducing an effective malaria 
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vaccine(s) is no small task, especially since the ultimate 
protection worldwide will require vaccines that have 
long-lasting immunity and are effective against multiple 
species of Plasmodium with their ever-changing genetic 
variation (reviewed in [5–7]). Many factors must be con-
sidered to ensure the effectiveness of vaccines in malaria 
endemic communities [8]. Meanwhile, a panoply of rapid 
diagnostic tests has come to the forefront [9], comple-
menting the traditional gold standard microscopy detec-
tion of parasites in blood smears, and drug development 
advancements continue, leading to new treatments and 
combination therapies to overcome rampant drug resist-
ance [10]. Research has advanced incrementally, leading 
to an understanding of the life cycle of malaria parasites 
in their vertebrate and invertebrate hosts, the multiple 
species and strains of parasites and mosquitoes involved, 
as well as the pathogenesis, immune responses, and epi-
demiology attributed to each species in human popula-
tions. The rise of the Internet in the 1990s became critical 
in this long fight, enabling communication and progress 
among scientists and communities in ways not imagined 
in the past. Lately, the era of systems biology has emerged 
along with controlled human malarial infection (CHMI) 
studies, promising more in-depth understanding of 
malaria, host–parasite interactions and immunity.

This article highlights malaria research from early and 
recent understandings gained from malariotherapy and 
modern CHMI studies to NHP infection studies and 
their current utility in support of today’s malaria eradi-
cation goals, with emphasis on the value of longitudinal 
infections and systems biological approaches. This article 
also pays tribute to the authors of "The Primate Malarias” 
[11, 12], as this publication has been instrumental for sci-
entists who have followed in their paths.

Malaria parasite life cycles, within Anopheles mosquitoes 
and vertebrate hosts
Malaria parasites must successfully develop sequentially 
in the midgut and salivary glands of female Anopheles 
mosquito hosts and then be injected into the skin and 
survive in the liver and blood of humans, NHPs, or other 
vertebrate hosts. Some parasites must also transform 
within the blood of the vertebrate host into sexual-stage 
male and female gametocytes that are infectious for 
newly biting female Anopheles mosquitoes. The malaria 
parasite life cycles pose many challenges for both the 
parasites and hosts in their joint struggle to survive and 
propagate (Fig.  1). Throughout their transformative 
growth and development journey, the parasites must 
divide and multiply manifold, in the mosquito mid-
gut, in hepatocytes, and inside red blood cells (RBCs). 
Importantly, throughout the process they must be able 

to overcome both innate and adaptive immune response 
barriers. Relapsing malaria parasite species, such as 
Plasmodium vivax (represented in Fig.  1, and discussed 
further below), have the added complexity of latent hyp-
nozoite stages of the parasite in the liver and their pos-
sible activation that causes relapse parasitaemias in the 
blood, including the production of infectious gameto-
cytes. Furthermore, P. vivax merozoites are restricted to 
young CD71+ reticulocyte host RBCs [13]. It is hum-
bling to recognize the complexity of malaria parasites 
and their life cycles. Their size alone is large compared to 
viruses that are notoriously extremely difficult to control. 
For example, Plasmodium parasite genomes (discussed 
further below) comprise between 5000 and 7000 genes 
[14–16] versus 16 genes coded by the Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2) virus 
[17].

Malariotherapy and controlled human malarial infections 
(CHMIs)
From 1917 until 1976, malariotherapy was performed 
to treat patients with neurosyphilis and progressive 
paralysis (also known as general paralysis of the insane), 
as malarial infections caused fever, which can activate 
immune responses (reviewed in [22]). Over a period of 
50 years (1923–1973), 17,000 patients were treated at the 
Mott Clinic for Malaria Therapy in England and numer-
ous others underwent such therapy in Romania and the 
United States (reviewed in [23–26]). Aside from the 
great benefits to patients who recovered from severe 
neurosyphilis manifestations, malariotherapy provided 
the means to study Plasmodium infections longitudi-
nally in humans, including the collection of parasitaemia 
datasets, thereby creating significant knowledge regard-
ing clinical immunity and parasitological features of 
the disease, albeit in some cases with grave illness and 
deaths recorded as a result—from Plasmodium falcipa-
rum, P. vivax, and Plasmodium malariae infections. Up 
to 15 malarial paroxysms were observed and monitored 
in malariotherapy patients. Snounou and Pérignon pro-
vide an extraordinary overview of the literature from 
that time and the numerous retrospective analyses that 
have followed [23]. Their book chapter, titled “Malari-
otherapy—Insanity at the Service of Malariology,” is 
riveting. Indeed, the authors are correct to caution read-
ers that the voluminous literature backing their chapter 
could become addictive! Malariotherapy was considered 
unnecessary once penicillin was discovered in the 1940s 
as a cure for syphilis. Subsequently, such human treat-
ment measures—and the associated collection of experi-
mental data—were deemed unethical and the practice 
was progressively stopped over the next 30 years. In the 
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latter part of this period, many malaria research studies 
were instead carried out with prison inmates [27–30], 
and while ethical considerations were not addressed—
to a similar extent as required today, the longitudinal 
infection data provided a basic understanding of malar-
ial infections and disease progression. With gratitude 
shown for the participants, "The Primate Malarias” book 
is dedicated in part to the inmates at the United States 

Penitentiary in Atlanta, Georgia [28], who volunteered 
to accept infection with human and simian malaria 
parasites.

Many lessons were learned at the time, and since 
through the ongoing analysis of malariotherapy data 
(reviewed in [23]) and (also see [31–34]). These studies 
also ignited interest and establishment of mosquito insec-
taries for rearing and infecting Anopheles mosquitoes, 

Fig. 1  Schematic of the life cycle of Plasmodium vivax and comparable sibling simian species, depicted to represent the unique biological features 
of these species in the life cycle of primate malaria species and the importance of clinical and experimental interventions. The figure represents 
neotropical NHP models of P. vivax or macaque NHP models of Plasmodium cynomolgi and other simian parasite species that serve as surrogates 
for P. vivax (reviewed in [18–20]). The purple and green icons indicate where natural events and experimental manipulations can take place. The 
green mosquito icons refer to the natural inoculation of sporozoites through biting and the purple mosquito icons refer to the natural biting and 
infection of Anopheles ssp. mosquitoes by drawing in gametocyte-infected blood. The green medical symbol and syringe denoting the inoculation 
of sporozoites into the human and NHP hosts, respectively, refer to the possibility of challenging these hosts after immunization with a vaccine 
candidate to determine if protection can be induced. The purple medical symbol and syringe denote the collection of blood for testing involving 
human and NHPs, respectively. The purple syringe also signifies the specific collection of blood containing gametocytes from NHPs to artificially 
feed and infect Anopheles mosquitoes for supporting experiments on host–parasite biology within the vector host, transmission blocking vaccines, 
and access of sporozoites for in vivo or in vitro infection experiments. The unique biological features of P. vivax and comparable species depicted 
are the hypnozoite, the preferential invasion of merozoites into reticulocytes, the production of caveolae vesicle complexes (CVCs), represented as 
a mottled appearance of the infected RBCs, and the early and rapid development and circulation of gametocytes. Red arrows refer to processes 
relating to features that are currently in need of special research emphasis, answering questions like: (1) What is the make-up of hypnozoites 
and how are they activated? (2) What are the similarities and differences in primary and relapsing liver-stage schizonts and is their biology with 
merosome release in the blood stream comparable to rodent Plasmodium species where these were discovered? [21] (3) Which critical factors are 
required for reticulocyte host cell selection, invasion, and growth in these cells? And (4) what factors determine the development and circulation 
of gametocytes, potentially permitting transmission from the early stages of a blood-stage infection? “Reprinted from [19], with permission from 
Elsevier”. The artwork was created by Nagib Haque
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from which enormous parasite-vector knowledge has 
been gained. Infection with P. vivax was most common. 
Retrospectively, many overarching conclusions still stand, 
and these can now be further explored taking into con-
sideration the many since-discovered biological complex-
ities of each parasite species, their Anopheles mosquito 
vectors, their epidemiology, ecological factors, strain 
diversity, parasite and host genetics, and the immune 
systems of either naïve or primed individuals, male or 
female, young and old (reviewed in [25, 35–38]). Some 
of the most prominent early discoveries beyond basic 
clinical and parasitaemic infection data include the dem-
onstration of small exo-erythrocytic forms of P. vivax 
in liver-biopsies from a patient [39], now appreciated to 
likely have been hypnozoites (discussed below), the defin-
ing of the Duffy-blood group and its relationship with 
P. vivax susceptibility [40, 41], the dynamics of anaemia 
during P. vivax and P. falciparum infections and the con-
clusion that anaemia in acute cases is primarily caused 
by the removal of uninfected erythrocytes [31, 42–44], 
a process that has also been recognized as a “bystander 
effect” imposed on a majority of RBCs when a much 
smaller number of erythrocytes are actually infected 
(reviewed in [45]).

Today, CHMI studies involving volunteers infected 
with sporozoites have become a modern—and impor-
tant—means to test anti-malarial drugs and vaccines 
and gather natural infection data from individuals over 
a series of experimental time points until blood-stage 
parasitaemia is detected and subjects require treatment 
(reviewed in [46–48]). In contrast to malariotherapy of 
the past, sporozoite-initiated CHMI studies have devel-
oped ethical standards that require treatment of indi-
viduals upon confirmation of parasites in the blood. 
Volunteers are monitored carefully and administered 
a full course of anti-malarial treatment that eliminates 
the parasites and the exacerbation of symptomology. As 
such, CHMI experiments have been very beneficial for 
studying Plasmodium infections from baseline periods 
to the time of parasitaemia, and helpful for conducting 
clinical vaccine trials that include sporozoite challenges 
(reviewed in [8]). Notably, correlates of protection are 
beginning to surface [49]. CHMI experiments initiated 
with sporozoites have also helped reveal specific protec-
tive immunological responses occurring during the early 
“pre-patent” period of infection, particularly in malaria-
naïve hosts [50, 51], and new strategies for studying and 
intervening with gametocytaemia [52–56]. The time 
series data collected in CHMI studies are dynamic com-
pared to cross-sectional data, traditionally generated 
for decades from patient samples in malaria endemic 
areas, and they have uncovered heterogeneous immune 

responses among individuals (reviewed in [57]). Addi-
tionally, of great benefit, piggybacked projects associ-
ated with CHMI experiments have provided insights 
into the epigenetic and gene expression characteristics 
of the resulting blood-stage parasites and their impact on 
immune cells [58–61].

CHMI studies have been mostly performed with P. fal-
ciparum, and close to a hundred such studies have been 
performed to date. Following suit, CHMI studies using 
P. vivax sporozoites have begun to emerge (reviewed in 
[62, 63]), including with vaccine trials [64–66]. CHMI 
research with P. vivax was initially stymied due to addi-
tional, unique challenges of attaining infectious P. vivax 
sporozoites [67–70] and the ability of hypnozoites to 
hide undetected in the liver and cause relapsing parasi-
taemias at some future point in time. Recent advances in 
the concentration of P. vivax gametocytes from infected 
volunteers [55] are helping to overcome the first of these 
hurdles, making it possible to generate P. vivax sporozo-
ites from feeding Anopheles mosquitoes on well-char-
acterized gametocyte-containing stocks and involving 
human volunteers with reliable infection records and 
medical histories. Thus, it may be possible in the future to 
perform such investigations routinely. At any rate, CHMI 
studies initiated with iRBCs are also now a viable option 
for investigations of P. falciparum [71–74], P. vivax [53, 
55, 74–76] and P. malariae [77, 78]. Such CHMI stud-
ies involve low-dose blood-stage inoculations, with very 
clear ethical guidelines in place to ensure the safety of 
volunteers.

While CHMI experiments are generally safe and have 
demonstrated clear advantages for scientific advance-
ments in understanding malaria, the viewpoints and con-
cerns of participants and their communities and other 
stakeholders remain important to understand and take 
into consideration [79–82].

NHP infection models (NHPIMs)
NHP infection models (NHPIMs) have been vital to 
research on malaria and over 70 human infectious dis-
eases, including many caused by viruses, bacteria and 
other parasites [83, 84], and notably, recently for Ebola 
[85], Zika [86] and SARS-CoV-2 infection and coronavi-
rus disease-2019 (Covid-19) [87]. With rapidly advancing 
technologies, NHP species chosen to best suit specific 
experimental questions and requirements increasingly 
hold much potential for complementary research on 
malaria, malarial immunity, and pathogenesis, as dem-
onstrated in recent longitudinal experiments (discussed 
below). Given the close evolutionary relationship of 
humans and macaque species, many basic elements of 
the immune system are shared among them, making 
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Old World monkey macaque species generally the most 
widely used NHP animal models for infectious disease 
research. Just as in humans, there is diversity in genes 
that comprise components of NHP immune systems. In 
turn, many reagents developed for the study of immune 
responses in mice or humans will not necessarily cross-
react and be functional in studies of the NHP immune 
responses. However, various mouse, human, and NHP 
reagents have been confirmed to crossreact with con-
served epitopes and others are under development and 
testing; e.g., see the NHP Reagent Resource web page 
[88].

Malaria with its myriad of host–parasite interactions 
throughout the parasite’s life cycle (Fig.  1), which are 
only beginning to be understood at the molecular level, 
is overwhelmingly complex. The complexity is com-
pounded by the biological differences between species 
of Plasmodium, as elegantly detailed in “The Primate 
Malarias” [11, 12]. As also acknowledged by others [89], 
the authors of “The Primate Malarias” had the foresight 
to study and capture ‘now classic’ iRBC illustrations 
and basic morphological information regarding various 
human and NHP malaria parasite species and their life 
cycles in primates and Anopheles mosquito hosts, docu-
menting nuances that distinguish species and strains, and 
experimental NHP and mosquito host infections. This 
all helped to set the stage for the use of different host–
parasite combinations as model systems for research—
whether for drug or vaccine candidate testing, immune 
response, or pathogenesis studies. The authors described 
infections of apes and Old World and New World mon-
keys, the most studied today being macaque (Old World) 
and Saimiri and Aotus (New World/neotropical) species. 
Numerous experiments had been performed to deter-
mine whether infections initiated by sporozoites of vari-
ous species of Plasmodium infect and thrive in the liver 
and blood, or only the liver, and whether gametocytes 
were observed. Blood infections were studied including 
the level of infectivity of the NHP blood to mosquitoes. 
Numerous publications have followed since, by these 
authors and others, continuing to shine light on the util-
ity of these model parasite species and the importance of 
NHP models for malaria research (reviewed in [18–20, 
90–95]). The Plasmodium-NHP infection models have 
been and can continue to be useful for addressing specific 
hypotheses that may be challenging or not possible with 
humans, including when considering confounding fac-
tors among individuals within different populations and 
epidemiological and ecological situations worldwide (dis-
cussed in [25, 35, 96, 97]).

Differences in Plasmodium infections in splenecto-
mized animals has also been documented in “The Primate 
Malarias” [11, 12] and is important to recognize. Humans 

and NHPs are more susceptible to higher parasitaemic 
blood-stage infections when lacking a spleen, and various 
experiments over time have been performed with para-
sites that have been ‘passaged’ through splenectomized 
animals and then frozen as iRBC stabilates for future use. 
From the 1960s until the turn of the twenty-first century, 
splenectomized chimpanzees had in fact been a source 
of occasional infectious samples to study the main four 
human malaria parasite species (P. falciparum, P. vivax, 
P. malariae and P. ovale) [98–102] (reviewed in [20]), but 
these types of experiments are no longer permitted, given 
ethical concerns and restrictions [103].

Importantly, while splenectomized NHPs have yielded 
higher parasitaemias of different species for various 
experimental purposes, and their use has been helpful 
to ensure the availability of long-term frozen infected 
RBC (iRBC) stocks for future use, such stocks and sple-
nectomized animals are not advised for immunologi-
cal and pathology studies seeking to understand the 
normal course of host–parasite interactions and dis-
ease ramifications. Aside from the spleen’s prominent 
role in removal of damaged RBCs, the spleen has been 
associated with the expression of parasite virulence fac-
tors, namely the var/SICAvar variant antigen genes and 
proteins at the surface of Plasmodium-iRBCs, specifi-
cally for P. falciparum, P. coatneyi, and P. knowlesi, and 
likely P. fragile (reviewed in [92]). Plasmodium knowlesi-
iRBCs were shown to become less virulent after passage 
through splenectomized animals [104, 105], resulting in 
the downregulation of the expression of this gene fam-
ily [106]. Splenic influence on antigenic variation has 
also been reported for P. falciparum-iRBCs in Saimiri 
sciureus monkeys [107] and in humans [108]. A study 
based on Aotus monkey infections has also indicated that 
the spleen influenced transcription of 67 P. vivax genes 
[109]. Moreover, the spleen has become recognized as a 
niche for a subpopulation of P. vivax iRBCs, possibly to 
promote their invasion and replication in host reticulo-
cytes (reviewed in [110]). Interestingly in this regard, P. 
cynomolgi infections became attenuated when passaged 
in splenectomized rhesus [111]. The spleen may also be a 
niche for P. cynomolgi. While this remains to be explored, 
a computational model revealed that during infection of 
Macaca mulatta (rhesus monkeys), a subpopulation of P. 
cynomolgi-iRBCs becomes ‘concealed’ from the circula-
tion [112]. In summary, the role of the spleen may prove 
to be distinctive for species that express var/SICAvar 
genes and proteins, compared to others that do not pos-
sess comparable genes and proteins. These distinctions 
are important as they relate to virulence and cytoad-
hesion and sequestration of iRBCs, or concealment of 
iRBCs, respectively.
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Interestingly, the preface to “The Primate Malarias” 
noted that this book was timely in 1971 given the recent 
awareness that monkey malaria parasites can also infect 
humans [11, 12]. This comment well preceded the land-
mark studies of Singh et  al. showing that human cases 
diagnosed in Malaysian Borneo as P. malariae were 
in fact P. knowlesi zoonoses [113]. Since that time, P. 
knowlesi has been documented as a zoonosis through-
out most of Southeast Asia and as the main type of 
human-causing malarial disease in Malaysia [114]. More 
recently, P. cynomolgi has become recognized in the 
same geographical area as an additional zoonotic para-
site of public health concern [115, 116] (reviewed in [89, 
117]). Recently, adding to these concerns, a few cases of 
P. coatneyi, P. inui, Plasmodium inui-like, and P. simio-
vale malaria were identified in Malaysia when using 
molecular methods [118]. Geographical studies have 
been performed mapping Macaca fascicularis and the 
less-accessible macaque species Macaca nemestrina and 
Macaca leonina, highlighting their likelihood as well as 
possible hosts and sources of zoonotic P. knowlesi infec-
tions [119], and it is noteworthy that Macaca arctoides 
was recently identified as another macaque NHP species 
that can harbour this simian malaria parasite and be a 
possible source of zoonotic infections [120]. New World 
monkey infections and zoonoses involving P. simium, 
which is genetically and biologically similar to P. vivax 
[121], and P. brasilianum, which is genetically and bio-
logically similar to P. malariae [89, 122], and P. knowlesi 
zoonotic infections are the subjects of other papers in 
this thematic issue.

Many basic biological and clinically relevant questions 
can be asked in NHP infection experiments (see Box 1). 
Longitudinal experiments can be designed without the 
urgent need to treat, and with repeat collection of mul-
tiple immunologically relevant tissues, thus capturing 
data not typically possible in CHMI studies. A holistic 
view of the immune response is possible with NHPIMs, 
especially with the Old World macaque models, includ-
ing the collection and analysis of key tissues in addi-
tion to peripheral blood (e.g., skin, bone marrow, lymph 
nodes, liver, spleen) and integrated analyses of multiple 
data types during infections and from necropsies. Paren-
chymal tissues, secondary lymphoid tissues and the lym-
phatic/humoral circulation all hold relevant information. 
Over the past few decades, preclinical vaccine trials using 
NHP models have helped to test the immunogenicity 
of vaccine constructs, dosing, delivery platforms, and 
sometimes protection with parasite challenges. Such 
experiments have been cost-effective in the vaccine 

development pipeline. Today, these can be perfected to 
maximize these benefits.

Box 1 Questions that can be addressed with NHP models

Parasite biology

• What molecular processes support hypnozoite development, maintain 
their dormancy, and trigger their activation?

• How do hypnozoites manipulate hepatocytes to suppress innate 
immune mechanisms from inside the cell and preserve them until 
activation?

• How do malaria parasites enter and remodel the infected RBC in vivo 
to suit their prime directive of multiplying and releasing new merozoite 
progeny?

• What is the molecular genesis of gametocytogenesis of non-falcipa-
rum malaria parasites?

Immunology

• What are the mechanisms that thwart the formation of long-lived sero-
logical anti-parasite antibody responses, while memory cells remain 
persistent and protective?

• What are the host–parasite mechanisms that enable antigenic varia-
tion and immune evasion?

• What is the role of the spleen in these processes?
• How does pre-existing immunity against malaria parasites impact 
vaccine-generated responses and subsequent infections with geneti-
cally heterologous parasites?

• How do immune responses that are detected in the blood stream 
differ from what is occurring in various tissues and the systemic devel-
opment of NAI and VCI?

• What are key identifiable immune correlates of protection for NAI and 
VCI?

• What immune responses and host molecules contribute to the devel-
opment of anaemia?

Pathogenesis

• What systemic ramifications may occur due to the presence of LSFs in 
hepatocytes?

• Can peripheral blood metabolites become diagnostic for hypnozoites?
• What factors cause disease pathogenesis, inflammation, and pathol-
ogy in various tissues?

• What roles do extracellular vesicles play, or the microbiota, and in rela-
tion to immunity?

• What factors contribute to loss of uninfected RBCs and bone marrow 
dysfunction?

• What host-directed therapies can be developed to reverse adverse 
manifestations of malaria?

Vector-parasite biology and transmission

• The field is wide open for the application of the latest technologies to 
study mosquito infectivity, transmission, and subsequent host–parasite 
expression and interactions in NHPs

Old World monkeys—macaque species
Old World monkey species are valuable for researching 
the dynamic mechanistic intricacies of malarial natu-
rally acquired and vaccine candidate-induced immunity 
(NAI and VCI), as well as gametocytogenesis and trans-
mission. They also hold much potential for studying 
malarial pathogenesis and immune evasion mechanisms, 
and they are the preferred NHP species for longitudinal 
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systems biological infection experiments. Significantly, 
the four known human malaria species (P. falciparum, 
P. vivax, P. malariae and P. ovale) do not develop in the 
blood of macaques. Simian malaria parasites, with com-
parable biology to the human malaria parasite species, 
are therefore relied upon when using these animal mod-
els. However, it is worth noting that while P. falciparum 
blood-stage parasitaemia does not develop in rhesus 
macaques, rhesus can be infected with P. falciparum up 
to the liver stage [123, 124]. Based on infection stud-
ies in M. mulatta, P. coatneyi has become recognized as 
a model for P. falciparum, P. cynomolgi as a model for 
P. vivax, and P. knowlesi as a model for both, depending 
on the research question. The history and prospects for 
using these species were reviewed recently for P. coatneyi 
[95], for P. cynomolgi [20], and for P. knowlesi in general 
terms [94] and with particular focus on antigenic varia-
tion [92].

The macaque NHP animal models develop a spectrum 
of malarial disease manifestations that closely resem-
ble the human disease states caused by either human or 
simian malaria parasites. For example, P. coatneyi infec-
tions in rhesus macaques recapitulate malaria complica-
tions associated with pregnancy caused by P. falciparum, 
including with placental pathology and iRBCs localized 
in this tissue [125–128]. Plasmodium coatneyi infected 
rhesus also experience anaemia [129–131], with evidence 
of infected RBC sequestration and possible cerebral 
involvement [132–134]. Thus, this is a useful model for 
studying various aspects of P. falciparum pathogenesis 
(reviewed in [95]). In contrast, P. cynomolgi in rhesus 
macaques mirrors P. vivax relapse phenotypes [135–138], 
and this host–parasite pair has become recognized for 
studying primary and relapsing malaria parasite patho-
genesis, with benefits understanding asexual and sexual 
stage immune responses and anaemia [139, 140]. Experi-
mental studies with rhesus have also confirmed that P. 
cynomolgi causes placental pathology during pregnancy, 
which can result in severe pregnancy outcomes [141–
144]. Plasmodium knowlesi infection of olive baboons 
(Papio anubis) has also been shown to be a model for 
studying malarial pathology including cerebral malaria 
[145] and malaria during pregnancy, with confirmed 
sequestration of iRBCs in the placenta [146]. Recently, 
Japanese macaques (Macaca fuscata) have been shown 
to be an additional viable NHP model for relapsing cyn-
omolgi malaria [147]. Juvenile and adult macaques used 
for malaria research generally range from about 5–15 kg, 
allowing for adequate blood and bone marrow sample 
access at experimental time points and other tissues of 
interest selectively through biopsies or during necropsy.

Historically, malaria research involving macaque spe-
cies has been carried out in the United States, the United 

Kingdom, The Netherlands, China, Thailand, India, 
Sri Lanka, and other parts of Southeast Asia. Research 
with these species is currently prominent in The Neth-
erlands, Thailand, Japan, China, and the United States, 
where different species of macaques are routinely avail-
able through domestic breeding programmes or impor-
tation. In the United States, National Primate Research 
Centers (NPRCs), in addition to governmental labora-
tories, academic institutions, and private businesses, 
breed and/or may acquire macaque species for malaria 
research. Macaque species have been generally available 
as required for malaria research experiments, although at 
the time of this writing, their availability has been dimin-
ished due to their widespread use in SARS-CoV-2/Covid-
19 experiments. This situation is likely to reverse, thanks 
to the development and testing of effective drugs and 
vaccines to fight the SARS-CoV-2/Covid-19 pandemic. 
Currently, as a result, severe Covid-19 illness has been 
subsiding [148].

New World monkeys— Saimiri and Aotus species
New World monkeys of the genus Aotus and Saimiri have 
been critical and will remain important for P. falciparum 
and P. vivax vaccine candidate trials, drug studies, and 
research into immune responses and pathogenesis caused 
by these parasite species, as well as basic research involv-
ing simian malaria parasite species (reviewed in [18–20, 
26, 90, 91, 149, 150]). These monkey species have also 
been used to study the infectivity of the human parasite 
species P. malariae [102] and P. ovale, with the latter only 
shown to develop liver-stage parasites but not blood-
stage parasites [101]. New World monkey systems-based 
research limitations include repeated tissue sampling and 
volume limitations imposed by their small size (~ 1  kg). 
In addition, specialized knowledge and husbandry are 
required to work with these animals, and there is cur-
rently a dearth of reactive biological reagents avail-
able for studying these species in systems-scale analyses 
[88]. Nevertheless, each of these models remain highly 
relevant to understand some aspects of immunity and 
pathogenesis. Data from each can improve upon inter-
pretations of cross-sectional data from human studies 
and thus support intervention-based studies, and when 
ethical, support the collection of tissues to evaluate tem-
poral changes that lead to specific clinical complications 
and can reveal hidden parasite niches (recent examples 
for P. vivax in Saimiri boliviensis and Aotus lemurinus 
include [151, 152]). Also, a recent insightful example of 
IgG, IgM, and IgA antibody isotype cross-reactivity rela-
tionships and lessons learned between P. falciparum-
challenged human and Aotus nancymaae responses was 
shown using protein microarray technology [153–155]. 
Critically, as discussed below, the continued use of 
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these animal models for generating infectious game-
tocytes for P. vivax research is paramount, particularly 
to research P. vivax hypnozoites and relapse biology. 
Historically valuable P. vivax isolates (over two dozen) 
that had been adapted to grow in New Word monkeys 
and stored as frozen iRBC stabilates are highly relevant 
today. These show individualized characteristics ranging 
from frequent early relapsing phenotypes (e.g., the Ches-
son strain) to late-relapsing phenotypes (North Korean 
strain) [18–20].

Aotus and Saimiri monkey species are currently avail-
able from the Keeling Center for Comparative Medicine 
and Research at The University of Texas MD Ander-
son Cancer Center, Texas, USA, which has maintained 
U.S. National Institute of Health (NIH)-supported New 
World monkey breeding colonies for medical research 
purposes, including malaria research. Opportunities for 
malaria research with New World monkey species also 
exist in Peru, Panama, Brazil, and Colombia.

Twenty‑first century—turning point in malaria 
research
Within this article, following an overview of relevant 
background information, systems biological studies and 
experimental frameworks are highlighted involving lon-
gitudinal NHP infections initiated with P. coatneyi, P. 
cynomolgi, and P. knowlesi sporozoites, from which basic 
biological knowledge has and continues to be gained 
regarding host infections initiated with each of these 
species. This research, conducted by the Malaria Host–
Pathogen Interaction Center (MaHPIC), has involved 
longitudinal Plasmodium infections using macaque spe-
cies, the most common being M. mulatta (rhesus mon-
keys) and M. fascicularis (kra monkeys, also known as 
long-tailed macaques, or cynomolgus monkeys).

NHP research in the modern era of malaria systems biology 
and malaria eradication
It is well accepted that the host and parasite influence 
each other, and host–parasite interactions can set off 
cascades of molecular events and pathways, both locally 
and systemically, as each thrives to survive. The simian 
malaria parasites and their NHP model systems continue 
to provide unique research opportunities for in-depth 
investigations, aimed to ultimately inform translational 
solutions to prevent or treat malaria caused by any of 
the various Plasmodium parasite species infecting peo-
ple. NHPIMs cannot recapitulate all health conditions 
and situations pertinent to humans, but they can begin 
to take them on, one or a few at a time; tease them apart, 
deconvolve large datasets, and reveal hidden biologi-
cal information. It is becoming increasingly possible to 
gain a multi-dimensional view of the immune system in 

action, which is critical for determining: (a) what works 
to the host’s advantage, resulting in reduction or elimina-
tion of parasites, inflammation, and pathology, (b) what 
works to the host’s detriment, resulting in thriving para-
sites, illness, and pathology, and ultimately, and (c) what 
interventions may help favour the host. These three areas 
of inquiry remain at the forefront today.

Malaria eradication goal raises the bar to tackle all species 
of Plasmodium and prioritize vaccines
In 2007, a new concerted effort to eradicate malaria 
began with a declaration by Bill and Melinda Gates to 
eradicate this disease [156]. Much debate followed [157] 
and continues today [158] on the feasibility of malaria 
eradication, and the challenges and bottlenecks faced 
[159, 160]. With the return of malaria eradication as a 
global goal, new projects were initiated to better docu-
ment malaria cases and intervention methods being used 
regionally and globally. Gaps in knowledge were evalu-
ated, and new research agendas developed to help fill 
those gaps, including for P. vivax which became recog-
nized as a widespread but important and neglected spe-
cies [161, 162]. These steps led to improved information 
about the prevalence, morbidity and mortality of both 
most predominant human malaria species, P. falciparum 
[163] and P. vivax [164, 165], as well as public recognition 
that global eradication will also require the elimination 
of the lesser prevalent human malaria species P. malar-
iae and P. ovale, as well as simian malaria zoonotic spe-
cies (reviewed in [89, 117, 118, 166, 167]). Three of these 
zoonotic species in particular, P. cynomolgi, P. knowlesi, 
and P. coatneyi, have been critical for studying malaria 
in  vivo with NHP infections (reviewed in [92, 94, 95, 
168]). Notwithstanding, P. falciparum research contin-
ues to predominate, given its well-known potential for 
serious illness and lethal outcomes, though P. vivax has 
gained recognition and research support as a parasite 
species that is widespread, debilitating, and which can be 
fatal (reviewed in [169]).

Researchers continue to question how to make the 
next big leap and meet the demands of malaria eradica-
tion [158, 160, 170, 171]. The successful evolution of 
host–parasite interactions favours the survival of both 
the parasite and its vertebrate and invertebrate hosts. The 
world’s challenge to break the cycle of malaria parasite 
transmission between—and development within—mos-
quitoes and humans is huge, yet dedicated researchers 
over the decades have remained committed to seek-
ing sufficient understanding to interrupt transmission, 
foremost, with new vector control solutions, diagnos-
tics, drugs, and vaccines [160]. Yet, much remains to be 
learned about the disease caused by the different Plasmo-
dium species and their transmission dynamics, including 
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‘within-host’ and involving external factors, operating in 
a multitude of environments. Indeed, the enormous com-
plexity of this overall system has led to new efforts utiliz-
ing mathematical and computational modelling strategies 
to study the problems and trajectories [172–174]. Top 
goals to achieve malaria eradication include treatment 
of infected individuals, whether they are symptomatic or 
not [175], with the goal of getting rid of all parasite sub-
populations (circulating or not), including gametocytes 
[176] that transmit the disease to Anopheles mosquitoes 
where fertilization occurs and a new brood of parasites 
forms.

Vaccination is considered necessary to ultimately pre-
vent infections and reduce (or eliminate) the global bur-
den of malarial disease in humans (reviewed in [177]). 
While challenging to achieve, in-depth knowledge of 
malaria caused by each Plasmodium species, NAI, VCI, 
and malarial disease processes is critical for the develop-
ment and testing of broadly effective vaccine strategies. 
Immunological comparisons between malaria naïve and 
chronically infected individuals are also important, par-
ticularly with regards to predicting and understanding 
the outcomes of candidate vaccine testing in malaria 
endemic areas with different transmission patterns and 
intensities, and when a large percentage of individuals 
may be repeatedly or chronically infected with malaria 
parasites and have significant levels of NAI against 
malaria.

Raising the profile of Plasmodium vivax and its close 
relative, Plasmodium cynomolgi
Especially in light of the current malaria eradication 
agenda, P. vivax has gained widespread special attention 
as a predominant malaria parasite species—with raised 
public health concerns [161, 162, 178–184]—along with 
the closely related simian malaria species P. cynomolgi 
[185, 186]. Each of these species and a few others includ-
ing P. ovale produce dormant parasite-infected cells in 
the liver that can stay quiescent for weeks, months or 
years and then become activated to cause relapsing infec-
tions in the blood in the absence of new mosquito infec-
tions. Consistent with raised attention on this problem, 
review articles on hypnozoites and relapses have become 
frequent [19, 20, 26, 187–194].

The biology of the P. vivax, P. ovale and P. cynomolgi 
latent parasites, called hypnozoites [195] (Fig.  1), is 
largely unknown. Hypnozoites comprise a large hid-
den subpopulation of the total P. vivax parasite biomass 
[196], and treatment options to kill them are currently 
limited to primaquine and tafenoquine, both with con-
traindications for pregnant individuals and anyone with 
glucose-6-phosphate-dehydrogenase deficiency; thus 
neither are ideal drugs [10, 166, 197]. Hypnozoites have 

low metabolic activity and are few in number in the liver, 
and therefore they have been a challenge to study and 
in turn discover essential biologically pathways to help 
advance non-haemolytic radical curative treatments. As 
such, they are a major barrier for malaria elimination and 
eradication campaigns [182, 184, 198–200]. The lack of 
robust in  vitro parasite culture systems in the past has 
been considered an impediment to basic research on 
hypnozoites, but research with each of these species has 
remained viable over the past few decades thanks to the 
availability of ex vivo clinical samples from patients and 
NHP infections.

What causes these species to go dormant in hepato-
cytes—seemingly unaffected by the immune system; 
and what causes the dormant infected cells to reactivate 
and produce broods of thriving infectious parasites once 
again capable of causing blood-stage infections? While 
hypnozoites were discovered almost 40  years ago—in 
rhesus macaques (infected with P. cynomolgi) and chim-
panzees (infected with P. vivax) [201–203], they were not 
researched with rigor until recently. Given recent invest-
ments and the persistence of scientists, hepatocyte cul-
ture systems have been established over the last several 
years for P. vivax [204, 205] and P. cynomolgi [206–208]. 
Robust P. cynomolgi in vitro blood-stage cultures [209] 
have also become a reality and these are enabling experi-
ments that complement in  vivo testing of hypotheses 
[210, 211]. Hepatocyte cultures are enabling hypnozo-
ite transcriptomic data on P. vivax [204, 212–214] and 
P. cynomolgi [208, 215]. Recently, such in  vitro cultures 
with P. vivax revealed parasite-derived membraneous 
networks in both schizonts and hypnozoites and possi-
ble functions of aquaporin-3 [216]. This type of research 
comes with many challenges, given the need to distin-
guish quiescent infected cells that have low metabolic 
activity from developing or newly activated forms [217, 
218]. Today, such culture systems, single-cell -omic tech-
nologies [219], and cellular imaging advances [220, 221] 
are paving the way for using these model systems to 
understand P. vivax sporozoites [222] and host–parasite 
interactions in infected hepatocytes, including dormant 
and activated hypnozoites [223].

NHP models have become an important if not criti-
cal resource for enabling ongoing research with hepato-
cyte cultures. First, they have been vital for establishing 
gametocytaemia and feeding mosquitoes to generate P. 
cynomolgi and P. vivax sporozoites to initiate hepato-
cyte culture infections. Notably the first hepatocyte cul-
ture system to show results involved M. fascicularis and 
P. cynomolgi. P. cynomolgi blood-stage parasites were 
grown in macaques to generate gametocytes to feed 
mosquitoes to develop sporozoites to infect M. fascicu-
laris hepatocyte cultures [207]. More in-depth studies 
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can now be performed with NHPIMs, accessing P. cyn-
omolgi or P. vivax gametocytes from infected NHP blood 
for mosquito feeds, and conducting ex vivo experiments 
with liver tissue samples.

Importantly, as the number of P. vivax clinical cases 
declines in endemic areas [1], the demand for NHP 
resources for investigating hypnozoites is expected to 
rise. Specifically, during the last decade, institutions in 
Thailand, Cambodia and India developed clinical capa-
bilities and insectary operations to infect mosquitoes 
with human blood to attain sporozoites to infect hepat-
ocyte culture systems [204, 205, 224]. These feats have 
been groundbreaking, but—if P. vivax clinical cases 
continue to decline, as hoped—logistical challenges will 
be compounded that include having sufficient availabil-
ity of patient infected-blood donors, mosquito insectary 
operations, and experts for establishing, infecting, and 
analyzing the data coming from hepatocyte cultures. 
Meanwhile, there is much yet to be learned about the 
biology of hypnozoites to effectively identify targets for 
drug intervention, and multi-omic approaches that can 
distinguish host and parasite targets will be essential 
[218, 223]. With such knowledge and systems biological 
analyses, vaccination to eliminate hypnozoites, or at a 
minimum delay or reduce the number of relapses [225], 
may one day also become a reality, in addition to target-
ing the universal parasite developmental life cycle forms 
or stages known across all species as liver-stage forms 
(LSFs, or exoerythrocytic stages) and blood-stage forms 
(BSFs, or erythrocytic stages) (Fig. 1).

Relapsing malaria
Relapses are the ‘strong suit’ of P. vivax malaria and 
potentially P. ovale—for which less data is available 
[226–228]. P. vivax relapses are responsible for over 50% 
and potentially as high as 95% of blood-stage infections 
caused by these species [184, 198, 200, 229]. Yet, little to 
nothing is known specifically about these infections and 
immune responses generated against them. Malarial dis-
ease results from primary acute blood-stage infections 
with Plasmodium parasites, and recurrent infections. 
Studying relapsing malaria, caused by the activation of 
dormant P. vivax hypnozoites, is especially challenging, 
impractical—and arguably not possible—in human pop-
ulations, where a main challenge is the difficulty of dis-
tinguishing relapse infections from new mosquito-borne 
infections. There are a few praise-worthy exceptions on 
the feasibility questions. Two major studies used molec-
ular methods including whole genome sequencing and 
protein microarray analyses to distinguish new infections 
from relapses [230, 231]. Others involved the relocation 
of volunteers from malaria endemic areas of Cambodia 
to ‘non-transmission’ regions to ensure that any newly 

detected parasites in the blood were bona fide relapses 
[232, 233].

Fortunately, P. vivax relapses can also be studied 
via controlled experimental infections of New World 
monkeys, thus overcoming the challenge of discerning 
relapses from new infections in human studies. Mon-
key-adapted isolates of P. vivax can be capitalized upon 
that exhibit different relapse patterns (reviewed in [18–
20, 26]). Aside from P. vivax, P. cynomolgi in macaques 
remains a strong model for in-depth investigations of 
relapses, driven by the fact that macaques are most 
closely related to humans and P. cynomolgi is a closely 
related sister species to P. vivax (reviewed in [20, 190]). 
Moreover, as noted above, P. cynomolgi is a zoonotic spe-
cies in Southeast Asia and thus has direct relevance as an 
infectious disease agent for humans [115–117]. Critically, 
longitudinal studies of P. cynomolgi allow for controlled 
investigations that can distinguish one or more “bona 
fide relapses” from new infections or the rise or “recru-
descence” of persisting low-level blood-stage parasites. 
Experimentally controlled relapses were first studied 
by Schmidt and colleagues using P. cynomolgi in rhesus 
macaques [135–137] and subsequently by others ([138, 
139] and unpublished data) (see MaHPIC experiments 
below, called E04, E23, E24 and E25). Experimental infec-
tion of M. mulatta and other macaque species, initiated 
with P. cynomolgi sporozoites, can be designed to mimic 
primary, relapsing, and new infection occurrences, and 
such experiments are particularly well suited for study-
ing host immune responses that develop during each of 
these distinctive blood-stage infections, including with 
parasite challenges involving homologous and heterolo-
gous strains of P. cynomolgi. As discussed below, systems 
biological approaches are being applied by the MaHPIC 
to assess the cascade of immune cell types, niches, and 
memory recall responses that result in naturally acquired 
protection against P. cynomolgi, while predictably ena-
bling ongoing transmission to Anopheles mosquitoes 
([139, 140] and unpublished data).

Gametocytes—the link to ongoing new infections
Circulating gametocytes remain undetected if an infected 
person is asymptomatic and not seeking treatment and 
there is no active case detection program in place in their 
community to identify and treat such individuals. This 
problem is especially challenging for primary infections 
with P. vivax, as the P. vivax gametocytes circulate soon 
during infection of the peripheral blood where they may 
be accessible to biting mosquitoes before individuals feel 
sick and seek medical attention [162, 235, 236]. Infec-
tious gametocytes have also been confirmed in asymp-
tomatic, chronic P. falciparum, P. vivax, and P. malariae 
infections, and they are, therefore, likely present as well 
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in P. ovale infections [235, 237–242]. Further, they have 
been observed in P. falciparum CHMI studies soon after 
drug treatment [54, 243, 244]. Thus, for multiple and pos-
sibly all species, infectious gametocytes can be ingested 
by mosquitoes before anti-malarial drugs are taken or 
the immune system is effective, safeguarding their viabil-
ity and ability to mate in the mosquito and propagate the 
disease. Today, longitudinal infections in NHPs provide 
opportunities to effectively study gametocytes and para-
site transmission from a systems biological perspective 
under a variety of experimental conditions and scenarios 
[131, 139, 245, 246, 234].

Tissue niches: bone marrow and spleen
Cytoadhesion of P. falciparum-trophozoite and schiz-
ont-iRBCs to endothelial receptors and their concomi-
tant sequestration in the deep vascular tissues have been 
known related phenomena for over 50 years, which lead 
to organ pathology, and explain why only the young P. fal-
ciparum ring-stage iRBCs are typically seen in peripheral 
blood smears (reviewed in [247, 248]). This is the case as 
well for the P. coatneyi and P. fragile simian malaria para-
sites with comparable ‘knobby’ iRBC surface structures 
and var/SICAvar genes and exposed adhesive variant 
proteins [249–254], predicted to be comparable to the 
adhesive P. falciparum Erythrocyte Membrane Protein-1 
(PfEMP-1), which has domains known to adhere to vari-
ous endothelial receptors [255, 256]. While cytoadhesion 
and sequestration have been proposed as evolutionary 
adaptations to avoid iRBC passage and destruction in the 
spleen, this is not fitting for the majority of Plasmodium 
species for which all developmental iRBC forms circu-
late. Questions remain regarding what other functions 
the adhesive PfEMP-1 and related proteins may serve for 
the parasites [257, 277].

Recently, an alternative concept called ‘concealment’ 
was put forth for species including P. vivax and P. cyn-
omolgi to account for non-circulating iRBCs that do not 
express EMP-1 related proteins [24, 97, 112]. In these 
cases, other types of host–parasite interactions must 
account for the removal of subpopulations from circu-
lation and possible associated disease manifestations. 
Above all, what has become clear, is that for all Plasmo-
dium species, the circulating iRBCs represented in blood 
smear parasitaemias, do not necessarily represent the 
entire parasite load, or parasite burden in infected indi-
viduals (reviewed in [24, 97, 110, 196]). First, there can 
be multiple broods of parasites in an individual, each in 
different stages of the life cycle. Second, there can be an 
indeterminable number of parasites hidden in various 
tissues.

In the early stages of infection, P. falciparum gameto-
cytes have been found in the bone marrow, where their 
maturation takes place [258–261], and the bone marrow 
has also been recognized as a development niche or res-
ervoir for P. vivax gametocytes [262]. Surprisingly, the 
spleen has also become recognized as a biologically rel-
evant tissue site for P. vivax iRBCs in humans [263–265], 
presumptively to support reticulocyte host cell invasion 
and the asexual blood-stage development cycle (reviewed 
in [110]). Aotus and Saimiri monkey NHP infection stud-
ies have demonstrated and quantified the burden of P. 
vivax iRBCs in these tissues relative to others [151, 152, 
266]. Further studies using these animal models are now 
warranted, focused on local and systemic relationships 
of the infected bone marrow and spleen. Based on longi-
tudinal parasitaemic data from P. cynomolgi infected M. 
mulatta, examined to better understand P. vivax infec-
tions and anaemia, a computational model was used 
and concluded that a subpopulation of iRBCs was in 
fact concealed in the tissues [112]. As with hypnozoites, 
these hidden parasite populations present bottlenecks for 
malaria eradication efforts.

Plasmodium knowlesi iRBCs have been identified in 
the tissues of experimentally infected M. fascicularis and 
M. mulatta [267, 268, 277]. In addition to vital lung, liver 
and kidney organs, among others, showing high levels of 
P. knowlesi parasitization, tissues of the gastrointestinal 
tract stood out, consistent with gastrointestinal compli-
cations in patients with P. knowlesi [268, 277]. P. knowlesi 
infection of baboons has also resulted in the localization 
of parasites in vital organs, including the brain and pla-
centa [145, 146].

Malaria vaccines, from darkness into the light
Throughout the 1980s, once a few malaria parasite genes 
had been characterized, a significant R & D focus devel-
oped towards a vaccine mimicking immunogenic regions 
of the parasite’s immunodominant circumsporozoite 
protein (CSP), hypothesizing that such a vaccine could 
prevent sporozoite infection of hepatocytes (reviewed 
in [4]). However, antibodies against this protein proved 
insufficient to inhibit infections completely, and once the 
parasites multiplied in even one liver cell, tens of thou-
sands of invasive merozoites were subsequently released 
into the bloodstream. The need to raise effective B cell, 
T cell and other cell-mediated immune responses, and 
optimize adjuvants and delivery systems, took hold, 
resulting in vaccine renditions that included, among oth-
ers, the CSP-based P. falciparum RTS,S candidate vaccine 
(reviewed in [4, 269–282]), and alternative CSP-based 
multi-valent vaccine plans for P. vivax [63, 65, 283, 284]. 
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Recently, the P. falciparum RTS,S/AS01 vaccine product 
(Mosquirix™) was approved for widespread use in Africa 
after showing roughly 30% efficacy in preventing severe 
malaria in children after four sequential injections [285, 
286]. This malaria vaccine will be the first to be widely 
implemented, and thus, it will allow the research com-
munity to observe, for the first time, the possible benefits 
as well as effects on local parasite genetics and dynamics, 
disease prevalence, and transmission that can result from 
the introduction of a subunit malaria vaccine based on an 
immunodominant protein representing a single species 
and strain [287, 288]. This achievement has and will con-
tinue to pave the way for testing of other currently avail-
able and future-generation vaccine candidates [280, 281, 
289–293].

As it stands, the world is still far from being close 
to having one or more malaria vaccines that can com-
pletely prevent malaria from one species, let alone all 
four human Plasmodium species and zoonotic infec-
tions. Uncounted lessons have been learned during 
the roughly 30  years of RTS,S development, testing, 
delivery/administration, and monitoring phases. While 
sterilizing immunity—killing all parasites—has yet to 
be reached in large clinical trials, it must remain the 
goal as malaria vaccinology work continues alongside 
research to understand each parasite species’ biol-
ogy, diversity, antigenic variation, and evasion strate-
gies, as well as host immune responses, including those 
that are protective and those that may be detrimental 
and cause pathology. Moreover, differences in respon-
siveness between malaria naïve volunteers and people 
living in different malaria endemic areas must be con-
sidered (reviewed in [8, 294]). Ultimately, it is hoped 
that useful predictive immune signatures and correlates 
of protection will be identified, and that future vac-
cine candidates will be tested with much more relevant 
knowledge known about the likely, and requisite, host 
responses necessary to achieve protection, if not ste-
rility (i.e., the complete elimination of parasites in an 
individual).

Since the 1990s, multipronged approaches have been 
increasingly pursued against multiple parasite targets 
and life cycle developmental stages, including the sexual 
stages (Fig.  1), in an attempt to block successful trans-
mission and development of parasites within malaria 
endemic mosquito populations [295, 296]. Major invest-
ments over many decades have advanced malaria vac-
cine development as a top priority, among government 
agencies, industries, and foundations, including the 
Bill and Melinda Gates Foundation (BMGF). The Euro-
pean Malaria Vaccine Initiative (EMVI), launched in 
1998, complemented several European malaria vaccine 

research initiatives [297]. The US-based Malaria Vaccine 
Initiative (MVI) was launched in 1999 with the benefit 
of $50 million in start-up support from the then newly 
developing BMGF, and the MVI leadership team scouted 
out and supported projects and approaches around the 
world that they deemed promising, mostly towards P. 
falciparum vaccines [298], but also including the P. vivax 
Duffy Binding Protein (PvDBP) as a one-shot key pros-
pect immunogen to prevent entry of P. vivax merozoites 
into Duffy glycoprotein-positive host RBCs (reviewed in 
[299–301]). These DBP vaccine efforts follow a body of 
research showing the importance of the Duffy glycopro-
tein on the surface of RBCs [41] as a receptor for the P. 
vivax DBP, which is located at the front (apical) end of 
the merozoite and is known to specifically attach to the 
cognate RBC receptor prior to invading the host RBC 
[299, 302–304]. Complicating the situation, in the ensu-
ing years, through research in multiple locales, it has 
become apparent that P. vivax can also invade Duffy neg-
ative RBCs by utilizing alternate invasion mechanisms 
(reviewed in [305, 306]).

Discovery of candidate vaccine proteins and testing 
them continues, predominantly to develop P. falcipa-
rum vaccines [279, 282, 284, 290, 295, 300, 307, 308]. 
Nonetheless, P. vivax research has been progressing at a 
competitive pace, even prior to the genome sequencing 
era, greatly aided by the use of both Aotus and Saimiri 
monkey infections and short-term in  vitro blood-stage 
cultures permitting studies on P. vivax from human 
infected blood samples [303, 309, 310]. Over the span of 
several decades, these animal models have been critical 
for obtaining P. vivax parasites for genetic and biologi-
cal analyses (reviewed in [19, 20, 311]), especially in light 
of the absence of a reliable and robust long-term blood-
stage culture system for P. vivax [312–314], as has been 
available for P. falciparum for decades [315]. From a vac-
cine development standpoint, such research—and the 
use of the related P. cynomolgi and P. knowlesi parasites 
for fundamental basic biological studies and to gener-
ate crossreactive antibody reagents and perform basic 
experiments—has been critical for the identification of 
immunogenic merozoite surface and apically located pro-
teins, which have been regarded as vaccine candidates 
(reviewed in [19, 25, 161, 299, 301, 311]). These include 
the PvDBP and the Reticulocyte Binding Protein (PvRBP) 
family members that have been shown to adhere to 
reticulocytes [300, 316–320]. Specifically, young CD71+ 
and CD98+ reticulocytes were identified as the host 
cells for P. vivax [13, 318, 321, 322] (reviewed in [323]). 
Importantly, the PvRBPs are related to the subsequently 
discovered P. falciparum Reticulocyte Binding Protein 
homologues (Rh) [324–326] and the Rh5 family member 
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[327] has progressed from pre-clinical trials in A. nan-
cymaae monkeys to clinical vaccine trials in humans 
[328–331]. Several of the above-named P. vivax proteins 
have been investigated as prospective vaccine candidates 
in field immunogenicity studies [332, 333], and several of 
these protein transcripts, along with others, were selec-
tively upregulated according to comparative transcrip-
tomic analyses of P. vivax infections in S. boliviensis and 
A. nancymaae monkeys, thereby pointing to roles in 
typical or alternative invasion pathways [334]. Identifying 
possible effective vaccine targets, for killing of parasites, 
remains a major goal.

An overarching challenge in the malaria vaccine devel-
opment pipeline has been to express recombinant pro-
teins or make peptides that can be representative of 
high-priority target proteins, structurally and antigeni-
cally, and on a population scale. While ongoing stud-
ies continue to establish a basis for new directions for 
malaria vaccine development, they are just the beginning. 
For example, a recent study assessed the global diversity 
and population structure of high priority P. falciparum 
vaccine candidate antigens [7]. This analysis included 
data from over 2600 parasite genomes from 15 malaria 
endemic countries and evaluated and compared the tar-
get haplotypes and 3-dimensional structures. Such anal-
yses will help to optimize vaccine constructs to achieve 
broader efficacy in populations. Furthermore, protein 
microarray technologies have been used strategically 
and effectively to identify immunogenic parasite proteins 
from human and NHP samples [155, 290, 335], and crea-
tive genetic tools and parasite screenings are bearing new 
fruit [336–338]. The post-genome sequencing era with 
‘omics’ experiments and ‘big data’ analyses continue to 
promise incomparably richer and more comprehensive 
understandings of parasite genes, transcripts, proteins, 
and metabolites, which together will hopefully reveal 
new promising high-priority vaccine targets. NHPs are 
important in this effort.

Whole organism vaccine strategies
By the turn of the twentieth century, the prospects of 
whole organism malaria vaccines took root with both 
irradiated and genetically attenuated sporozoite immu-
nization approaches, followed by chemoprophylactic 
regimens in combination with sporozoite immunogens 
(reviewed in [282, 308, 339–341]). These whole para-
site vaccine approaches flourished despite many chal-
lenges and much to the credit of the company Sanaria™ 
successfully establishing necessary feasibility and ethi-
cal arguments [278]. As would be expected, whole 
parasite vaccines give broader immunity than subu-
nit antigen or epitope-based vaccines [342], and P. 

falciparum sporozoite immunogens have shown homol-
ogous protection in malaria naïve individuals [50, 123]. 
However, the general efficacy of pre-erythrocytic vac-
cines in individuals in endemic areas has remained low 
(reviewed in [8]). Thus, the prospects for their widespread 
use in malaria endemic areas have been in question, rais-
ing new challenges to be overcome, largely around the 
need to better understand NAI and VCI responses in 
individuals with prior and likely repeat exposure to Plas-
modium infections and malaria. By contrast, P. falcipa-
rum sporozoite immunizations along with prophylactic 
drugs have shown homologous and heterologous efficacy 
and have been suggested for use by travelers to Africa and 
potentially widespread use in Africa [343–345]. Com-
parable research on P. vivax sporozoite vaccines has yet 
to be reported. This research has been hampered by the 
unmet challenge of reliably generating sporozoite immu-
nogens in the absence of blood-stage culture systems that 
can reliably produce infectious gametocytes for infect-
ing Anopheles mosquitoes. A few studies with sporozoite 
immunizations concurrent with blood-stage drug cover 
have been carried out with P. knowlesi [342, 346] and P. 
cynomolgi in M. mulatta ([347] and Joyner et  al. pers. 
commun.), providing groundwork for future experiments 
where NHP model systems can delve into mechanisms at 
work in the face of these strategies.

Major impediments to immune intervention, challenges 
and opportunities
Now, in the twenty-first century, the lack of detailed 
understanding of NAI against malaria caused by any spe-
cies and its limited effectiveness such that chronic para-
sitaemia ensues rather than sterilizing immunity, and 
the general lack of reliable malaria vaccine correlates of 
protection, have been recognized as major impediments 
to the elimination and eradication of the disease through 
vaccines or other immunologically based interventions 
(reviewed in [6, 8, 35, 96, 348]). It is also unclear how 
chronic exposure and immune activation to any spe-
cies of Plasmodium impacts the establishment of new 
immunity against specific antigens represented in vac-
cine candidates. Specifically, chronic exposure to Plas-
modium infection may interfere with inducing efficacious 
protection, as evidenced recently in malaria endemic 
field-based vaccine trials (reviewed in [8]). Moreover, 
economic and cultural factors may contribute to poor 
nutrition and baseline poor health with anaemia being 
common in malaria endemic areas, or incomplete intake 
of costly anti-malarial regimens can result in chronic 
infections and the potential for ongoing transmission. 
With progressive understanding of immunological mech-
anisms, networks, and cascades, novel vaccines and other 
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immunological-based interventions may be envisioned 
that, ideally, will more successfully target and eliminate 
the infectious parasite load, thereby supporting host 
resilience and recovery in malaria endemic areas. Some 
ideas in this direction have been discussed in relation 
to the finding that pre-immunization inflammation was 
associated with malaria vaccine protection [49].

Innate and adaptive immunity
In brief, innate immune signaling pathways are acti-
vated by parasite-derived materials such as DNA, RNA, 
glycosylphosphatidylinositol (GPI), and haemozoin, 
otherwise known as Pathogen Associated Molecular 
Patterns (PAMPs) or Danger Associated Molecular Pat-
terns (DAMPs) (reviewed in [349–352]). Subsequent 
adaptive responses target infected RBCs and help sup-
press clinical disease. Much remains to be understood 
about the innate responses attributed to various cells 
including γδ T cells, natural killer cells, NKT cells, 
dendritic cells, monocytes/macrophages, neutrophils, 
and platelets [353–355], and adaptive B cell and T cell 
responses, including memory responses, and the rela-
tive importance and host dependence upon each [356]. 
Likewise, the importance of various immunoglobu-
lin isotypes remains to be fully understood [357, 358]. 
Importantly, IgM has become recognized in human 
clinical studies as relevant for protection against dis-
ease caused by P. falciparum during both acute and 
chronic infections, being produced initially upon infec-
tion as well as through memory B cell (MBC) responses 
[359–363]. Long-lived IgM responses were detected 
against 15 antigens in recent P. vivax immunogenicity 
field studies, raising questions on the origin and role of 
IgM compared to IgG [364, 365]. Also of note, a recent 
transcriptomic study found that genes and networks 
associated with ubiquitin-proteasomal proteolysis, 
which are important for innate and adaptive immunity, 
were disrupted in children with severe malaria [366].

CHMI experiments have served as an alternative to 
traditional field studies by attempting to explain the 
immune response to malaria parasites over time in 
malaria naïve and non-malaria naïve individuals. For 
example, one noteworthy observation is that epige-
netic imprinting occurs in innate immune cells after 
exposure to blood-stage parasites in  vivo [367]. This 
is interesting given recent advances generally on the 
potential importance of innate immune memory, 
including against Plasmodium [368, 369], and “trained 
immunity”, defined as heterologous immune responses 
elicited by live vaccines [370]. It remains unclear how 
much trained immunity responses are relevant to NAI 
against malaria. Also of consideration, during CHMI 

studies initiated with sporozoites, treatment is given 
when parasitaemia is first detected (i.e., when low), and 
therefore, the ‘natural’ parasite antigen load and inflam-
matory responses will be reduced, thus altering the nat-
ural course of immunity.

Disease, tolerance and recovery
A hallmark of acute malaria is an array of inflammatory 
processes that can cause fever and other symptoms and 
signs of illness, which result in possible mild to severe 
damage to the body’s tissues and organs. Inflammatory 
processes can aid a host in its anti-malarial fight and 
recovery, but they can also overwhelm the host [371]. 
Numerous known and yet-ill-characterized immuno-
logical mechanisms contribute to disease tolerance, for 
example, involving control of monocyte/macrophage 
activation [369] and peripheral blood mononuclear cell 
(PBMC) regulatory [372] responses, and enhanced p53 
expression in monocytes that was shown to attenuate 
inflammation and predict protection from fever [373]. 
Future research is warranted to better understand these 
and other such processes, which can suggest possible 
host-directed and adjunctive therapies that may support 
host wellness and survival.

Asymptomatic infections, chronicity, and anaemia
The majority of human Plasmodium infections are 
asymptomatic with chronic long-lasting infections that 
provide a blood-borne reservoir of parasites for trans-
mission to Anopheles mosquitoes and propagation of the 
disease [374, 375]. Unless active case detection measures 
are in place, these asymptomatic infections generally go 
unnoticed and remain a major barrier for malaria elimi-
nation and eradication efforts. This fact raises a key ques-
tion: Why is the immune system unable to rid the body 
of all parasites? Future research should include focused 
efforts to identify the parasite’s immune evasion targets 
and mechanisms. Additionally, the expansion of so-called 
atypical memory B cells (AtMBCs) has been reported in 
people chronically exposed to malaria parasites [376–
379]. These cells are characterized by the expression of 
inhibitory markers, and they can be activated by inflam-
matory signals, such as IFNγ and TLR-9 activation by 
parasite DNA (reviewed in [380]). Recent data suggests 
that AtMBCs or IgM producing MBCs may be part 
of a normal memory immune response in chronically 
exposed or vaccinated individuals and various questions 
remain relating to their development and functional-
ity [359, 363, 380–382]. In in vitro co-cultures, AtMBCs 
increase and classical memory B cells contract in the 
presence of parasites [383].



Page 15 of 38Galinski ﻿Malaria Journal          (2022) 21:177 	

Future studies using NHPIMs can help advance this 
critical line of research by determining from which B cell 
tissue compartments these cells originate, the extent of 
their persistence, to what cytokines they respond, and to 
the extent they help or hinder the development of immu-
nological memory responses against the parasites [384]. 
Delineating their contributions to parasite neutralization 
as well as pathogenesis is critical in part since AtMBCs 
are known to produce anti-erythrocyte antibodies that 
can contribute to the destruction of both infected and 
uninfected erythrocytes [385–387]. These data expand 
upon prior knowledge relating to autoimmune or spe-
cific anti-erythrocyte antibodies in the pathogenesis of 
malarial anaemia [388–393]. Future goals should include 
tracing these responses between the tissues and the 
peripheral blood, especially to enhance understanding 
of immune memory provided by T and B cells, but also 
since a preponderance of immune activity occurs in the 
tissues and the peripheral blood provides a limited view 
of the systemic activities.

Immunosuppression
In 2013, Mueller and colleagues reviewed known infor-
mation relating to Plasmodium infections causing immu-
nosuppression, including the influence of regulatory T 
cells, B cell populations, and antigen presenting cells [25]. 
This topic is of high interest and was expanded upon in 
2021 by Calle and colleagues [394]. As immunosuppres-
sion is evident during acute infections and afterwards, 
and can persist during chronic infections, they have 
stressed the critical points that: (1) malaria impacts the 
overall health of the immune system, and (2) it is impor-
tant to conduct research aimed towards reestablishing 
normal functions. This is generally important for public 
health but also to support the development of effective 
immune responses to vaccines.

Route to interventions
Decades of immune response studies converge on similar 
conclusions with regards to the need to understand much 
more about the intricate host–parasite relationships and 
immune responses that allow for sustained parasitism 
[19, 46–48]. Such knowledge has the potential to reveal 
new immunological targets of intervention, whether 
against the parasite, or in the form of host-directed or 
adjunctive therapies, including repurposed drugs [395, 
396]. A greater understanding of the NAI responses 
that lead to partial (or possibly complete) protection is 
needed, as well as in-depth knowledge about the host and 
parasite receptor-ligand target molecules required for 
successful host cell invasion and parasitism, the immune 
cell types, factors, and pathways that become activated to 

ward off an infection, the parasite’s immune evasion tac-
tics to overcome such immune activity, and the cascade 
of pathological consequences that follow.

Normal physiology is affected by malarial infections 
and tissues can become damaged; in severe cases organ 
damage may be irreparable. These facts are also evi-
denced from rare cases of irreversible severe illness 
caused by P. coatneyi when modelling P. falciparum 
infection [129] and P. cynomolgi modelling P. vivax infec-
tion [397]. Key questions include why individuals living 
in malaria endemic countries do not develop sterilizing 
immunity after one or a few infections, and why pre-
munition is not long lasting. An overarching question is 
why immune memory is insufficient to completely ward 
off or eliminate new infections. As discussed above, 
the human host does not completely lack immune cell 
memory recall responses, but that they are complex 
and multi-faceted, with many unknowns. Humans also 
face diverse infecting parasite species and strains, which 
makes infection scenarios much more complex yet 
nonetheless akin to what the world has been experienc-
ing with the spread of SARS-CoV-2 variants [398, 399]. 
The lack of complete immunity is also predictably due 
to evolutionary safeguards to ensure parasitism, includ-
ing immune evasion strategies, such as antigenic varia-
tion (reviewed in [92, 400]) and escape mechanisms that 
ensure gametocytogenesis (reviewed in [400–402]). Spe-
cifically, while infected hosts mount primary and mem-
ory recall responses, they tend to favour (or are restricted 
to achieve) a reduction in parasitaemia and illness over 
elimination of all parasites, therewith supporting the 
retention of sexual stage gametocytes and prospects for 
transmission to mosquitoes.

Systems-based studies of the immune response and cel-
lular dynamics during longitudinal infections will con-
tinue to be informative to help address long-standing 
questions and arrive at new interventions. While clinical 
immunity can be generated, resulting in asymptomatic 
infections, chronic sub-patent blood-stage infections 
remain the norm in endemic areas. This situation natu-
rally serves the parasite well, allowing for transmission of 
gametocyte progeny to mosquitoes, but remains a health 
concern for infected individuals as well as the population 
at large that presents targets for future bites by mosqui-
toes and propagation of the disease. If natural inoculation 
of the parasite itself does not lead to sterilizing immunity, 
what are the chances that a subunit or whole parasite 
vaccine would? The often-presumed answer is that steri-
lizing immunity is unlikely, or an extremely elusive goal 
[96], regardless, and this conclusion has so far been born 
out in vaccine challenge studies in malaria endemic areas 
(reviewed in [8]). Aside from vaccines leading to specific 
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protein-targeted immune responses and in general per-
haps overcoming parasite strain diversity and antigenic 
variation, they may need to conquer strain-transcending 
immunity, although this is still ill-defined [35, 403].

Malaria research advances with systems 
approaches and nonhuman primate infections
Host–parasite interactions: systems biology, immunology, 
and vaccinology
A complete understanding of malaria parasite species, 
their biology, host–parasite interactions, and popula-
tion dynamics that are essential for their survival, is still 
lacking. In 1971, at the time of the publication of “The 
Primate Malarias”, host–parasite interaction(s) was not 
common terminology [404, 405]. This terminology has 
taken hold in the post-genome sequencing era, over the 
past 20 years, where “functional genomics” and the inte-
gration of big data sets have become the tools of compu-
tational biology research teams [406, 407]. Still today, as 
was the case 50  years ago, scientists often stand at the 
cusp of entering deep into the abyss of the unknown, 
whether aiming to reveal host–parasite receptors, intra-
cellular development and growth mechanisms, parasite 
evasion mechanisms, or to gain a solid understanding of 
the cascades of molecular and cellular events that result 
in both disease pathogenesis and immunity. This is palpa-
ble when using systems biology, systems immunology, or 
systems vaccinology approaches (reviewed in [8, 46–48, 
294, 407–411]). Systems biological and immunologi-
cal approaches are now being used to help interpret and 
integrate genomics and associated multi-omic data, with 
the goal of enabling a more holistic if not comprehensive 
understanding—and predictive capabilities—of the mul-
titude of host–parasite interactions and biological path-
ways that have evolved to allow successful parasitism: 
with parasite infection and evasion strategies functioning 
alongside host immune defense mechanisms. Likewise, 
systems vaccinology aims to incorporate and visualize 
high-dimensional data to understand VCI responses and 
outcomes [412].

Whole blood transcriptomics has been a starting point 
for numerous functional genomics projects. Transcrip-
tomic models—especially across multiple time points 
from in  vivo infection—gain multi-dimensional com-
plexity when epigenetic interactions and time-depend-
ent biological and immunological phenomena or the 
impact of the microbiota or co-infections are considered 
as well (reviewed in [46–48, 410]). By integrating tran-
scriptomics and various datatypes, Tran and colleagues 
identified multiple immune signatures including p53 
upregulation in children in Mali that associated with 
their tolerance to blood-stage infection and fever [373]. 
Transcriptomics and metabolomics data were integrated 

by Gardinassi et al. from a P. vivax CHMI trial to define 
specific immune responses [484], and by Cordy et al. to 
define metabolic signatures associated with acute and 
chronic disease caused by P. coatneyi and P. falciparum 
[131]. Gupta et  al. recently used systems approaches, 
including transcriptomic and metabolic modelling, to 
show distinctive relationships between longitudinal P. 
knowlesi infections in M. mulatta and M. fascicularis, 
which highlight mechanisms of resilience in the latter 
species [396, 413]. Systems vaccinology approaches were 
used to study an RTS,S candidate vaccine, demonstrating 
NK cell responses as correlates of protection associated 
with RTS,S vaccination [414]. Recently, systems-anal-
ysis of multiple malaria vaccine trials has shown that 
pre-immunization inflammatory responses correlate 
with protection [49]. Baseline data have also been mod-
elled and integrated to provide predictive information 
regarding the immune response, as shown for exam-
ple with an influenza vaccination study that evaluated 
the frequencies of PBMC subpopulations, the results 
of which the authors suggest may in part reflect influ-
ence by the microbiota or other infectious agents [415]. 
Pre-immunization correlates of protection have in fact 
been determined for multiple and diverse vaccine types: 
against influenza, hepatitis B, yellow fever, and malaria 
(reviewed in [49]). These examples and many others [46] 
raise the prospects for discoveries that may improve effi-
cacy of vaccines, by stimulating innate responses pre-
dicted to confer protection. However, human trials for 
malaria vaccines and other diseases have shown that not 
only internal responses but external environmental fac-
tors including endemicity and prior exposure to diseases 
greatly impact immunity and the ability to predict out-
comes of vaccines based on testing in naïve individuals 
alone (reviewed in [8, 57, 294]). Thus, major challenges 
remain, at many levels. These include the importance 
of understanding NAI and VCI responses in children 
compared to adults, and with different levels of previ-
ous exposure to malaria. Such basic research is crucially 
important, as recognized for many infectious diseases, 
including SARS-Cov2/Covid-19 [416, 417].

The predictive capabilities, based on mathematical 
models and the integration of diverse datasets and meta-
data, support the identification of signature biomarker 
profiles that may be prognostic or diagnostic, validation 
experiments that may include perturbations, and in silico 
screening and testing of candidate drugs and vaccines. 
Traditional ELISPOT tests, ELISAs, isotype analyses, 
protein microarrays, and various functional assays (e.g., 
phagocytosis assays and parasite inhibition of invasion 
tests) continue to serve a purpose, to validate findings 
and develop new hypotheses and research directions to 
delve deeper into the biology of specific cell types and 
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immune networks. Meanwhile, bioinformatic analysis of 
large and multi-omic datasets, dynamic modelling and 
spatial imaging technologies are becoming critical for 
advancing such research, whether on single cells or tissue 
samples (reviewed in [219, 221]). For an overview of the 
processes that comprise systems biology, from big data 
analysis to its visualization to building of complex models 
and reductionist experimentation to validate the models, 
various articles are recommended [406, 407].

The integration of multiple-omic and other data types 
is a key goal for designing quasi-realistic computational 
models for biological processes. In the simplest case, 
these are static representations of networks that show 
which components interact with each other. Dynamic 
modelling raises the bar further by also addressing ques-
tions pertaining to the constant changes in biological 
systems, such as a host cell or organism, whether these 
occur within seconds, minutes, a day or longer [418, 419]. 
Generically, it is hoped that systems approaches will flesh 
out knowledge gaps in key areas of host–parasite inter-
actions. Pursuing this avenue, new basic, preclinical, and 
clinical research needs are being defined and prioritized 
with a burgeoning number of concerted efforts involv-
ing multidisciplinary and transdisciplinary teams of 
researchers. All these modelling efforts require very large 
quantities of data, and these are beginning to emerge in 
public databases that offer access to large, system-wide 
datasets for reuse and iterative analysis (reviewed in [8]). 
A prominent example for malaria research is PlasmoDB 
[420, 421], which is associated with the MaHPIC’s longi-
tudinal NHP experiments, described below. While math-
ematical modelers in the past lacked data, now there is 
an overload. This has created the need for biologists and 
mathematical and computational experts to interact, 
partner, and rely upon each other.

Genomics data are available for key host and parasite 
species
Genomic and post-genomic technologies have greatly 
advanced knowledge of malaria parasites of a number of 
species in various stages of their life cycles. The genome 
sequences of P. falciparum and three rodent malaria par-
asite species were tackled first, at the turn of the century 
[14, 422, 423], followed by others (mentioned below) and 
recently six Great Ape Laverania malaria parasite spe-
cies [424] plus a fourth rodent malaria parasite species 
[425]. This species priority list was largely based on P. 
falciparum causing the most cases of malaria throughout 
Sub-Saharan Africa, including severe cases and death, 
and because P. falciparum and corresponding rodent 
species are recognized as being most widely amenable 
to research work in laboratories around the world. How-
ever, the in  vitro culture environment is very different 

from the in vivo host environment, with all its complex 
organ physiology, biology, biochemistry, and immune 
system, and rodent models—while valuable—do not suf-
fice to reveal the host–parasite interactions that occur in 
humans or NHPs [426, 427]. Particularly given the avail-
ability of the first and additional P. falciparum genomes 
and robust culture systems, functional genomics studies 
have become plentiful for P. falciparum for the different 
parasite development stages throughout the parasite’s life 
cycle [176, 410, 428].

Plasmodium vivax and P. knowlesi genome sequences 
were published in 2008 [429, 430], followed by additional 
P. vivax [431–433] and P. knowlesi [434–437] genome 
sequences including the use of advanced technologies 
and clinical isolates. Plasmodium vivax transcriptomes 
have since become available representing sporozoites 
[438, 439], specific liver-stage forms including hypnozo-
ites [212, 213] and blood-stage forms [440–448], and pro-
teomes have been developed representing stage-specific 
blood stages and clinical biomarkers [449–454]. Like-
wise, transcriptomes have been reported for P. knowlesi, 
importantly showing differences in the parasite’s gene 
expression between the in  vivo NHP environment and 
in vitro cultures [455] as well as differences in M. mulatta 
and M. fascicularis host responses [396]. Plasmodium 
knowlesi ex vivo stage-specific blood-stage proteomes 
are under analysis, helping to flesh out the biology of this 
species (Anderson et  al. pers. commun.). Plasmodium 
cynomolgi genome sequences were first published in 2010 
[186], followed by an improved genome [168] and tran-
scriptomes representing stage-specific LSFs [208, 214]. 
Finally, the P. coatneyi genome sequence was published in 
2016 [254] and in 2016 and 2017 genome sequences were 
reported for the remaining two human malaria parasites, 
P. ovale and P. malariae [15, 456]. Human and NHP (M. 
mulatta, M. fascicularis and Aotus and Saimiri species) 
genome sequences have also been published [457–463]. 
So, the genomic puzzle pieces are available to study the 
interactions of several key parasite species in the context 
of their human or NHP hosts and, in some instances, 
with host cells in ex vivo or in vitro experiments. This is 
in addition to the completion of the genomes of Anoph-
eles vector species and ongoing advancements for study-
ing Plasmodium genomics data [464].

Still and all, the biological functions of most Plasmo-
dium proteins remain undefined, but expedited progress 
with biological discoveries are likely given the immense 
amounts of genomic and functional -omic data that con-
tinues to be developed and analysed. Technological tools 
and capabilities have advanced considerably to obtain 
genomic sequences with improved quality and much 
more readily from unknown parasite strains, as well as 
-omic information on host tissues and single cells [465], 
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and when accessible, spatial data providing the interac-
tive physiological tissue and cellular context of both 
[221]. Today, with advances in big data technologies that 
enable the generation and analysis of -omic and other 
large-scale complementary clinical datasets from small 
blood volumes (100 µl or less, and even from dried blood 
spots), human blood samples have become amenable to 
systems biological research that can complement basic 
in vitro studies and research involving rodents or NHPs.

Deciphering malaria with the support of animal models
The malaria research field and its vision for what’s 
important and possible have advanced considerably 
with the recent benefits of CHMI and systems biologi-
cal and immunological approaches, generating new lev-
els of understanding and numerous new hypotheses. Still 
today, underlying biological and molecular mechanisms 
of NAI, VCI and pathogenesis are largely unknown, leav-
ing a hazy picture of the immune response under vari-
ous scenarios with many gaps and open questions [46, 
47]. However, immunological tools and technologies are 
advancing to make new discovery in these areas possible, 
and now tantamount, even with chronic infections [375]. 
Future research is bound to expose the inner workings 
of many critical biological, immunological, and patho-
genic mechanisms and pathways, including immune eva-
sion strategies, and both rodent and NHP animal models 
can support such endeavors. To the extent possible, it is 
important to know infection history, lifetime exposure, 
and how long an individual has been infected. Huge 
strides cataloguing such essential data have been made 
by a few research groups performing clinical studies with 
longitudinal sampling that includes repeat sampling from 
the same individuals [232, 233, 373, 466–468]. Unfor-
tunately, these types of studies are labour intensive and 
arduous, and not typically possible to complete on large 
scales.

Numerous investigations for decades have relied upon 
rodent malaria models to delve into immune response 
and pathogenesis questions (reviewed in [426, 427]). 
Apart from expensive model systems such as human-
ized mice, rodent models are economical and practical, 
including affordable per diem rates to house and feed 
the animals and the ready availability of technical sup-
port for working with these animals. Moreover, the abil-
ity to mimic major clinical manifestations of malaria such 
as anaemia, cerebral malaria, acute kidney injury, and 
chronic infection using selected rodent malaria para-
site species in conjunction with selected host genetic 
backgrounds and genetically manipulated parasites have 
made investigations using rodent model systems effi-
cient and reproducible, alongside studies to decipher the 
function of the many uncharacterized parasite proteins 

expressed at different stages of the life cycle (reviewed in 
[422, 425, 469]). Collaborative cross mice [470, 471] may 
also serve to identify genetic backgrounds that support 
the development of chronic, asymptomatic parasitae-
mia, but significant differences compared to humans and 
NHPs regarding their immune systems and physiologi-
cal responses remain, as do other differences and asso-
ciated limitations. Thus, the trade-off for the utility and 
reproducibility using rodent models will remain a loss of 
the complexities and intricacies of malaria pathogenesis 
that is clear from observations on malaria in humans and 
NHPs.

NHP infection models (NHPIMs) allow for the in-
depth investigation of both broad overarching and spe-
cific hypotheses, providing opportunities to enhance 
what can be achieved using rodents and through clini-
cal studies with humans. Ideally, research using NHPs 
will continue to complement or validate studies involv-
ing rodents, where putative mechanisms can be inves-
tigated in greater depth with the benefit of genetic tools 
and much larger experimental cohorts. Still, rodents can 
develop exceedingly high parasitaemias, well over 10% 
in most cases, which undoubtedly must affect immune 
responses. Such a high level of parasitaemia is rarely seen 
in human infections or carefully monitored and con-
trolled NHP infections. Moreover, relapse biology and 
associated immune responses currently cannot be stud-
ied using rodent malarial infection models (particularly 
given the lack of relapses in rodents, except in human-
ized mice [472, 473]), and as discussed above research on 
relapses is formidable with humans [231–233], making 
the NHP models for studying relapses preferable if not 
essential.

In many cases, immune cell subsets between humans 
and macaques are comparable. Peripheral blood B cell 
subsets and T-cells can be phenotyped and classified 
similarly between humans and macaques [139, 474, 
475]. Other cell types can also be purified and studied, 
whether singly or as populations. These strengths of 
NHP macaque models are further enforced by the abil-
ity to access tissues longitudinally or in terminal studies 
along with peripheral blood. In rodent model systems, 
tissue samples can also be obtained, but only very small 
blood volumes are available, limiting determinations on 
how immune responses in the tissues relate to changes 
detected in the peripheral blood. Coupling the strengths 
of macaque models with the many available species and 
strains of simian malaria parasites makes macaques 
especially well-suited for immunological investigations, 
and particularly for systems-based longitudinal studies 
because of the reasonable amount of informative sample 
materials that can be obtained over time, covering the 
entire course of the disease from pre- to post-infection 
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scenarios, and possible re-infection or co-infection situ-
ations [476–480].

The time is opportune to maximize NHPIM efforts, 
building upon experience gained from longitudinal 
NHP experiments by many investigators over many dec-
ades (described above), and recently by the MaHPIC, 
described below. Incidentally, the MaHPIC was estab-
lished soon after the publication of a review article, titled 
“Acquired Immunity to Malaria”, where the authors, 
Doolan, Dobaño and Baird wrote: “One likely start-
ing point for more firmly establishing age-dependent, 
strain-transcending immunity in malaria and for begin-
ning to sort through the myriad possible mechanisms at 
work may be a nonhuman primate model” [35]. Similarly, 
Mueller et  al. concluded: “In addition, a more thorough 
use of the existing non-human primate models as well 
as experimental infection in human volunteers will be 
essential for advancing our understanding of the basic 
processes and specific antigens involved in the establish-
ment of NAI to P. vivax [25].” As noted by Doolan and 
colleagues, by 1920, the essential elements of NAI had 
been described. In essence, natural immunity is: “(1) 
effective in adults after uninterrupted lifelong heavy 
exposure, (2) lost upon cessation of exposure, (3) species 
specific, (4) somewhat stage specific, and (5) acquired at 
a rate which was dependent upon the degree of expo-
sure” [35]. Also, Lefebvre and Harty have emphasized 
the importance of NHP infections for studying protec-
tive immune responses in the liver [96], also indicating 
that needle aspirate techniques may support such efforts 
[481]. Silva-Fila and colleagues further recognized the 
value of both CHMI and NHP research to address immu-
nity and pathogenesis questions, with emphasis on the 
importance of accessing bone marrow samples [97].

Establishing academic environments for NHP 
research with complete life cycles
Between 1999 and 2019, the Yerkes NPRC (YNPRC) at 
Emory University in Atlanta, Georgia (in 2022, renamed 
as the Emory National Primate Research Center) became 
recognized as the main NPRC (in the USA) with malaria 
as a major area of research emphasis, and with a recent 
history of systemic longitudinal malarial infection studies 
and an on-site insectary facility. Other academic institu-
tions offer the possibility for NHP studies, or mosquito 
work, but rarely are these animal and mosquito resources 
found together in one location, so that NHPs can become 
experimentally infected via mosquito bites or the inocu-
lation of freshly dissected sporozoites from the salivary 
glands of mosquitoes. The Yerkes Insectary for Malaria 
Research (YIFMR) was designed in 2015 and opened 
in 2017, in response to the Centers for Disease Control 

and Prevention (CDC, Atlanta, GA) plans to eliminate 
malaria research projects that involved NHPs. Thus, 
there was the need to fill this gap, building upon the 
CDC’s renowned basic infection and evolutionary studies 
using a variety of primate malaria species and NHP hosts 
to document host–parasite compatibilities, vaccine trials, 
and the routine production of gametocytes for infecting 
female Anopheles mosquitoes to obtain infectious sporo-
zoites (reviewed in [11, 12]). Up until 2017, the CDC was 
the source of mosquito salivary gland-derived infectious 
sporozoites for Emory’s malaria research team, includ-
ing for the MaHPIC, in support of a series of published 
and unpublished longitudinal infection experiments 
(described below). The YIFMR was designed for rearing 
multiple species of Anopheles mosquitoes—for infections 
with various Plasmodium species of interest (i.e., Anoph-
eles dirus, Anopheles gambiae, Anopheles freeborni, 
Anopheles stephensi)—and infecting them through direct 
blood meal feedings on NHPs.

Comparable setups have since been established at two 
other academic institutions in the United States: the Uni-
versity of Georgia (Athens, GA, currently directed by 
Chester J. Joyner) with New World and Old World mon-
key resources and the Oregon NPRC (Portland, Oregon, 
currently directed by Brandon Wilder) with Old World 
monkey resources. The expansion of such research is 
important, especially now while there is potential for 
in-depth exploration of the life cycle, immunity and 
pathogenesis using systems biology, immunology, and 
vaccinology approaches.

The Malaria Host–Pathogen Interaction Center (MaHPIC): 
building infrastructure for addressing malaria in a systemic 
manner
Malaria is so complex that systemic analyses have 
become critical, and these require large transdiscipli-
nary teams that encompass many scientific disciplines. 
The Malaria Host–Pathogen Interaction Center (MaH-
PIC) is an example of such a large team effort, which 
has been focused primarily on NHPIMs and using sys-
tems approaches to develop and integrate multi-omic, 
clinical and parasitological datasets from longitudinal 
infections. As of the time of this writing, no comparable 
research program has been noted in the literature, and 
as discussed above, these studies complement CHMI 
investigations.

The MaHPIC was established in 2012 at the YNPRC of 
Emory University [482] and conducted a series of longi-
tudinal NHP infection experiments through September 
2017 with USA contract support from the NIH’s National 
Institute of Allergy and Infectious Diseases (NIAID). 
The MaHPIC’s founding team comprised investigators 
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from Emory University, the University of Georgia in Ath-
ens, the Georgia Institute of Technology, and the CDC, 
as well as collaborators involved in clinical studies from 
around the world ([131, 483, 484], and Cordy pers. com-
mun.). The team included malariologists, biologists, 
biochemists, immunologists, pathologists, clinicians, vet-
erinarians, and mathematical, computational and infor-
matics experts. By September 2017, about 14 terabytes 
of MaHPIC data had been generated and the majority 
was released to public websites [482, 485, 486]. Between 
2016 and 2019, the team’s work was complemented by 
the U. S. Defense Advanced Research Projects Agency 
(DARPA) with funding for a project called “THoR’s 
HAMMER” (Technology for Host Resistance, Host Acute 
Models to study Experimental Resistance). Here, the 
main goal was to reveal characteristics of malarial resil-
ience, by comparing Plasmodium infections in multi-
ple host species, which showed either severe or resilient 
outcomes (see experiments called E06, E07, E30, E33 and 
E35 below).

The MaHPIC team put forth the overarching hypoth-
esis that “Nonhuman primate host interactions with 
Plasmodium pathogens as model systems will provide 
insights into mechanisms as well as indicators for human 
malarial disease conditions”. The MaHPIC’s work has 
been built upon three underlying scientific premises: (1) 
that the host environment is critical for studying malaria 
parasite biology, infections, immunity, pathogenesis, and 
pathology, (2) that studying the dynamics of longitudi-
nal infections is critical, and (3) that the integration and 
modelling of parasitological, clinical, and multi-omic 
datasets will reveal novel host–parasite interactions, 
pathways, and networks.

The MaHPIC’s primary mandate from the NIAID was 
to run longitudinal infection experiments in macaques, 
collect peripheral blood and bone marrow samples at 
specific time points, and generate clinical, parasitologi-
cal, and multi-omic datasets, which could then be ana-
lysed and integrated—initially by the MaHPIC team, and 
subsequently by others. Representative MaHPIC longitu-
dinal infection experiments and key results are summa-
rized below. Parasites used in the MaHPIC’s experiments 
included P. coatneyi (Hackeri strain) as a model of P. 
falciparum, P. cynomolgi (M/B and Ceylon strains) as 
a model of P. vivax, and P. knowlesi (Malayan strain) to 
better understand malaria caused by this zoonotic spe-
cies in its natural (human and Macaca fascicularis) and 
the traditional experimental (M. mulatta) hosts. Several 
infection experiments were also carried out with P. vivax 
in A. nancymaae and S. boliviensis monkeys. Each major 
longitudinal NHP infection was initiated with sporo-
zoites and allowed to progress for over one month, and 
in many instances three or more months, when repeat 

homologous or heterologous sporozoite-initiated infec-
tions, relapsing malaria, or recrudescing malaria and 
chronic disease were being explored. Typically, capillary 
blood samples were obtained daily as warranted for para-
sitaemia readings and reticulocyte count analyses, blood 
chemistry readings using an iSTAT System (Abbot Labs), 
and targeted and/or untargeted plasma-based metabo-
lomics experiments. Designated time points for venous 
blood draw samples were determined and selectively 
utilized as required to generate various large-scale-omic 
datasets (transcriptomics, metabolomics, lipidomics 
and/or proteomics), cytokine analyses, serology, adap-
tive and innate immune profiles, complete blood count 
haematology measurements, and the enumeration of 
haemozoin-containing leukocytes. The details of sample 
collections, methods, and data generated are being com-
piled elsewhere (DeBarry et  al. manuscripts in prepara-
tion), in addition to related details already reported with 
MaHPIC’s public database depositions and in the team’s 
original research publications (listed at [482]). This body 
of work represents the ‘tip of the iceberg’ when consider-
ing what is possible.

The MaHPIC’s original mandate did not include 
investigations of the immune response in depth, but 
the team increasingly built the foundation for doing 
so given the immune response’s prime relevance to 
infection and disease. At the start of the MaHPIC, a 
few basic innate and adaptive immune profiling flow 
cytometry panels were included in the project’s experi-
mental design, to enable initial comparative analyses 
of the dynamics of cell types that are activated in the 
course of infection by different malaria parasite species. 
The group’s foray into malarial immunity and patho-
genesis gained increasing attention, and the design of 
major infection experiments shifted to address spe-
cific outstanding biological, immunobiological, and 
pathogenesis questions of importance to the field of 
malaria research. As a result, NIAID also awarded the 
team supplementary funding to design and implement 
a systems vaccinology trial experiment, specifically to 
examine the immune response in M. mulatta to P. cyn-
omolgi sporozoite immunizations in the face of blood-
stage drug cover and the outcome from challenging the 
animals with infectious sporozoites (Joyner et al. pers. 
commun.).

In total, the MaHPIC successfully optimized an 
extensive number of flow cytometry panels and gating 
strategies to track B cells, T cells, monocytes, dendritic 
cells, neutrophils, and NK cells, as well as cell activa-
tion, co-stimulation and trafficking functional markers 
when relevant. RBC flow cytometry panels and pro-
cedures were also developed to monitor erythrocyte 
progenitor cells, different stages of RBC development 
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from nucleated RBCs to reticulocytes and normocytes, 
and to distinguish uninfected and infected RBCs [92]. 
45 cytokines were identified using Luminex assays 
and 1300 proteins including among them cytokines 
were quantitatively measured using SOMAscan—an 
aptamer-based targeted proteomic technology (Soma-
Logic, Inc.; Boulder, CO, USA) [487]. Fundamental 
work was designed to assess the various immune cell 
populations and specific subsets in the peripheral blood 
and bone marrow at baseline time points and at specific 
later time points throughout the course of each longi-
tudinal infection experiment with P. cynomolgi, P. coat-
neyi or P. knowlesi. Special flow cytometry panels were 
developed to track and evaluate specific cell types in A. 
nancymaae and S. boliviensis involved in the immune 
response to P. vivax. As a result, numerous fluores-
cently labelled antibodies were identified, tested, and 
validated in MaHPIC experiments (DeBarry et al. man-
uscripts in preparation).

Selected longitudinal infection experiments, performed 
by the MaHPIC
Iterative longitudinal infection experiments were exe-
cuted by the MaHPIC. A few representative examples 
are summarized here to demonstrate the types and 
results of these experiments. The experimental num-
bers reflect those incorporated in the group’s Labora-
tory Information Management System.

Experiment 3 (E03): Plasmodium coatneyi infection of M. 
mulatta
The MaHPIC’s initially designed longitudinal infection 
experiment (called E03), involved repeat infections of 
four malaria naïve M. mulatta with 100 P. coatneyi sporo-
zoites [131]. This was designed to build upon knowl-
edge gained in a blood-stage longitudinal experiment 
focused on anaemia [130]. Then, it was confirmed that 
the malaria naïve M. mulatta developed severe anae-
mia, coagulopathy, renal impairment, and a generalized 
metabolic dysfunction comparable to what is often seen 
in severe human cases. Major turnover of erythrocytes 
was demonstrated and attributed to dysfunctional bone 
marrow. Disease severity turned out to be less once the 
animals were semi-immune and re-infected [130].

Specifically, E03 [131] showed that rhesus macaques 
infected with P. coatneyi develop chronic infections after 
receiving subcurative artemether treatment and that they 
recapitulate the decrease in haemoglobin levels char-
acteristic of persistent infection in humans [45, 488]. A 
recent study with kra monkeys infected with P. knowlesi 
showed evidence of a similar phenotype, but without the 
administration of subcurative anti-malarial treatment 

(see E07 below) [268]. Both situations—drug treated or 
not—are highly relevant for performing comparative 
systems-level analyses of host–parasite interactions. The 
E03 study showed specific transcriptomic and meta-
bolic changes associated with acute and chronic infec-
tions [131]. Furthermore, distinct metabolic profiles were 
identified in M. mulatta that were comparable to those 
observed in human P. falciparum cases. E03 data are still 
being analysed by the MaHPIC team, for instance, with 
respect to the integration of transcriptomic and immuno-
logical data. Of particular importance has been an analy-
sis of the development of specific antibody responses 
over time, as chronic infections are established, and the 
dynamic production and function of different isotypes. 
A main question relates to how these antibody responses 
may result in a balance of protective responses with the 
killing of infected RBCs and adverse responses that result 
in the elimination of a majority of uninfected bystander 
RBCs, as determined by Fonseca et al. using a mathemat-
ical model [489].

Experiments 04, 23, 24 and 25: Plasmodium cynomolgi 
infection of M. mulatta
These four iterative experiments adopted the P. cyn-
omolgi-rhesus macaque model of relapsing malaria to 
delve into specific immunobiological questions and begin 
the process of using systems biological approaches to 
understand relapse biology and anaemia as it relates to 
P. vivax in humans [490]. The course of infection and 
relapse patterns were studied in experiments involving 
11 naive rhesus monkeys, which had been inoculated 
with 2,000 P. cynomolgi M/B strain sporozoites that had 
been freshly isolated from Anopheles mosquito salivary 
glands [139, 140]. The time to blood-stage infection was 
comparable in all animals, with patency reached within 
10–12  days, and all animals relapsed in the course of 
the study (set for 100 days; initially with a group of five 
animals designated for E04, and then with six animals 
designated for E23, followed by repeat parasite inocula-
tions in consecutive experiments called E24 [139] and 
E25 (Joyner et  al. pers. commun); one animal from E04 
needed to be euthanized due to severe malaria, as it was 
not responding to treatment [397].

Based on data from E04, Tang et  al. used Weighted 
Gene Coexpression Network Analysis (WGCNA) to inte-
grate flow cytometry, RNA-sequencing, and systemic 
cytokine measurements [491]. Despite anaemia and an 
increase in erythropoietin levels during the acute infec-
tion, the bone marrow did not respond appropriately to 
compensate for blood losses [491]. The acute infections 
showed ongoing inflammatory responses with Type I 
and Type II interferon transcriptional signatures, which 
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were associated with intermediate and non-classical 
monocytes. The complete analyses suggest that, mecha-
nistically, the observed insufficient erythropoiesis may 
be due to monocyte-associated disruption of GATA1/
GATA2 regulation. In summary, monocyte-associated 
inflammation in the bone marrow influenced the disrup-
tion of GATA1/GATA2 transcriptional networks that 
are required for the differentiation of erythrocytes [491]. 
In contrast, anaemia was not observed during relapses 
and the bone marrow samples at that time did not show 
transcriptomic perturbations reflecting inflammatory 
responses and dysregulation of erythroid progenitor cells 
[491]. This is the first systems-level analysis based on 
NHP longitudinal infections that integrated multiple data 
types to identify a molecular mechanism that contributed 
to bone marrow dysfunction, and it provides direction 
for further study with a focus on longitudinal bone mar-
row sampling. Shortly thereafter, Brito and colleagues 
published experiments using bone marrow aspirates 
from naturally infected P. vivax patients and confirmed 
a similar mechanism in humans [447]. After decades of 
realizing that the bone marrow is affected by malaria 
parasites [492], the mechanisms are now becoming 
accessible. Additionally, MaHPIC members integrated 
transcriptomics, metabolomics, and lipidomics data from 
E04 peripheral blood and bone marrow samples, and 
synthesized them with immunophenotyping data using a 
unique and intuitive mutual information-based network 
analysis approach. This effort distinguished uninfected 
NHPs, acute infections and relapse infections, in an 
unsupervised manner, revealing information not possible 
with a single -omic data type [493].

Systems analyses are showing that macaques are par-
ticularly well-suited for investigating changes in the bone 
marrow and possible relationships to systemic changes 
impacting not only anaemia, but also the development 
of long-lived serological immunity. E23 and E24 dem-
onstrated that—as with humans (shown with malari-
otherapy studies; reviewed above)—clinical immunity 
can form after a single sporozoite-initiated blood-stage 
infection and prevent illness; this was the case both 
during E23 relapses and E24 homologous strain rein-
fections [139]. For this study, along with clinical and 
parasitological data, data were integrated from whole 
blood RNA-sequencing transcriptomics, flow cytometry 
distinguishing B-cell subpopulations, P. cynomolgi-anti-
gen-specific ELISAs, and opsonic phagocytosis assays 
to support the functionality of P. cynomolgi antigen-
specific antibodies. Together, the various data types and 
validation experiments demonstrated that immunity 
after the primary parasitaemia and a bout of clinical ill-
ness was associated with a rapid expansion of memory 
B cells (MBCs) in a recall response and the production 

of anti-parasite IgG1 that was able to mediate clear-
ance of parasitized RBCs. Antibodies were also detected 
that specifically reacted with uninfected RBCs, con-
sistent with them being a causal factor in the observed 
anaemia. Specific B-cell subpopulations and immuno-
globulin isotypes were identified among the peripheral 
blood mononuclear cells. As in humans, the B cell sub-
populations identified included: naive (IgD+CD27−), 
unswitched memory (USM: IgD+CD27+), switched 
memory (SM: IgD−CD27+), and double-negative B cells 
(DN: IgD−CD27−). The USM and SM B cells dramati-
cally and rapidly expanded during relapses, including 
IgG+SM B cells, and IgM+SM B cells though fewer in 
number; in contrast, only IgG+SM B cells increased dur-
ing the homologous reinfections, however, IgM recogniz-
ing both infected and uninfected RBCs was significantly 
increased. Overall, the reduction of infected RBCs in the 
peripheral blood by phagocytosis coincided with spe-
cific MBC and antibody responses and the lack of clini-
cally detectable illness in both relapses and homologous 
reinfections. Having generated insights into the B-cell 
dynamics involved in the generation of strain-specific 
immune memory, E23 and E24 informed new possible 
directions to understand B-cell dynamics and functions 
in future experiments.

Experiment 25 was subsequently performed to test 
the hypothesis that protective recall responses projected 
(and then observed) for E24 would not function with a 
heterologous challenge. The six rhesus monkeys that had 
been infected in E23 and then re-infected in E24 with the 
M/B strain of P. cynomolgi, were inoculated a few months 
later with 2,000 freshly isolated P. cynomolgi sporozoites 
of the Ceylon strain; the analysis and integration of the 
results from this project are in progress, alongside valida-
tion experiments (Joyner et al. pers. commun.). For this 
series of experiments, rectal swabs were also acquired 
and microbiome and multi-omic integrative analyses 
are underway to understand host–parasite–microbiome 
relationships (Cordy et al. pers. commun.).

This series of longitudinal experiments nicely dem-
onstrates the value of this NHP model for exploring 
immunity to relapsing malaria species, beyond what 
can typically be done with humans, especially because 
in the animal model the sporozoite inoculations, treat-
ment of LSFs, and monitoring of blood-stage infections 
can be rigorously controlled. In a broad sense, these lon-
gitudinal macaque infections with P. cynomolgi mirror 
clinical manifestations and immunity results observed in 
humans with P. vivax (reviewed in [25]). In recent years, 
this NHP model has permitted, for the first time, a close 
look into the dynamic NAI adaptive responses that cur-
tail clinical exacerbation of disease and pathology, as well 
as the B cell phenotypes and dynamics that define recall 
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responses responsible for reducing parasitaemia [139]. In 
future longitudinal P. cynomolgi infection experiments, 
MBC subpopulations and their functionality could be 
studied in greater depth, including with the sequencing 
of the B-cell receptors to gain information on their speci-
ficity against specific antigens.

Importantly, E23 also capitalized on the opportunity to 
evaluate the reduction in relapse asexual-stage compared 
to sexual-stage parasitaemia—assessed by blood-smear 
counting of gametocytes and transcriptome analysis of 
gametocyte transcripts [139]. The reduction in parasi-
taemia during relapses coincided with a reduction in the 
number of circulating gametocytes, however, the cumu-
lative proportion of gametocytes compared to asexual-
stage parasites increased during relapses. These results 
raise questions as to whether and to what degree relapse 
infections in humans are clinically silent but infectious 
by providing a gametocyte reservoir for biting Anoph-
eles mosquitoes [139]. It is remarkable—as deduced 
from the NHP model experiments—that the parasite and 
host seem to have co-evolved to survive together with 
non-sterilizing protective host immunity that enables 
transmission of gametocytes to mosquitoes and thus the 
propagation of the parasite species. Transmission experi-
ments are now warranted to clarify and understand the 
combined NHP host–parasite–vector relationships in 
light of possible intervention strategies to prevent relaps-
ing parasitaemias that can support transmission. Strate-
gically controlled and monitored sequential mosquito 
feedings (on infected animals or their infected blood, at 
multiple time points) can confirm levels of infectivity, 
and, in concert with systems immunological approaches 
can lead to an improved understanding of how the 
primed immune system permits relapsing infections 
and how the parasites sufficiently evade memory recall 
responses in order to transmit gametocytes to mosqui-
toes. Future studies can also be envisioned that delve 
into gametocyte biology and immunity against the sex-
ual stages, providing possible new insights pertinent to 
understanding transmission reduction or enhancement 
activities that can be related to P. vivax and P. falciparum 
infections (reviewed in [296]).

Experiments 06, 07, E30, E33, E35: Plasmodium knowlesi 
infection of M. mulatta and M. fascicularis
Peterson et al. delved into the pathogenesis of P. knowlesi 
infections that had been initiated with Malayan strain 
sporozoites in M. fascicularis of Mauritius origin 
and demonstrated that these natural macaque hosts 
developed clinical illness [268]. However, the animals 
recovered without anti-malarial intervention. One of 
the most striking findings was that these animals—
unlike M. mulatta [277]—did not display evidence 

of dyserythropoiesis, and in fact, their bone marrow 
responded when erythropoietin levels were elevated. This 
response is in direct contrast to what occurs in rhesus 
macaques infected with P. coatneyi or P. cynomolgi [130, 
131, 139, 140]. One can envision future comparative sys-
tems biological studies assessing multiple macaque hosts 
with the goal of understanding the molecular networks 
that are affected and the factors that contribute to bone 
marrow disruption. Indeed, comparisons of peripheral 
blood transcriptional responses from P. knowlesi infected 
M. mulatta and M. fascicularis, analysed temporally, 
show dramatic differences at the onset of the acute infec-
tion that seem to support the recovery of M. fascicularis, 
whereas M. mulatta continues to show inflammatory and 
anti-inflammatory processes [396]. Perhaps these distinct 
responses reflect in part the differences observed in the 
bone marrow. Furthermore, M. fascicularis responded 
to the parasite as early as 3  days after inoculation with 
sporozoites, unlike M. mulatta, showing early cytokine 
signaling along with interferon responses while the para-
sites were still in the liver. Among other findings, Gupta 
and colleagues also report pre-infection differences in 
neutrophils and naïve CD4+T cells that lead to differ-
ences in Ca2+ homeostasis, which ultimately balances 
inflammation and cell proliferation during the log phase 
of parasitaemia expansion [413]. These P. knowlesi infec-
tion experiments also incorporated unique telemetry 
measurements generated from implanted devices that 
continuously tracked temperature, blood pressure, heart 
rate and activity levels (Brady et al. pers. commun.).

Comparisons across experiments based on different NHP 
host–parasite models
The MaHPIC established that the development of 
anaemia in rhesus macaques infected with P. coatneyi, 
P. cynomolgi, or P. knowlesi replicates the hemoglobin 
kinetics of humans with P. falciparum or P. vivax [130, 
131, 139, 140, 277]. During the acute phase of infec-
tion, rhesus macaques show evidence of inefficient 
erythropoiesis, which is further complicated by the 
removal of uninfected RBCs. Interestingly, the most 
severe phase of anaemia sets in when erythropoiesis 
is restored, implying that removal of uninfected RBCs 
may be the largest contributor to malarial anaemia, 
as hypothesized in 1999 [44]. Indeed, mathematical 
modelling of longitudinal infection data by the MaH-
PIC has supported this hypothesis [112, 489, 494, 495]. 
These findings suggest that searches are warranted for 
an adjunctive therapy for severe malarial anaemia that 
would prevent the removal of uninfected RBCs. Fur-
ther systems-based studies detailing in  vivo mecha-
nisms that cause the removal of uninfected RBCs could 
be informative, particularly with the advancement 



Page 24 of 38Galinski ﻿Malaria Journal          (2022) 21:177 

of single-cell technologies that allow the fluorescent 
labelling of erythrocytes with the goal of isolating the 
phagocytes that take them up in different tissues. In 
addition, proteomic and other experiments could be 
applied to identify possible targets on the uninfected 
RBC surfaces that could be blocked by future antibody-
based therapies to prevent their removal by phagocytes.

Data from E03 and E04 were also studied together 
to determine what common changes may occur in the 
host due to Plasmodium infection regardless of the 
infecting species. In one example, Tang et  al. inter-
preted peripheral blood transcriptomics data from E03 
and E04 by use of a dynamic model of purine metabo-
lism and showed how gene expression associated with 
purine metabolism from each of these experiments was 
reflected in specific downstream alterations in metab-
olomic signatures [496]. Specifically, a main finding 
was a pattern of flux rearrangement within the purine 
pathway system that increased production and excre-
tion of inosine, hypoxanthine, and xanthine. More pro-
nounced changes in the flux patterns were associated 
with higher parasitaemias and the possible relevance of 
changes in purine metabolism with regards to inflam-
mation and parasite proliferation was discussed. A 
similar analysis involving human data showed consist-
ent trends in the flux patterns [496]. Other examples 
show how transcriptomics and metabolomics data from 
MaHPIC’s NHP experiments are reflected in data from 
human studies [131, 483].

Conclusions
The future of malaria immunology and vaccine 
development—if we can go to the moon…?!
In 2019 many celebrated the 50th anniversary of the first 
landing of humans on the moon, and another USA-led 
trip to the moon was projected for 2024. A year later, 
the SARS-CoV-2/Covid-19 pandemic struck hard and 
inspired the development, testing, approval, production 
and distribution of multiple SARS-CoV-2/Covid-19 vac-
cines in a matter of months [497] and such research con-
tinues with intensity to prevent future pandemics [498]. 
If scientists and supporting professionals can achieve 
such ‘unrealistic’ feats during a deadly pandemic, why 
can’t they make and deliver effective malaria vaccines 
that are direly required for the eradication of a disease 
that kills hundreds of thousands every year? Or can they? 
Is the eradication of malaria simply a matter of will, per-
sistence, and enough funding? Parasitic infections are 
arguably more complex than viral infections, but the 
hope persists that scientists will discover an Achille’s 
heel(s) of the parasite, which then can be exploited as a 
vaccine target(s), and possibly for the future development 
of host-directed therapies that will save millions of lives 

worldwide and greatly increase the chances for malaria 
eradication. How such elusive targets might be found is 
of course unknown, but, no doubt, ample global research 
funding and resources must be maintained to achieve 
such goals [499–501] (see Box 2).

Box 2 Millennials, generation Z and beyond!

The future will soon rely on Millennials (born between 1981 and 1996) 
and Generation Z (born from 1997 onward) [502]. Is it possible today to 
speed up research so that the next several decades, led by these new 
generations of scientists, yield exponential growth in understanding 
the full, multi-faceted extent of malaria? Can we envision an equiva-
lent of ‘going to the moon’ within this time frame? If so, what will that 
take? Modern methods of systems immunology and vaccinology hold 
great promise, if they are supported by computational modelling 
capabilities that allow efficient analysis, integration, and interpreta-
tion of large diverse datasets, and offer the hope of revealing insights 
not possible otherwise. For sure, the field needs patience, time, and 
resolve, to realize its potential. Funding bodies, as well as passionate 
wealthy individuals and philanthropically inclined companies, need to 
recognize and embrace the prospect of a long haul, combined with an 
innovative, risk-taking mindset of ‘tackling this challenge,’ ‘doing things 
differently,’ and ‘not being deterred.’ Such research—including studies 
involving NHPs—has so far advanced in fits and starts. Funding comes, 
and funding goes. Capable dedicated research teams form, specialized 
training occurs, projects gain momentum, and then agendas veer off. 
This constant ebb and flow of research funding makes it difficult to 
maintain strong active research teams. If the moon-shot goal of malaria 
research is disease eradication, the future of today’s post-genomics 
era will require an expansion of research capabilities and talents, with 
individuals and teams able to analyse and decipher meaning from the 
vast amounts of genomic, epigenomic, and other data types that can 
be generated, for instance, in the course of longitudinal infections. To 
advance malaria research with the use of NHPs, NHP and malariology 
expertise must be sustained and nurtured, and this expertise must 
be augmented with a deepened knowledge of the concepts and 
approaches of immunology, vaccinology, computational biology, and 
systems biology. The training and cultivation of junior scientists as 
capable leaders in this research area is essential—now. This sentiment 
was expressed over 12 years ago by the CDC’s preeminent malaria 
parasite NHP infection expert and entomologist William Collins [503], a 
co-author of “The Primate Malarias”. The same is now expressed by this 
author, as she nears retirement!

Malaria research interests and agendas have become 
all-encompassing with consideration of today’s malaria 
eradication goals. The pursuit of effective vaccines con-
tinues alongside epidemiological tracking of parasites, 
species and infections, and focused attention on the 
need to detect and treat relapse and chronic asympto-
matic cases of malaria. Improved diagnostics, drugs and 
issues relating to insecticide availability and resistance 
are also at the forefront. New efforts include rapid spe-
cies-specific detection of infections using non-invasive 
procedures [504, 505], the identification of biomarkers 
of immunity and disease [51, 131, 506–509], and geneti-
cally altered mosquitoes that do not transmit the dis-
ease [270]. The need continues for new drugs and drug 
combination therapies in the face of drug resistance, or 
contraindications, as with primaquine or tafenoquine 
use in pregnant and G6PD deficient individuals [10], as 
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well as insecticide-treated nets, other vector inhibitory 
tools, and procedures for the monitoring and evaluation 
of epidemiological studies and clinical trials. In addition, 
the nationwide and regional epidemiological, ecological, 
socioeconomic, and cultural factors must be considered 
in the 100 or so countries with malaria.

As a result of the recent SARS-CoV-2/Covid-19 pan-
demic, communities and their malaria control/elimi-
nation/eradication agendas have been disrupted in 
countless unexpected ways [271] and many questions 
have been raised on evaluating, managing, and treating 
syndemics such as the one between malaria and SARS-
CoV-2/Covid-19 [272]. With signs that the SARS-CoV-2/
Covid-19 pandemic is coming under control, it is time to 
reassess research directions to keep advancing the goals 
of malaria eradication. As has been learned with the 
SARS-CoV-2/Covid-19 pandemic experience, it is wise 
to stay ahead of predictable epidemics – and pandemics. 
Scientific and public health experts must keep working 
together, mastering and advancing key knowledge about 
malaria and devising ways forward to prevent, treat, and 
eliminate the disease.

Today with the benefits of cellular imaging, -omic tech-
nologies, and computational methods, scientists can 
visualize biological functions and dynamics, in essence 
beginning to gain traction on understanding complex 
in vivo dynamical systems. The advent of systems biologi-
cal approaches offers hope that it is possible to capitalize 
on NHP model systems hand-in-hand with CHMI stud-
ies. Notwithstanding, despite advances recognized in this 
review, the use of NHPs for malaria research has arguably 
been quite limited to date, especially compared to other 
infectious diseases of widespread importance. Any reluc-
tance is unfortunate because clear evidence is mounting 
that NHPs can be an effective tool to tease out the details 
of NAI, VCI and pathogenesis in controlled longitudinal 
infection studies. As mechanistic depth is required to 
address many hypotheses regarding the molecular basis 
of host–parasite interactions, necessitating rigorous sam-
pling of blood, bone marrow, or other tissues, NHPs may 
be the preferred host of the future.

It is especially timely now for more in-depth studies 
to better understand NAI to P. vivax primary infections, 
relapses, and repeat infections using robust Old World 
macaque-P. cynomolgi infection models [168, 190], along 
with or followed by confirmatory/validation experiments 
with P. vivax in the New World monkeys [20]. Like-
wise, Old World macaque-P. coatneyi and -P. knowlesi 
infection models are excellent for studying acute and 
chronic immune responses and pathogenesis, as well as 
antigenic variation based on the large Schizont Infected 
Cell Agglutination variant antigens (SICAvar) multi-
gene family that corresponds to the var gene family in P. 

falciparum [92, 94]. Malaria during pregnancy has been 
studied using P. coatneyi, P. cynomolgi and P. knowlesi in 
rhesus monkeys and P. knowlesi in baboons (reviewed in 
[273]), and future studies on immunity and pathogenesis 
would also be of value with these models.

Comparative studies with different parasite species, 
strains, and co-infections, possibly involving animals of 
different age groups and sexes (infants, juveniles, adults), 
could also be fruitful toward understanding NAI and 
VCI in these populations. Such studies may also lead to 
insights supporting the development of vaccines that 
provide species- or strain-transcending immunity, com-
parable to multiple natural exposures in malaria endemic 
areas to homologous or heterologous parasites that can 
result in the building of NAI, with a lack of sympto-
mology. While this level of immunity would be a major 
achievement toward eradication, the problem of asymp-
tomatic infections and chronicity must also be addressed. 
Otherwise, transmission will remain a likely fact, and 
the chances for eradication will be much reduced. 
Interventions focused on NAI goals must include both 
anti-disease and anti-parasite immunity, as well as the 
elimination of infectious gametocytes.

A caveat for studying the cellular dynamics within the 
immune system while relying solely on peripheral blood 
or bone marrow is that not all immune cell types of inter-
est, or their specific activated phenotypes, are necessarily 
circulating in the blood or present in the bone marrow. 
Moreover, a subset of iRBCs can become sequestered 
or concealed in various tissues and organs [24, 112, 151, 
152, 267, 268, 274, 277], so that peripheral blood para-
sitaemia counts do not necessarily reflect the true para-
site load in the host (reviewed in [24, 97, 110, 196]). 
Tissue samples other than peripheral blood can seldom 
be obtained from humans. However, various tissues can 
be accessed from infected NHPs with biopsy procedures 
or during necropsies in terminal studies. Future experi-
ments are warranted to assess the different cell type 
niches for Plasmodium and their functional attributes 
in NHP infections. It will be informative to assess these 
at several time points during infections, when possible, 
from sequential biopsies on individual animals, or from 
a cohort of animals with staggered terminal analyses, 
such that the cell types within different tissues could be 
examined. These studies can be performed, for exam-
ple, during the liver stage and acute and chronic stages 
of infections, post treatment, and during relapses in the 
case of P. vivax or P. cynomolgi. With such analyses, a 
holistic picture of the dynamics of infection, immunity 
and disease will take shape. Similarly, future iterations of 
the types of experiments carried out by the MaHPIC will 
permit the pursuit of hypothesis-driven questions that 
will gradually become more specific. Thus, within the 
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limits imposed by ethical regulations, more information 
will be gained from a specific period of an infection or 
from a specific tissue or cell type and targeted studies will 
yield insights into the living tissue architecture and the 
parasite’s environment.

The ever-elusive efficacious malaria vaccine, which can 
be counted on for complete protection against one or all 
species, strains and variants of Plasmodium, may not be 
in the realm of realistic possibilities—today. However, 
with greater fundamental understanding of the workings 
of the immune system and host–parasite interactions, 
strategic, fortuitous—or serendipitous—discoveries will 
pave the way forward in ways unbeknown today. All 
things considered, from the hundreds of millions of Plas-
modium infections and clinical cases of malaria that still 
occur annually in close to 100 countries [1], the goals of 
regional elimination and global eradication [160], and 
the potential today for incrementally deep exploration 
into host–pathogen interactions and the identification 
of new intervention targets and strategies (parasite- or 
host-directed), it is important to capitalize on the value 
of multiple animal models for bringing critical knowledge 
to the fight against malaria. In this vein, Zuck and col-
leagues boldly concluded that “the study of host–patho-
gen interactions presents an unmatched opportunity for 
the field of systems biology, just as the approach of sys-
tems biology presents an unmatched opportunity for the 
eradication of malaria [275].”

Fifty years ago, the authors of “The Primate Malarias” 
demonstrated much curiosity and dedication, thereby 
consciously or not paving the way for decades of malaria 
research involving NHPs to follow their lead. Once again, 
the malaria research field is at an important juncture, and 
the question is whether society has the determination to 
utilize all available resources and the cornucopia of amaz-
ing new technologies to advance our understanding of 
malaria, immunity, and pathogenesis for the benefit of 
translational research that will ultimately benefit commu-
nities affected by this disease worldwide. The catch phrase 
“use them or lose them” needs to be taken to heart when it 
comes to NHP model systems. The discussion of advances 
based on NHP models described here is intended to 
inspire curiosity and the pursuit of new avenues toward 
knowledge regarding the multi-faceted system that 
encompasses malaria. The necessary tools are emerg-
ing. They are powerful and unprecedented, but they will 
only be efficacious if they are used and relentlessly refined 
and improved by new cohorts of well-trained malariolo-
gists. This article’s goal—while honoring leaders from the 
past—is thus a call to action. The longitudinal infection 
experiments performed by the MaHPIC are an exam-
ple of the benefits reaped from decades of prior research 
with NHPs. It was timely in 2012 for the MaHPIC team 

to begin developing the systems biological underpinnings 
for longitudinal NHP infection research, and their work 
added new dimensions of understanding to key aspects 
of the disease, such as relapses, chronic infections, anae-
mia, and immune memory. However, much is yet to be 
learned, venturing into uncharted territory. If technolo-
gies continue to advance as expected, and the tenacity 
for new research using NHPIMs remains strong, insights 
into malaria in these models will continue to provide a 
multi-dimensional holistic view of parasitism at the cellu-
lar, tissue and organ levels, and spawn a wider, and at the 
same time sharper focus onto possible targets for inter-
ventions and disease eradication. Terabytes of data from 
MaHPIC experiments have been deposited in the NIAID-
supported Bioinformatics Resource Centers, PlasmoDB 
[420, 276] and other public databases for the benefit of 
the global research community. Many opportunities now 
exist for the analysis and re-analysis of data across MaH-
PIC’s clinical and NHP experiments [482].
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